Plasma lipidomics and PCPro as prognostic biomarkers in TheraP (ANZUP 1603): a randomised trial of [177Lu]Lu-PSMA-617 (LuPSMA) vs cabazitaxel in metastatic castration resistant prostate cancer (mCRPC)

Tahlia Scheinberg^{1,2,3,4,*}, Nadia Boufaied^{5,*}, Rhiannon Mellor^{1,3,6}, Arun A. Azad^{7,8}, Paul Bonnitcha^{2,4,9}, James Buteau^{8,10}, Ian D. Davis^{11,12}, Louise Emmett^{6,13}, Michael Fitzpatrick^{4,9}, Roslyn J. Francis^{14,15}, Rachel MN. Kim³, Edmond Kwan^{11,12,16}, Hui-Ming Lin^{3,6}, Andrew J. Martin¹⁷, Peter J. Meikle^{18,19}, Andrew M. Scott^{20,21,22,23}, Martin Stockler^{1,2,17}, Alexander W. Wyatt¹⁶, Michael S. Hofman^{8,10}, David P. Labbé^{5,24,†}, Lisa G. Horvath^{1,2,3,4,6†} for the TheraP trial investigators on behalf of the Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP)

- 1. Chris O'Brien Lifehouse, Sydney, NSW, Australia.
- 2. University of Sydney, Sydney, NSW, Australia
- 3. Garvan Institute of Medical Research, Sydney, NSW, Australia
- 4. Royal Prince Alfred Hospital, Sydney, NSW, Australia
- 5. Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- 6. University of New South Wales, Sydney, NSW, Australia
- 7. Department of Medical Oncology, Peter Maccallum Cancer Centre, Melbourne, VIC, Australia
- 8. Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- 9. NSW Health Pathology, Sydney, NSW, Australia
- 10. Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter McCallum Cancer Centre, Melbourne, VIC, Australia
- 11. Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
- 12. Eastern Health, Box Hill, VIC, Australia
- 13. Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
- 14. Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- 15. Medical School, University of Western Australia, Perth, WA, Australia
- 16. Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
- 17. NHMRC Clinical trials centre, University of Sydney, NSW, Australia
- 18. Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- 19. La Trobe University, Melbourne, VIC, Australia
- 20. Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- 21. Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- 22. Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- 23. School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- 24. Division of Urology, Department of Surgery, McGill University, Montréal, Québec, Canada.

Background: The TheraP trial demonstrated that LuPSMA improved PSA response rates and radiographic progression-free survival (rPFS) compared to cabazitaxel in participants with PSMA-positive, non-FDG-discordant mCRPC progressing post docetaxel.

Elevated circulating sphingolipids, especially ceramides, are associated with shorter rPFS and overall survival (OS) in patients with mCRPC treated with androgen receptor pathway inhibitors (ARPI) or docetaxel. PCPro is a validated, CLIA/NATA compliant plasma lipid biomarker, comprising Ceramide(d18:1/18:0), Ceramide(d18:1/24:0), Ceramide(d18:1/24:1), total cholesterol and triglycerides, capable of prospectively identifying people with mCRPC and ARPI or docetaxel resistance (shorter rPFS and OS when treated with ARPI; shorter OS when treated with docetaxel). We report the association of lipidomic changes and PCPro status with clinical outcomes in patients treated with either LuPSMA or cabazitaxel.

^{*}Co-first authors

[†]Co-corresponding authors

Methods:

Baseline and progression plasma from 109/200 (54%) TheraP participants were profiled by liquid chromatography-mass spectrometry for comprehensive lipidomic profiling and PCPro. Associations with rPFS and OS were assessed by Kaplan-Meier and Cox regression methods.

Results:

819 lipids across 23 classes were detected in the plasma of TheraP participants, predominantly phosphatidylcholine (27.59%), triglyceride (15.87%), phosphatidylethanolamine (14.57%) and ceramide (12.58%). Univariate Cox regression identified 92 lipids significantly associated with rPFS and 88 with OS (p<0.05). Several overlapped with the 46 prognostic lipids previously reported in mCRPC. Ceramide(d18:1/24:1), a sphingolipid and component of the PCPro signature, demonstrated the strongest prognostic value. It was the only lipid to remain significant in multivariate analysis for both rPFS (HR 2.36, 95% CI 1.39–3.99, p=0.0014) and OS (HR 2.23, 95% CI 1.19–4.17, p=0.0125).

22/108 participants (20%) were PCPro-positive. These individuals had significantly shorter rPFS (HR 1.7, 95% CI 1.04–2.7, p=0.035) and OS (HR 2.4, 95% CI 1.5–3.9, p=0.001) compared to PCPronegative participants. PCPro-positivity was observed in 14/59 (24%) participants treated with LuPSMA and 8/49 (16%) treated with cabazitaxel. The prognostic significance of PCPro for rPFS and OS was independent of the treatment arm (interaction p value OS=0.8, rPFS=0.2). PCPro remained an independently significant prognostic factor for OS in a model accounting for other prognostic factors (Table 1).

Participants who remained PCPro-positive at both baseline and progression had the worst prognosis (median OS: always-positive 8.3months, always-negative 19.0months; HR 4.35, 95% CI 2.41–7.88, p<0.001). There was no difference in OS between participants who were PCPro-positive at baseline but became PCPro-negative at progression and those who were always PCPro-negative (median OS: positive-to-negative 20.8months; HR 1.30 , 95% CI 0.59–2.85, p=0.5).

Conclusions:

PCPro-positive status is an independent prognostic factor for shorter OS in mCRPC patients treated with LuPSMA or cabazitaxel. Conversion from PCPro-positive to negative is associated with improved outcomes, suggesting that dynamic lipidomic changes may reflect treatment response. These findings highlight sphingolipid metabolism as a potential therapeutic target in treatment-resistant mCRPC.

Table 1. Multivariable analysis for OS

Variable	Hazard ratio (95% confidence interval)	p-value
PCPro, positive	1.78 [1.05 – 3.03]	0.032
PSMA PET SUV mean <10	1.39 [0.82 – 2.34]	0.2
FDG PET Mean Tumour Volume ≥ 200	2.29 [1.40 – 3.75]	0.001
ctDNA fraction	-	-
ctDNA 2-30%	4.07 [1.55 – 10.7]	0.004
ctDNA >30%	8.91 [3.17 – 25.1]	< 0.001

Funding Acknowledgements:

T.S. is a Young Investigator of the Prostate Cancer Foundation. The TheraP trial is a partnership between ANZUP Cancer Trials Group and the Prostate Cancer Foundation of Australia (PCFA) with support from the Australian Nuclear Science and Technology Organisation (ANSTO), Endocyte (a Novartis company), Movember, The Distinguished Gentleman's Ride, It's a Bloke Thing, and

CAN4CANCER. This study is being conducted by ANZUP in collaboration with the National Health and Medical Research Council (NHMRC) Clinical Trials Centre at the University of Sydney. ANZUP receives infrastructure funding from the Australian Government through Cancer Australia. The lipidomics was performed under a US Department of Defense Peer Reviewed Medical Research Program Investigator-Initiated Research Award (W81XWH-22-1-0585) to DPL and LH. IDD is supported in part by an NHMRC Investigator Grant (2016274).

Conflicts of Interest Disclosure:

Tahlia Scheinberg, Hui-Ming Lin, Peter Meikle and Lisa Horvath are co-inventors of a patent for PCPro licensed by Chris O'Brien Lifehouse.

Tahlia Scheinberg: I have received conference travel support from Bayer, and research funding (institutional) from Bayer and Ramsay Hospital Research Foundation.

Lisa Horvath: I have research funding from Astellas, Bayer and RedHill Biopharma. I have received institutional honoraria from Bayer, Amgen, Astellas, Janssen and MSD.

Alex Wyatt: I have served on advisory boards and/or received honoraria from AstraZeneca, Astellas, Bayer, EMD Serono, Janssen, Merck, Pfizer. My laboratory has contract research agreements (via my institution) with ESSA Pharma, Tyra Biosciences, and Promontory Therapeutics.