
SOFTWARE TESTING:
MEASURING VENDOR
SOFTWARE QUALITY –
PART ONE

Hugh ONeillBarry McManus

This topic grew out of a discussion about testing techniques versus
managing the scope of test documentation. This is the start of a series of
articles on computerised system testing. Given that the bulk of testing
techniques typically reside within the vendor’s domain, the authors aim
to explore some aspects of this vast topic area in order to better prepare
the QA function when assessing a vendor’s test practices and associated
software product quality.

QUASAR

10 | FEBRUARY 2025

 TABLE 1. TEST STAGES

WHAT IS TESTING?
‘Software testing consists of the dynamic
validation that a System Under Test (SUT)
provides expected behaviours on a finite set
of test cases suitably selected from the usually
infinite execution domain.’1
	 •	 The SUT is the test object (application,

middleware, database, hardware) that
comprises some or all of the computerised
system

	 •	 The term ‘finite’ suggests given the
constraint of resources and schedule, that
testing targets a subset of all possible test
scenarios determined by various criteria.

In the GxP arena, (acceptance) testing is
performed to ensure that the intended
‘behaviours’ are provided. Quite often this is
accompanied by volumes of ‘documentation’.
There is a constraint in that the need to
deliver ‘copious’ amounts of documentation,
as objective evidence, is consuming the
finite resource capacity to test. The CSA
guidance2 hints that this is a problem when
it talks about using risk-assessment to
‘follow the least-burdensome approach’ and
‘the burden of validation’.2 However, if the
‘scope’ of documentation is reduced, are we
able to ascertain the quality of the vendor’s
computerised system? In other words, is there
a correlation between documentation quality
and computerised system ‘product’ quality?
To answer this question, we need to examine
the scope of testing as a discipline, how it
relates to the software lifecycle and how it can
be leveraged to assess software manufacturing
processes and associated software product
quality. This is the vendor’s domain as the
bulk of testing occurs within the software
lifecycle.

THE VENDOR PROBLEM
Vendor audits* conducted by the authors
have revealed an increasing trend among the
vendor community in the following areas:
1. The vendor’s QMS focus is on the ‘what’

is done but not on ‘how’ it is done
(the instructions to realise the ‘what’).
The QMS doesn’t oversee the technical
activities that build the software product
quality.

2. The vendor’s internal audit function focus
is on documentation quality rather than
on the technical software product quality.

3. The vendor’s test focus is (only) on proving
their requirements are being met by
end to end scenarios, accompanied by
generating validation type documentation.
When queried as to the rationale for this,
the reply was the same: ‘Auditors demand
this’. (Quite often the vendor may also
state that such documentation can be
bought to reduce the validation burden
for their customers).

*18 vendor audits across 2023/24

A focus on documentation may be noble, but
when faults/defects arise during validation
and production use of the computerised
system, the mantra that ‘software always
contains faults’ is not good enough.
Especially where the software product quality
hasn’t improved across multiple releases
(which raises the question on the QMS
ability to improve ‘quality’).
We, as auditors, should not just be
‘demanding’ a level of test documentation
quality from vendors, but consider the
level of testing effectiveness to measure the
software product quality. To do this, we need
to start with the purpose of testing.

THE PURPOSE OF TESTING
Forgoing that testing is a regulatory
requirement and there is a need to pass an
inspection, why should we have testing?
‘Testing is a process of executing a program
with the intent of finding errors.’3 The
purpose of testing is four fold:
1. ‘To verify that requirements have been

met’.
2. ‘To uncover an as yet undiscovered error’.
3. ‘To reduce the impact of risks that have

materialised in production use’.
4. ‘To produce relevant, objective

information to make informed decisions.’3

The first purpose of testing can be rewritten
as ‘demonstrating that the system does
what it must do’3. Focus on this positive
perspective can detract from the second
purpose of testing, which can be rewritten
as ‘demonstrating that the system does not
do what it is not supposed to do’3. This
additional view is important as it seeks
to challenge the SUT in ways that are
outside the bounds of normal operational
(correct) use. If the vendor does not focus on
demonstrating that the system does not do
what it is not supposed to do, then there is a
risk of faults/defects slipping into production
use.

TEST STAGES
The scope of testing is dependent on the
SUT and the resource constraints. However,
typically four test stages are applied: unit,
integration, system and acceptance. The first
three are within the vendor’s domain prior to
delivery, the fourth by, or on behalf of, the
customer at validation UAT. See Table 1.

TEST STAGE DESCRIPTION EXAMPLES OF ISSUES TO PREVENT

Unit Is used to verify the individual code logic (units) that are combined together
to realise a SUT feature. The unit test challenges the correctness of code logic
(in isolation of a feature) and is thus too small to test a feature. It is, more often
than not, performed by the person who ‘writes’ the code logic and is typically
written as code.

Logic Errors: Incorrect implementation of
algorithms or conditions.
Data Boundary Issues: Errors occurring at the
edges of valid input data ranges.

Integration Concerns the testing of the incremental interactions between software
modules that focus on data communication (flow) between modules.
External integrations to other applications, utilities or hardware devices
can be considered.

Interface Mismatches: Errors in data format,
type or sequence between modules.
Data Flow Problems: Incorrect or missing data
passed between components.

System Builds on integration testing and focuses on the behaviour of the SUT. In
addition to the issues found in unit and integration testing, system testing will
assess non functional aspects of the SUT, such as security, speed, usability,
reliability and error handling.

As for integration, plus, End-to-End Workflow
Failures: Errors in multi-step processes, such
as incomplete transactions.

Acceptance This is well known to the regulatory community and seeks to confirm that
the deployed SUT meets the end user’s expectations and requirements.

Requirement Mismatches: Features
implemented incorrectly or missing.
Usability Issues: Poor user experience or
unclear workflows.

 FEBRUARY 2025 | 11

QUASAR

 FIGURE 1. BUGS IDENTIFIED BY QUARTER

TEST STRATEGY
Mature software vendors understand that
computerised systems are prone to faults/
defects and that testing is a finite activity.
As a result, these vendors define test
strategies to focus on assessing the level of
software product quality.
A generic testing strategy may encompass
something along the following lines:
1.	 Different types of software testing is

usually performed at different levels
throughout the end-to-end development/
validation lifecycle.

2.	 Different testing techniques are used
to efficiently target faults/defects and
requirements at the most appropriate
point in an end-to-end computerised
system lifecycle – regardless of the type
of lifecycle.

3.	 Initial unit testing is conducted by the
implementer of software code.

4.	 Testing and debugging are different
activities.

5.	 Testing beyond this is typically
conducted by an independent test group.

6.	 Static testing is an effective test
technique to prevent errors from being
designed and built into a system. Static
(preventative) testing is as important as
dynamic (corrective) testing.

7.	 Early testing seeks the identification of
errors (where the cost of correction is
cheapest), later stage testing builds on
this to confirm SUT correctness.

8.	 Testing is expensive and must be
managed to ensure the optimum use of
finite resources.

9.	 Effective test management measures
the quality of the test process and the
computerised system ‘product’ quality.
The measurement of quality within a test
strategy is vital as management should
ascertain the effectiveness of the strategy
to achieve its goals (that is, the four
purpose statements overleaf) within the
applied finite constraints.

If we are to focus less on documentation
quality and more on software product
quality, then how should we approach
this? ICH Q9 defines quality as ‘fulfils
requirements.’4 This is a subjective term
and will mean different things to different
people.
For this series of articles, quality is defined
as: ‘Software (product) quality is the absence
of defects which would either cause the
SUT to stop working or to cause it produce
incorrect results.’3

WHY USE THIS DEFINITION?
1.	 Software defects impact the

following quality attributes: reliability,
maintainability, usability, security, data
integrity, fitness for use, conformance to
requirements and customer satisfaction.

2.	 Thus, faults/defects facilitates the
measurement of quality. ‘When you
can measure what you are speaking
about, and express it in numbers, you
know something about it; but when you
cannot measure it, when you cannot
express it in numbers, your knowledge
is… unsatisfactory… you have scarcely
advanced the state of science…’ (Kelvin)5.

When we measure the computerised system
(and the associated vendor service) then we
can measure the schedule, cost and quality
of the software product.
For example, consider the following
defect bar graph that provides the
number of defects raised during software
manufacturing and then during production
release by end users across quarterly software
releases. See Figure 1.
The volume of defects raised by customers
in production and by the vendor has
been falling across releases. This trend will
invariably raise more questions, such as
quality per feature or severity, but it is a
starting point during vendor discussions
when assessing the quality of their software
manufacturing line to generate software
product quality.

80

60

40

20

0

PRODUCTION TREND LINE (OVERALL) DEVELOPMENT

2019-Q
1

2019-Q
2

2019-Q
3

2019-Q
4

2020-Q
1

2020-Q
2

2020-Q
3

2020-Q
4

2021-Q
1

2021-Q
2

2021-Q
3

2021-Q
4

2022-Q
1

2022-Q
2

2022-Q
3

2022-Q
4

2023-Q
1

2023-Q
2

2023-Q
3

2023-Q
4

2024-Q
1

2024-Q
2

2024-Q
3

12 | FEBRUARY 2025

QUASAR

CONCLUSION
Examining a vendor’s test documentation
may result in over reliance on the
documentation rather than the content of
testing (or lack thereof). ‘The assumption is
that a documented process equates to quality,
but this is a fallacy.’ (McDowal6).
An aggregation of multiple test levels (unit to
acceptance) and techniques (to be discussed
in Part Two of this article) can significantly
enhance the software product quality and
reduce the risk of operational issues.
By pivoting focus from looking purely at
testing documentation, to the test strategy
and test measurement can establish the level
of software product quality to better inform
stakeholders.
This testing series will include discussions on
aspects of comprehensive testing, including
test objectives, test techniques, test process,
test management, measurement and test
tools. The authors aim to provide more
information on the benefits of these points
on software product quality (and compliance)
and what to look for during vendor
engagements. Each article will finish with one
or more vendor assessment hints.

1. �	� Guide to the Software Engineering Body of Knowledge
(SWEBOK), Version 4.0, IEEE Computer Society. 2024

2. �	� Computer Software Assurance for Production and Quality
System Software, FDA, 13th September 2022 (draft
guidance).

3. 	 Empowerment Quality Engineering Ltd

4. 	� ICH guideline Q9 (R1) on quality risk management, EMA,
03 February, 2023

5. �	� Kelvin, Electrical Units of Measure, PLA vol 1. Electrical units
of measurement 1883-05-03

6. �	� Bob McDowall, Computer Software Assurance: Perfect
Solution or Confidence Trick? Technology Networks, 15
November, 2024

PROFILES

Barry is a Principal Consultant for
Empowerment Quality Engineering ltd,
a Computerised System Regulatory
consultancy that bridges the gap between
IT and quality.
He focuses on building quality and
security into Computerised Systems
(CS) by using quality techniques from
the wider software industry while
ensuring regulatory compliance. He leads
GxP CSV compliance and IT Supplier/
Service Provider audits across the globe;
performs IT supplier’s software lifecycle
process improvement, risk assessments
to drive validation strategies, validation
projects and tailored training.
Barry has over 27 years’ experience in
Quality Assurance, Software Engineering
and IT Administration with vast technical
knowledge of every role and every
activity within the CS lifecycle; including
multiple technologies, development
methodologies (traditional and agile),
databases and programming languages.
He is a member of the RQA IT
Committee, the MARSQA and was
a member of the ISPE Data Integrity
Project team.
Hugh is VP Operations and Quality at
PHARMASEAL International Ltd and an
independent computer systems validation
consultant.
He is an IT professional with over
35 years of experience of using
technology in the pharmaceutical
industry, initially as a developer, later
an implementer and more recently
specialising in compliance.

REFERENCES

 FEBRUARY 2025 | 13

QUASAR

