
SOFTWARE TESTING:
MEASURING VENDOR
SOFTWARE QUALITY –
PART TWO
TEST STRATEGIES AND TECHNIQUES

Hugh O’NeillBarry McManus

This topic grew out of a discussion about software testing techniques
versus managing the scope of test documentation. Given that the bulk
of testing techniques typically reside within the vendor’s domain, the
authors aim to explore some aspects of this subject area to prepare the
QA function when assessing a vendor’s test practices and associated
software product quality. This is the second article in the series and looks
at test strategies and techniques.

QUASAR

30 | MAY 2025

 MAY 2025 | 31

QUASAR

Part 1 of this series
discussed how a vendor’s
documentation quality
may not correlate with the
software product quality1.
Our IT auditing travels
have regularly shown
vendor’s:

 • QMS missing adequate instruction
to perform Software Life Cycle (SLC)
process tasks, to attain a baseline level of
quality

 • Quality function focused on
documentation quality over software
product quality

 • Test function is narrowed to proving that
requirements work.

Part 1 discussed how software product
quality is the absence of a defect which
would either cause the System Under Test
(SUT) to stop working or cause it to produce
incorrect results1. Software defects impact the
following software product quality attributes:
reliability, maintainability, usability, security,
data integrity, fitness for use, conformance to
requirements and customer satisfaction.
One of the objectives of testing is to
uncover a yet undiscovered error 1. There
is a correlation between software defect
identification and software test strategies.
Typically, the better the testing strategy, the
better the software defect discovery, the better
the software product quality.
One of the IT Auditor objectives is to assess
the robustness of the vendor’s testing strategy
to reduce the risk of defects occurring in

SUT during operational use. TEST STRATEGY
The software testing strategy is an area where
the IT auditor will investigate to ascertain
the testing phases 2 being deployed and the
different types of testing techniques within
the test phases.
This activity can inform the IT auditor of
the (quality) maturity of the vendors SLC
processes and of the associated software
product quality.
Part 1 looked at the common test phases
and their objectives1. One of the first items
to ask the vendor is about the objective of
the test strategy. Typically the response will
include the conduct of code review, unit
testing, independent testing and acceptance
testing. See Figure 1.
Quite often the vendor’s unit testing does
not reflect code logic testing, but rather the
focus is on requirement feature testing to
confirm that the requirement is working.
However, the lack of a range of testing
activities may increase the risk of defects
remaining in the SUT that will pass into
operational use.
It is important to discover the vendor’s
definition of their testing activities.
Table 1 provides a summary of some of the
common test objectives, along with a brief
description. Each objective targets a specific
outcome. The diagram is representative of
functional, compliance and installation test
focus that was discussed during a recent
for-cause audit.

WHY IS THIS IMPORTANT?
A software defect is a non-conformance
to a requirement. Software is complex
due to ‘branching’, i.e. the ability to
execute alternative series of commands,
based on different inputs3.
The testing strategy aim is to seek defects
for remediation prior to delivery to
the regulatory environment. ‘Software
verification provides objective evidence
that the design outputs of a particular
phase of the software development
life cycle meet all of the specified
requirements for that phase’ 2.
 • A vendor that verifies the

requirements and design will result
in less defects being designed into the
software solution

 • Different verification activities are
applied to detect specific defects that
otherwise may not be identified.
Conversely, an omission of a
verification activity in a particular
phase of the SLC may miss specific
defects that may reach operational use

 • The more testing techniques
considered, the more likely that more
defects will be detected and the more
likely the software product quality
will be higher.

 FIGURE 1. SYSTEM UNDER TEST: POSITIVE TEST FLOW

32 | MAY 2025

QUASAR

FEATURE 1
FEATURE 3

FEATURE nFEATURE 2

FEATURE 2 Feature

Latent Defect

Positive Test Flow

Corrected Defect

SYSTEM UNDER TEST

 TABLE 1. COMMON TEST OBJECTIVES

TEST OBJECTIVE DESCRIPTION

Functional • Determines if the functional requirements of the SUT have been met, including defined standards,
specifications, requirements and best practices

• In other words, ‘the system will do what it is supposed to do’.

Compliance • Verifies whether the SUT meets legal or regulatory requirements, e.g. 21 CFR Part 11.

Installation • Verifies the SUT in its target environment, ensuring proper setup, hardware compatibility and operational
constraints.

Error Handling • Assesses how the functionality manages error conditions from system crashes, to logging and reporting,
through to preventing further harm

• Often called negative or destructive testing
• ‘Will the system not do what it is not supposed to do’.

Regression • Re-executes previous tests to ensure that modifications haven’t introduced unintended effects
(ripple effects) – that proved features still work

• Typically, vendors incrementally release features into independent test teams
• This activity can provide confidence that key features are stable. The IT auditor will enquire about the

level of retesting performed
• Regression testing can be performed at various levels and may include functional and non-functional

tests (e.g. reliability, usability, compatibility)
• It often involves selecting, minimising and prioritising test cases.

Non Functional This examines aspects like performance, usability and reliability at all test levels. Key types include:
• Performance Testing: Checks if the system meets performance requirements (e.g. capacity, response

time)
• Load Testing: Assesses behaviour under load to detect issues like ‘deadlocks’ or ‘memory leaks’

(Data integrity faults)
• Stress Testing: Pushes the system beyond its limits to identify failures
• Failover Testing: Verifies the system’s ability to handle failures and continue operations
• Reliability Testing: Assesses reliability through fault detection and statistical models
• Compatibility Testing: Ensures compatibility with different hardware, software or versions
• Scalability Testing: Tests the system’s ability to handle increased load or data volume
• Elasticity Testing: Evaluates cloud or distributed systems’ ability to scale resources dynamically
• Infrastructure Testing: Validates infrastructure components for performance and uptime.

Security • Challenges the SUT from external assessment and attacks, to assess the confidentiality, integrity and
availability of the system and its data

• Typically includes assessing against misuse and abuse of the software or system, often involving negative
testing

• Advanced security testing will involve defensive coding standards and defensive design focus.

Interface and API • Verifies the correct exchange of data and control between components
• Application Programming Interface (API) testing simulates end-user applications by generating API call

parameters, setting environmental conditions and defining internal data affecting the API.

Configuration • Configuration testing verifies the software’s functionality under different specified configurations to
ensure it meets the needs of various users.

Usability and
Human-Computer
Interaction

• Evaluates how easily end-users can learn to use the software, including testing software functions,
supporting documentation and error recovery features.

Backup/Recovery • Determines if, in the event of failure, a SUT item can be restored from backup to its pre-failure state
• Backup/recover testing then focusses on testing the correctness of the test item’s backup and the

correctness of the restored state of the test item against its pre-failure state
• Backup/recover testing can also be used to verify whether the backup and recovery procedures for the

test item achieve specified recovery objectives
• This type of testing may be carried out as part of a disaster recovery test.

References 3, 4, 5

 MAY 2025 | 33

QUASAR

The test objective is important as it
determines what the testing activity goal is.
More aspects of the SUT will be challenged
when the test objectives are varied. Quite
often the IT auditor will examine a defect
and discuss with the vendor the root cause
and associated testing objective that may
have been leveraged to detect the defect
within the SLC.

TEST TECHNIQUES
It is acknowledged that it is generally
unfeasible to test everything. As a result
a test strategy will define test activities
(techniques) that will challenge the SUT
as effectively and efficiently as possible.
The selection of techniques is a test design
activity, where the most efficient techniques
are chosen for the specific objective:
 • Various testing techniques exist that

aim to improve the SUT’s quality by
generating test suites to detect as many
failures as possible

 • Testing techniques are used to maximise
time available, can be used to target
defect types and indicate the maturity of
an organisation. They are used to detect
and remove defects before the software is
released

 • Testing techniques can be categorised by
the degree of information available about
the SUT. Specification-based (black-box)
techniques rely solely on input/output
behaviour, while structure-based
(white-box) techniques use internal
design or code.

The following section highlights some of
the more commonly used testing techniques
for vendor discussions. Assessing the scope
of testing techniques in use will provide
an indicator on the organisation’s testing
effectiveness.

WHITE BOX TECHNIQUES
See Figure 2. White box testing involves
building tests based on the structure of
the code scaffolding inside a component.
Typically this focuses on unit testing.
Unit testing includes static testing (e.g. code
reviews), dynamic testing (e.g. statement/
branch/path coverage) and complexity
analysis (e.g. cyclomatic complexity).
As this type of testing requires programming
skills (which is beyond the scope of this
article) the following provides a high level
description of the some of the unit testing
techniques that the auditor can ask about
during the vendor audit.
The highlighted examples in Table 2 are the
techniques that generate real value added
from a software engineering perspective
(defect detection, software product quality).

 FIGURE 2. WHITE BOX TECHNIQUES

IT AUDITOR HINT
Even if the auditor doesn’t understand
code, ask for a walkthrough of an
example. Quite often it is found that the
vendor may struggle to find an example
or the organisation has defined Unit
Testing as a System or User Acceptance
level test. If so, bear in mind that the
omission of a test phase may result in a
lower software product quality level.

IT AUDITOR CHECK
Ask the vendor about their test strategy
and establish the scope of test objectives.
The vendor’s scope is an indicator that
the SUT will be more robust.
If the focus is on functional
requirements, then it may indicate that
other important objectives have not
been challenged, resulting in a higher
risk of latent defects in the system (lower
software product quality).
The test strategy will indicate the test
phases and associated testing objectives
so that the software product quality is as
good as it can be, given the maturity of
the SLC and requirement risks. The test
technique defines the methods used to
attain the test objective.

34 | MAY 2025

QUASAR

WHITE BOX – WE SEE THE
INTERNAL CODE

INPUT = 2

INPUT = 4

WE KNOW
THAT THIS IS

CORRECT

1 y = 0 ;
2 x = Input ;
3
4 y = x + x ;
5
6 Output = y ;

BLACK BOX TECHNIQUES
This strategy relies on the requirements and
specifications for deriving test scenarios
rather than visibility of the underlying
software code statements. No knowledge
of the inner workings of the software code
statements is required. Hence it is applicable
for post unit testing phases by independent
test resources.
Because there is no visibility of the inner
workings, an assumption is often made that
the inner workings of the software code
is verified. A good test strategy will treat
this assumption as a risk and mitigate by
applying more than one test objective and
technique to a feature.

Efficient black box testing focuses on
choosing a subset of tests that are efficient
and effective at finding defects. This is a
more effective approach than a randomly
selected number of tests. An indicator of
a vendor approach is where the vendor
process takes time to assess, select, estimate
and schedule the application of testing
techniques. This approach of going slow
(design) before going fast (execution) is
often an indicator of good practice.
The following pages provide details on some
of the common black box techniques.

 TABLE 2. TESTING TECHNIQUES

TESTING
TECHNIQUE DESCRIPTION SCOPE

Statement Coverage Ensures that every executable statement in the
code is tested at least once.

Helps identify unexecuted code but may miss
logical errors that depend on conditions.

Branch Coverage
(Decision Coverage)

Tests all possible branches (true/false outcomes) of
conditional statements (e.g. if-else).

More effective than statement coverage, as it
checks both outcomes of each decision point.

Condition Coverage
(Predicate Coverage)

Ensures that each Boolean sub-condition within a
decision statement is evaluated both true and false
at least once.

Provides better granularity than branch coverage
but does not test all combinations of conditions.

Multiple Condition
Coverage

Tests all possible combinations of Boolean
conditions within a decision statement.

Offers the highest level of logic testing but requires
more test cases.

Path Coverage Ensures that every possible path through the code is
executed at least once.

Comprehensive but impractical for large programs
due to exponential growth in test cases.

Loop Testing Focuses on testing loops with different execution
scenarios (zero iterations, one iteration, many
iterations, boundary values).

Essential for detecting infinite loops and incorrect
loop conditions.

Data Flow Testing Tracks variable definitions and their usage
throughout the program to detect uninitialised
variables unused variables or incorrect data flow.

Helps identify runtime errors and memory leaks but
requires deep code analysis.

Control Flow Testing Analyses the logical control paths within the
program, ensuring that all possible execution flows
are tested.

Helps uncover logical errors and unintentional dead
code.

Mutation Testing Introduces small modifications (mutants) in the
code to check whether test cases can detect the
changes.

Highly effective for assessing test suite quality but
computationally expensive.

References 3,4,5,6

‘An indicator of a
vendor approach is
where the vendor
process takes time to
assess, select, estimate
and schedule the
application of testing
techniques.’

 MAY 2025 | 35

QUASAR

 FIGURE 3. BLACK BOX TECHNIQUES

INSPECTION AND REVIEWS

The purpose of this technique is to find, early in the SLC, problems
that may cause defects later.
There are several review types that are available:
1. One Third Presentation – Early feedback on technical content
and solutions before completion. Support on the job training and
reduces scope of rework effort.
2. Informal Review – Quick, email-based feedback for minor
changes. Comments are reviewed via email for the author’s
resolution.
3. Code Walkthrough – Collaborative, real-time code review
where the author explains the code to reviewers for defects and
improvements. Focused on consistency and ease of maintainability.
4. Formal Review/Inspection – Structured, role-based review
focusing on defect logging with solutions identified post review
meeting. Very strong defect detection and assurance. Reviewers
sign off on resolved issues.

Typically the following are suitable:
Requirements, design, plans, test cases, source code, user
documentation and training material.
Formal review/inspections merit consideration as they are about
twice as efficient as most forms of dynamic testing techniques
(Caper Jones).
Review/inspection meetings should be small and include people
who are independent of the artefact under review. The artefacts
are made in advance of the review meeting. Questions and issues
are recorded during the meeting for remediation post meeting.
A record of the volume and type of issues are recorded.
The artefact is reworked until acceptance.
Many vendors will not consider a key artefact complete
(such as requirements and design) until it has been through a
review process.

Review Date 09 May 2005
Review Type Formal
Review Location Dev Mtg Room
Action List Produced Yes

Review Preparation Time (hr) 2.5
Review Meeting Time (hr) 1
Follow up Review Required (Yes/No) No
Review Follow Up Time (hr) N/A

Issues Raised Base New Total
Ma 6 - 6
Mi 10 - 10
I 7 - 7
Q 2 - 2
Total 25 - 25

36 | MAY 2025

QUASAR

BLACK BOX – WE DON’T
SEE THE INTERNAL CODE

INPUT = 2 INPUT = 4

WE ‘BELIEVE’
THAT THIS IS

CORRECT

1 y = = x2 BUT CODER
WROTE THIS

EQUIVALENCE PARTITIONING

Inputs are grouped into categories based on factors like expected
results, program behaviour, or whether they are valid or invalid.
One test case is then selected from each group to represent the
whole category5.
Only one value needs to be tested within each range or equivalence
class:
• If one test case in an equivalence class detects a defect, all other

test cases in the same equivalence class are likely to detect the
same defect

• Similarly of one test case in the equivalence class detects no
defect.

Used to reduce the number of test cases.
Suited to systems where much of the input data takes on values
within sets.
Any data within a class is equivalent (in test terms) to another any
other value within the same class.
Used to determine:
• Functional suitability (completeness and correctness)
• Usability (user error protection)
• Reliability (availability)
• Security (confidentiality, integrity, non-repudiation,

accountability, authenticity).

BOUNDARY VALUE ANALYSIS

Equivalence Partitioning testing naturally leads onto Boundary
Value Analysis (BVA).
BVA adds focus onto the boundaries between equivalence classes,
simply because this is where so many defects reside5, 6.
For a partition defined as integers from one to 10 inclusive, there
are two boundaries, where the lower boundary is one and the
upper boundary is 10 and these are the test conditions. Robustness
testing extends this by including out-of-range values to check error
handling by selecting the next value beyond the boundary value
(0 and 11)4.

Can significantly reduce the number of test cases that must be
created.
Suited to systems where input values take on values which reside
within ranges or sets.
Applicable to all test phases.
Used to determine:
• Functional suitability (completeness and correctness)
• Performance (time behaviour, capacity)
• Usability (user error protection)
• Reliability (fault tolerance)
• Security (data integrity).

 MAY 2025 | 37

QUASAR

INVALID PARTITION INVALID PARTITION

VALID PARTITION – ANY VALUE FROM 1 TO 10

5 10 1

11 IS AN INVALID
PARTITION

0 IS AN INVALID
PARTITION

VALID PARTITION – ANY VALUE FROM 1 TO 10

5 10 1

1 IS A VALID
BOUNDARY

10 IS A VALID
BOUNDARY1 5 Test Values:

2 'Valid Values
3 1
4 'any value from 2 to 9
5 10
6 'Invalid Values''
7 0
8 11

DECISION TABLE TESTING

Represents conditions (inputs) and actions (outputs) in a table,
systematically deriving test cases for all possible condition-action
pairs.
Decision table testing 5, 6 uses a model of the logical relationships
(decision rules) between conditions (inputs) and actions (outputs)
for the test item in the form of a decision table:
• Each action (output) is the expected outcome(s) for the test item
• A set of decision rules defines the required relationships between

conditions and actions.
Each decision rule, which defines the relationship between a unique
combination of the test item’s conditions and actions, is a test
coverage item.

Used to capture complex business rules and help in test case
identification.
Conditions represent input conditions.
Actions are logic that should be executed dependent on the
combinations of input conditions.
Each rule defines a unique combination of input that will execute
the associate action.
Testing:
Create one test for each rule. Apply equivalence classes where
necessary.
Used to determine:
• Functional suitability (completeness and correctness)
• Compatibility (coexistence)
• Performance (time behaviour)
• Usability (user error protection).

Condition (input) Rule 1 Rule 2 Rule 3 Rule 4
Wage Earned Y N Y N
End of Pay Period Y Y N N
Action (output) Pay Tax Y N N N

38 | MAY 2025

QUASAR

STATE TRANSITION TESTING

State transition testing4, 7 checks how a system (can only) move
between different states based on inputs and events.
It treats the system as a ‘finite-state machine’ and creates test
cases to ensure all states and transitions are covered.
A state is a static condition and a transition is a command that
moves it from one static state to another static state.
These transitions can be shown using diagrams or tables.

Effective system design technique that can be leveraged for test
creation.
Useful for directing test effort by identifying states, events,
actions and transitions.
State diagrams are easier to comprehend.
State transition tables are easier for use in a systematic manner.
Tables are especially useful for identifying both valid and invalid
transitions, which helps in testing high-risk systems.
Not applicable where the system has no state change.

CURRENT STATE EVENT ACTION NEXT STATE
Displaying Time

(S1)
Change Mode

(CM)
Display Date

(D)
Displaying Date

(S2)

Displaying Time
 (S1)

Reset
(R)

Alter Time
(AT)

Changing Time
(S3)

Displaying Date
(S2)

Change Mode
(CM)

Display Time
(T)

Displaying Time
(S1)

Changing Time
(S3)

Time Set
(TS)

Display Time
(T)

Displaying Time
(S1)

 MAY 2025 | 39

QUASAR

STATE 1

CHANGING
TIME (S3)

DISPLAYING
TIME (S1)

DISPLAYING
DATE (S2)

STATE 2

Transition

Event (E) -> Input

Action (A) -> Output
Change Mode (CM)

Time Set (TS)

Change Mode (CM)

Display Date (D)

Alter Time (AT)

Display Time (T)

Display Time (T)

Reset (R)

ASPECT GOOD STRATEGY POOR STRATEGY

Clarity and
Structure

Clearly defined goals, scope and
approach.
Project budget and time
allocated for test design.

Vague or lacks structure, making
it difficult to follow.

Coverage Covers all critical aspects
(functional, performance,
security, etc.).

Misses key testing areas or lacks
depth in coverage.
Likely to result in more defects in
operational use.

Test Objectives Clearly aligned with project
requirements and risks.

Unclear objectives or misaligned
with business needs.

Flexibility Adapts to changes in
requirements, scope or risks.

Rigid, failing to accommodate
project evolution.

Risk
Management

Identifies, prioritises and
mitigates risks.

Ignores risks or lacks a plan for
handling failures. Coverage of
testing may be misaligned to
feature acceptance.

Test Techniques (SOP/Wiki/Work Instruction)
Uses a mix of appropriate
techniques (e.g. exploratory,
automated, boundary analysis).

Relies on a single technique,
leading to gaps in defect
detection.

Tools and
Resources

Selects and utilises proper
testing tools effectively.

Uses inefficient or irrelevant
tools or lacks tool support.

Test Data
Management

Well-planned, diverse test data
for realistic scenarios.

Poor or unrealistic test data,
leading to ineffective testing.

Defect Tracking
and Reporting

Well-defined defect tracking
process with detailed reports.

Unstructured defect reporting,
making debugging difficult.
Ineffective test phase reporting
making it difficult to assess the
quality of the SUT at that time.

Communication
and Collaboration

Clear coordination among
developers, testers and
stakeholders.

Lack of communication, causing
misunderstandings and delays.

Efficiency and
Execution

Well-planned test execution with
prioritisation of critical tests.

Disorganised execution, wasting
time on low-priority tests.

Reference3

Other techniques for the reader to consider:
 • Pair-Wise Testing: Test for every pair of

input values. (This is a highly successful
approach to detecting defects and
reducing the number of test cases and
an indicator of a good quality focused
organisation)

 • Smoke Testing: Ensures newly released
features will work before in-depth
testing begins. The name originates from
early electronics and hardware testing
where engineers would power on a
new electrical circuit for the first time.
If it starts to smoke then something is
wrong. If the smoke test fails in software
engineering, then the release is not stable
for further testing

 • Use Cases8: Used to exercise a system’s
functionalities from the start to
finish by testing each of its individual
transactions. Uses cases (Ivar Jacobson)
define scenarios that describe the use of
a system by an ‘actor’. An actor can be a
user or another system. A scenario can
be a sequence of steps between the actor
and the system

 • Error Guessing5,6: Involves the design of
a checklist of defect types that may exist
in the test item, allowing the tester to
identify inputs to the test item that may
cause failures, if those defects exist in the
test item. Test cases are created based on
known fault patterns, past defects and
the tester’s expertise

 • Exploratory Testing: Combines
learning, test design and execution
in real time, allowing testers to adapt
dynamically based on observations,
system peculiarities and risk factors.
Software house may assign 5% of the test
execution schedule to exploratory testing
to allow for a more comprehensive
assessment of the SUT

 • Data Flow Testing: Analyses variable
(data) definitions, usage and lifetimes
within the control flow. Powerful
tool to detect errors in data transfer,
initialisation and processing within code.

Section References3,4,5,6,7,8,9,10,12,13

‘Software house may
assign 5% of the test
execution schedule to
exploratory testing to
allow for a more
comprehensive
assessment of the SUT.’

40 | MAY 2025

QUASAR

SUMMARY
The following provides some considerations when looking at a vendor’s test strategy.

PROFILES

Barry is a Principal Consultant for
Empowerment Quality Engineering ltd,
a Computerised System Regulatory
consultancy that bridges the gap between
IT and quality.
He focuses on building quality and
security into Computerised Systems
(CS) by using quality techniques from
the wider software industry while
ensuring regulatory compliance. He leads
GxP CSV compliance and IT Supplier/
Service Provider audits across the globe;
performs IT supplier’s software life cycle
process improvement, risk assessments
to drive validation strategies, validation
projects and tailored training.
Barry has over 27 years’ experience in
Quality Assurance, Software Engineering
and IT Administration with vast technical
knowledge of every role and every
activity within the CS life cycle; including
multiple technologies, development
methodologies (traditional and agile),
databases and programming languages.
He is a member of the RQA IT
Committee, the MARSQA and was
a member of the ISPE Data Integrity
Project team.
Hugh is VP Operations and Quality at
PHARMASEAL International Ltd and an
independent computer systems validation
consultant.
He is an IT professional with over
35 years of experience of using
technology in the pharmaceutical
industry, initially as a developer, later
an implementer and more recently
specialising in compliance.

Test techniques are designed to detect
defects pertaining to specific scenarios,
technologies and within the various layers
involved in building software. A good
vendor’s testing strategy will seek to identify
techniques to seek defects and then confirm
feature correctness.
Defect detection efficiency relates to how
well a test technique can find defects so they
can be corrected.
Individual dynamic test techniques have
relatively low defect detection efficiency
(given their targeted defect focus). This
is why an aggregation of techniques are
needed. Formal inspections are almost twice
as efficient as dynamic testing in detecting
defects. Their use can be an indicator of
medium to high quality software vendors
as testing alone is not enough 2,11. The
measurement of testing activities will be
discussed in a subsequent article.
Take home point for the next vendor audit:
the more varied the techniques applied,
the more likely that defects are detected for
removal, leading to better software product
quality before it arrives at the regulatory
domain. As an auditor, getting an insight
to the types of testing being conducted can
provide an indicator on the quality maturity
of the organisation that may not be so
apparent in the associated documentation.
The next article will examine the
management function of documentation
and reporting on software product quality
(rather than documentation quality).

1. Software Testing: Measuring Vendor Software Quality – Part 1,
Quasar #170

2. General Principles of Software Validation; Final Guidance for
Industry and FDA Staff, FDA, 2002

3. Guide to the Software Engineering Body of Knowledge 4.0, IEEE
Computer Society, 2024

4. IEEE 29119-4:2015 – Software and Systems Engineering —
Software Testing — Part 4: Test Techniques. IEEE, 2015

5. BS 7925-2:1998 – Software Testing: Software Component
Testing Standard. British Standards Institution, 1998

6. The Art of Software Testing, Myers, Wiley, 1979

7. A Practitioner’s Guide to Software Test Design, Copeland, Artech
House, 2004

8. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, Jacobson et al,1992

9. Test Computer Software Kane, Cem, Falk, Nguyen (99)

10. Software testing Techniques, Beizer, Bosirs, Van Nostrand
Reinhold, 1990

11. Applied Software Measurement, Global Analysis of Productivity
and Quality, Caper Jones, McGraw Hill, 2008)

12. The Art of Electronics, Horowitz et al, Cambridge University Press,
1989

13. Rapid Development. Taming Wild Software Schedules, McConnell,
Microsoft Press, 1996.

‘Formal inspections
are almost twice as
efficient as dynamic
testing in detecting
defects.’

REFERENCES

 MAY 2025 | 41

QUASAR

