QUASAR

«rﬁﬁ
s, -

!”f’ﬂ s
-:\\ .

Barry McManus Hugh O’Neill

SOFTWARE TESTING:
MEASURING VENDOR
SOFTWARE QUALITY -
PART THREE:

SOFTWARE QUALITY ANALYTICS

This series on assessing a vendor’s software product quality has
discussed the problem of a vendor’s QMS not reflecting their software
production line processes, where their ‘compliant’ QMS documentation
quality may not correlate with the resulting software product quality.
This article i1s examining how analytics can be |everaged to assess the
software product quality. Quasar #170 and #171 discussed how the

purpose of verification (testing) is to provide information.

(Note: the following acts as a quide for consideration during vendor
discussions as the scope will be determined by the context of the
computerised system to be automated and the quality maturity of
the vendor).

26 | AUGUST 2025

QUASAR

INTRODUCTION

Software product quality analytics focuses
on measuring process outcomes to identify
quality trends. These analytics help predict
the likelihood of future defects and support
decisions about when to continue or
conclude testing. Compared to Quality
Management Systems (QMS) that operate
on infrequent review cycles (e.g. SOP review
every two years), Software Quality Analytics
enable continuous, real-time improvement
of the software production process. It plays
a key role in adjusting practices to prevent,
reduce or eliminate recurring defects.

During vendor audits, the auditee will
describe their QMS, that it is managed by
a CAPA process, and emphasise the use of
templates. Compliance is demonstrated
from documentation conforming to @
documented QMS, right? But when the
question transitions from ‘describe the
QMS?’ to ‘how good is the QMS?’, the
conversation frequently falters.

In practice, a vendor’s QMS may not
accurately reflect the realities of the software
development life cycle, especially in the
following scenarios:

1. The QMS describes the ‘what’, not

the ‘how’. The QMS outlines high-level
requirements (the what), but lacks detailed
guidance on technical implementation (the

how) — as per ICH E6 R3".

2. Vendor internal audits focus on validation
artifacts, not engineering practices. Vendor
audits typically evaluate the completeness

of validation documents (e.g., test scripts,
reports), while overlooking whether software
engineering processes are effective and
followed. As a result, there’s little to no
independent oversight of the core technical
practices that should embed and verify
quality within the software development
process.

3. Customer reliance on vendor testing may
be misplaced. Regulated customers often
depend on the vendor’s testing to assure
software quality. Yet vendors may focus

on ensuring customer User Acceptance
Testing (UAT) compliance and acceptance
over ensuring the intrinsic robustness of
the software product. As highlighted by the
FDA?, testing alone is insufficient to ensure
product quality.

4. CAPA systems may not cover technical
process. While vendors may show evidence
of CAPA management related to QMS
compliance and documentation, given point
1 and 2 above, there is no CAPA activity
that address deficiencies in the technical
software life cycle processes themselves.
Consequently, the QMS does not effectively
govern the technical aspects of software
production that directly impact product

quality.

These observations are based on 18 vendor
audits conducted across 2023-2024.

Quasar #170° and #171* explored how a
robust test strategy incorporates a variety of
techniques tailored to detect different types
of software defects. These techniques span
multiple phases of the Software Life Cycle
(SLC) and are essential in reducing the
risk of issues that could disrupt regulated
business operations. The verification/test
strategy documents not only show the
techniques used but also their application
across the software production line.

VERIFICATION/TEST
STRATEGY

(Note testing and verification are used
interchangeably in this article).

Why is a verification strategy so important?
Because software is inherently complex.
The FDA’s General Principles of Software
Validation? highlight several factors
contributing to this complexity:

* Branching logic allows software to
execute different sets of instructions
based on different input data, making
it difficult to fully understand — even in
short programs

This branching can conceal latent
defects, which may only surface under
specific conditions during production
use

Testing alone cannot confirm
software correctness. A combination
of verification techniques is required
to enable both prevention and early
detection of defects

Due to its inherent complexity, the
software development process must
be controlled to avoid issues that may
go undetected until late stages or after
release.

A QMS may appear compliant on paper, for
example, with Annex 11 §4.5 (‘appropriate
quality management system’)’, ICH E6 R3
(‘appropriate system to manage quality’)’

or OECD 17 (‘software development
governed by a QMS’)¢, however it may

still be ineffective in practice. A compliant
looking QMS does not necessarily ensure
high-quality software. If the underlying
strategy lacks depth in verification practices,
the result may be low software product
quality, posing risks such as regulatory
deadlines, data integrity issues and security
vulnerabilities. Poor software quality is not
an unavoidable characteristic of software
itself, but rather a reflection of the governing

QMS.

Figure 1 illustrates the costs linked to defect
remediation across the software production
line. The ability to quantify these costs
signals an organisation’s intent to both
reduce them and improve overall software
quality.

Figures 2 and 3 extend the costs to

the regulatory customer’s perspective,
highlighting the broader cost impact of
software defects. Vendors often overlook
how poor software quality imposes
significant downstream costs on their
customers — costs that go beyond immediate
technical fixes and can affect compliance,
operations and business outcomes.

Figures 2 and 3 underscore the importance
of focusing on software product quality.

Verification performed before coding serves
as a defect prevention measure, while
verification after coding functions as defect
detection. Vendors whose verification
strategy combines both preventative and
detective approaches are likely to produce
higher-quality software with fewer defects
and a lower risk of production issues.

The final determination that a software
product is validated should be based

on evidence gathered through planned,
structured activities conducted throughout
the software development life cycle (FDA?).
One of the primary objectives of a vendor
audit is to assess whether such evidence
exists and is traceable.

Accurate documentation (information)
needs to be meaningful to support these
activities, as the personnel who make

maintenance changes to the software
product may not be involved in the
original development. (FDA?)

The following sections explore how vendors
could manage meaningful information that
provides a clear indication of their software
product quality level.

‘Verification performed
before coding serves

as a defect prevention
measure, while
verification after
coding functions as
defect detection.’

28| AUGUST 2025

QUASAR

FIGURE 1. AGGREGATED COST OF DEFECT REMEDIATION (VENDOR)

VARIABLE COST OF DEFECT REMEDIATION

EFFORT AND TIME = COST Variable Cost
Variable Cost g
. ; COSTS INCREASE
Variable Cost E DUE TO NEED TO
: ;] GO BACK OVER
Variable Cost F [L : EARLIER
..... : : k| H PROCESSES
REQS DESIGN CODE TEST ACCEPTANCE

SOFTWARE PRODUCTION LINE

FIGURE 2. MULTIPLIER COST OF DEFECT FOR REGULATED CUSTOMER7#1°

PHASE DETECTED VENDOR COST IMPACT CUSTOMER COST MULTIPLIER NOTES
COST IMPACT (IBM MODEL)
Requirements Low (1x) Very Low 1(IBM, Boehm) Ea's>./ to c.orrect during planning.
Minimal impact
Design Low - Medium (3-5x) Low 3 (IBM, Boehm) Some architectural rework required
Development/Unit Test Medium (5-10x) Low 5 (Boehm, Jones) Code rework and retesting
Integration Test High (10-20x) Medium 10 (Boehm, Jones) g.efe“s are harder to isolate and fix.
ipple effects

Release/Deployment Very High (20-50%) High - Very High 20 (Jones, NIST) Hotfixes, roll out delays and

elease/Deploymen ery Hig X ig ery Hig ones, increased costs
Post release (Production) Extremely High (50-100x) Extremely High 50 (IBM, Jones, NIST) S AR et ity

regulatory exposure (penalties, safety)

FIGURE 3. EXAMPLE OF MONETARY COST OF DEFECT REMEDIATION FOR A REGULATORY CUSTOMER"

REAL WORLD EXAMPLE: TOTAL COST OF A COMPUTERISED SYSTEM DEFECT

DEFECT COST VENDOR CUSTOMER
Find and report defect (1/2 hr) $0 $40

Vendor costs to remediate $1,240 $0

Customer costs to correct data arising from defect (8hrs) $0 $640
Workaround while waiting on fix (1 week’s worth of manual workaround) $0 $16,000
Revalidation and regression tests (10 days) $0 $6,400
Total $1,240 $23,080

Loaded Salary Cost $80/hr

The above figures underscore the importance of focusing on software product quality

AUGUST 202529

QUASAR

SOFTWARE PRODUCTION
LINE PROCEDURES AND
PLANNING

The software production line comprises

a series of SLC processes which, when
verified, contribute directly to the overall
validation effort. It is essential to document
how each production line activity will

be performed. This ‘how’ provides the
operational detail needed to ensure a
consistent baseline of software quality,
regardless of who performs the task,
supports effective knowledge transfer
between personnel and promotes ease of
maintainability, a core attribute of software
quality.

Defined acceptance criteria for each
production line process output enables
measurement of process effectiveness,
which is essential for both continuous
improvement of the software production
line and enhancement of the resulting

product quality.

There are more than 80 recognised SLC
models, each tailored to address specific
development or organisational challenges
(Jones’).

The foundational software engineering
activities of requirements elicitation and
analysis, design, implementation, testing
and release remain consistent, regardless of

the SLC ‘flavour’.

As a result, it may be useful to compare the
SLC to a manufacturing production line,
where the output of one phase becomes the
input to the next. Just as in manufacturing,
each phase output in the software life cycle
should be verified to meet minimum quality
standards before progressing to the next
phase. This practice minimises the risk of
compounding defects and helps reduce the
cumulative cost of defect remediation (as
illustrated in Figures 2-4).

The final conclusion that the software is
validated should be based on evidence

collected from planned efforts conducted
throughout the software life cycle.
(FDA?).

It is therefore considered good practice

to assess both the breadth and depth of
verification activities applied at each stage
of the software production line, as well as
the rigour with which they are executed.
The more varied and well-integrated the
verification techniques, the greater the
chance of preventing defects early or
detecting them sooner, thereby improving
overall software product quality. (See Quasar
#170° and #171%)

A distinguishing feature of a mid to
high-tier vendor QMS is its ability to
measure the baseline quality of outputs at
each stage of the software production line.

Auditor hint

The production line analogy helps
illustrate the sequence of logical software
engineering tasks required to implement
a requirement within a software product.
In pharmaceutical drug manufacturing,
quality checks are not left until the

end of the process, as doing so would

incur the highest remediation costs.
The same principle applies to software
development. Quality should be built in

and verified continuously.

In practice, software production lines are
iterative and incremental, meaning these
processes repeat and evolve over time (as
illustrated in Figure 6).

‘Just as In
manufacturing, each
phase output in the
software life cycle
should be verified to
meet minimum quality
standards before
progressing to the
next phase.’

FIGURE 4. SUMMARY OF SOFTWARE LIFE CYCLE METHODOLOGIES AND THEIR YEAR OF ORIGIN. REFER TO QUASAR #139 ON
THE RQA WEBSITE FOR MORE INFORMATION

SLC METHODOLOGIES

WATERFALL SSADM
(¢(D)] (70s)

SPIRAL
(86)

CODE
AND FIX
(60s)
V-MODEL
(70s)
—
Customer is
developer)
14

CONTINUOUS

AGILE INTEGRATION
MANIFESTO 09

(02)

—
Set of IDEALS rather
than a ‘prescribed’ SLC

Sequential, high assurance,
planned, detailed design

| §
> —
Iterative, incremental, emergent. Supporting practices

Fixed resources, fixed time... flexible requirements

30| AUGUST 2025

QUASAR

FIGURE 5. LOGICAL SLC AS A PRODUCTION LINE, WITH PROCESS VERIFICATION TASKS ALIGNED TO TEST/VERIFICATION

SOFTWARE PRODUCTION LINE

e s e T

3 —>
SOFTWARE . . . 2 R
propucrion | (LTS @
el N N N N N N IN W
STATIC & System Test Test
DYNAMIC Static Analysis|
TESTING Tools

Integration &

] System Test

FUNCTION coping esign esign esign

Phase/ Phase/

Incremental

Report

Incremental
Report

PROCESSES
Strategy Protocol/ Test Suites Test Cases Test Analysis
&Plan Specification Report

) 1 it i it)

‘ RISK (RE) ASSESSMENT ‘

‘ SOFTWARE PRODUCT QUALITY ANALYTICS ‘

—) Production Logical Flow I Production Processes — Information Flow 1 Quality Measures [Next Production Iteration

FIGURE 6. AVENDOR’S HIGH LEVEL VIEW OF THEIR ITERATIVE SOFTWARE PRODUCTION LINE

Step Testing/verification

1. Design Define the requirements
Design review, specification of all likely logic flows
ACCEPTANCE REQUIREMENT Define acceptance criteria
Product.owner confirms Documented in Requirements 2. Build Write code chan b he)
the requirement has been met; Management System . ges on separate branch tcopy.
Rejection—> repeat cycle Write automated tests for acceptance criteria
Write automated tests for underlying dependent logic
3. Test Pre-delivery checks:
« Application build from scratch (automated)
+ Automated tests must pass
« Standard quality controls must pass
+ Coding standards (automated check)
CONTINUOUS 4.QC Peer review of work:
VALIDATION + Review requirement and delivered code
« Confirm all testing passed
+ Assess technical implementation - robust, sustainable
PEER REVIEW CODING and secure
Randomly selected In dedicated branch in If good, approve change (merge to main dev. branch)
peer approves merge of version control system
new code to maintain 5. Acceptance Product owner reviews delivered change:

codebase

AUTOMATED
QUALITY CHECKS
Must pass a predefined
series of quality tests

« Satisfies requirement
« Look and feel
« Usability
IF accepted THEN Done
ELSE return to step 1 with feedback

AUGUST 2025 31

QUASAR

VERIFICATION WITHIN THE SOFTWARE PRODUCTION LINE

Typical verification activities that ‘should’ be visible before the independent test phase, include.

TABLE 1. SOFTWARE PRODUCTION LINE PHASE

SOFTWARE PRODUCTION LINE PHASE

Requirements:
It is not possible to validate software without predetermined and documented software requirements (FDA?).
This phase focuses on analysing, identifying and defining the information necessary to describe the software product and its intended
operational use.
The requirements elicitation process may include, but is not limited to, the following elements:
- Expected inputs and outputs (data) for each system or feature
- Business functions the software is intended to perform
« Interfaces with other systems (inbound and outbound)
- Security requirements, including access controls and data protection
« Performance criteria, such as throughput, response time and concurrency
- Error handling and fault tolerance capabilities
« Requirements for user documentation and technical manuals
- Safety considerations relevant to system operation
+ Regulatory compliance needs, e.g. 21 CFR Part 11
+ Human-Computer Interaction (HCI) needs, including usability and accessibility.
Capturing and defining these requirements clearly is essential to ensure that the software can be developed, verified and ultimately

validated against its intended use.

Risk (Re)Assessment:
Identification of technical and operational risk scenarios, including risk quantification, implementation of risk mitigation measures and
verification that those mitigations are effective — all forming part of a risk-based verification strategy.

FIGURE 7. RISK-BASED APPROACH APPLIES BREADTH AND DEPTH OF SLC PRACTICES, PARTICULARLY VERIFICATION PER
REQUIREMENT RISKS

USING RISK TO DETERMINE AMOUNT OF SLC

Amount of EFFORT: RISK-BASED APPROACH

time consumed

--- Max # of
Process applied
SLC TIME FREED UP Maximum effort
Maximum costs
Maximum waste
----------------------------- Med # OF_ Critical thinking risk assessment
Process applied saves time = downstream delays
Delay is caused by defect remediation
--------------------------------------- Min # of
Process applied

HIGH RISK OF DELAY MED RISK OF DELAY MIN RISK OF DELAY

32| AUGUST 2025

QUASAR

EXAMPLE VERIFICATION TECHNIQUES

(REFER TO QUASAR #171* FOR DETAILS ON THE
VERIFICATION TECHNIQUES)

[Verification technique] Requirement inspection: Requirements
should be reviewed to ensure they align with ALCOA* principles
(Attributable, Legible, Contemporaneous, Original, Accurate, plus
Complete, Consistent, Enduring and Available). The inspection
should verify that each requirement is clearly identified, accurate,
complete, consistent (both internally and across requirements),
unambiguous, measurable and testable.

[Verification technique] Initial test case design:

Test case development should begin in parallel with requirements
analysis. This early activity helps identify conflicts, gaps,
ambiguities, complexity and potential risks or errors in the
requirements. By doing so, it reduces the likelihood of false
assumptions being embedded into the design and build phases.
As a result, it minimises downstream defects, shortens the testing
cycle and reduces the effort required for defect remediation,
retesting and regression testing.

[Audit activity] Review a sample of requirements for clarity and
testability.

[Advanced audit activity] Discuss the requirement elicitation
and analysis process. Ascertain if there are any metrics or quality
indicators used to measure the effectiveness of the requirement
process and its outputs.

[Advanced audit activity] Ask how requirements are confirmed
to be fully specified and appropriate prior to design. Explore
how design is updated when the requirement changes. Ask for

visibility of this approach.
[Advanced audit activity] Walkthrough of the software

production line from a definition though to implementation,
testing and release.

[Verification technique] Formal review by several roles.

[Audit activity] Verify that technical risk mitigations are
actively incorporated. For example, confirm the use of mirrored
(RAID) disk storage to mitigate the risk of hard drive failure.
The effectiveness of this mitigation should be tested, with risk
reassessed to determine if it has been reduced to an acceptable
level.

[Audit activity] Check whether risk is reassessed at each
software production line process output, as each stage
generates new information that could affect risk status. This
helps determine if risk management is a practical, integral tool
throughout the process or merely treated as documentation
without real impact.

[Advanced audit check] Evaluate the approach to risk mitigation
and verification beyond simply confirming that requirements
function as intended. Discuss when and how verification
planning was conducted at this point, including the range and
scope of technical techniques employed to minimise the risk of
defects reaching production.

AUGUST 2025 33

QUASAR

SOFTWARE PRODUCTION LINE PHASE

Design: Requirements define the set of problems that the software design must address (Swebok'). Design is an iterative, multi-layered
process that outlines how the software product will be constructed. Its objectives include:

« Preventing data errors through careful data flow control and well-defined data structures (FDA®)

« Reducing complexity, which is critical for both general software quality (FDA?) and especially for safety- and mission-critical systems

(McConnell™)
« Providing clear guidance to developers and implementers on how to build the system (Swebok')

« Establishing the basis for a comprehensive test approach and the development of test cases to verify that the design is correctly
implemented and functions as intended (Swebok'?).

Effective design also emphasises ease of testability and maintainability, facilitating future modifications and supporting ongoing
verification and validation efforts (Quasar #159%).

High Level Design (for example):

- Hardware

+ Logical structure

« Functions and interfaces between components

- Data control flow design

- Data ‘structures’ design (input, output and internal data structures)
« Data storage dimensioning

« Event logging, error handling and recovery

- Security architecture

+ Help system architecture.

System design principles may include modularisation, abstraction, encapsulation, separation of the GUI and logic, high cohesion, loose
coupling, uniformity, verifiability.

FIGURE 8. DIVIDE AND CONQUER DESIGN APPROACH FIGURE 9. DESIGN OF DB (DATA FLOW STORE)

® 3rd Normal form PC Table
D Column Data Type | Notes
TAGNUM Char (5) Primary key
—)1 COMPID Char (4) Foreign key COMPUTER. COMPID
D EMPNUM Decimal(3) | Foreign key EMPLOYEE. EMPNUM
LOCATION | Char (12) Check constraint: must be 'lab'
Business Process Divide into sub systems
2 Figure 9 illustrates the design of a database store (Data Flow
@ Store), where the COMMPID field links to the COMPUTER
table containing computer details and EMPNUM links to the
:J 34— g] EMPLOYEE table that stores the employee information.
Divide into
Data/Methods Divide into classes within
sub system

{

4

Write the internal
code instruction

Functional Decomposition

Database intended design versus implementation.

34| AUGUST 2025

QUASAR

EXAMPLE VERIFICATION TECHNIQUES

(REFER TO QUASAR #171* FOR DETAILS ON THE
VERIFICATION TECHNIQUES)

The vast majority of software problems are traceable to errors made

during the design and development process. (FDA?).

Careful attention to software architecture - such as
employing a modular design - during the design stage can
significantly reduce the scope and effort of future validation
activities when software modifications become necessary.

[Verification technique] Review/walkthrough (FDA?) of design,

such as:

« Process control flow

- Data flow

- Complexity

+ Security

+ Maintainability

« Memory allocation

« Sizing and capacity planning.

Test case design based on design content such as scalability tests,

perFormance tests.

Quality mature vendors conduct themed inspections targeting
specific areas of interest, such as performance, fault tolerance or
security.

[Audit activity] Verify traceability of design elements back to
the original requirements. Confirm that risk reassessments have
been performed as needed.

[Audit activity] Check for evidence of design standards and
adherence to same.

[Audit activity] Ensure that data flow diagrams and data
definitions are clearly specified.

[Audit activity] If a relational database is used, ensure to confirm
the database design was established prior to implementation.
This is essential to ensure data integrity constraints are properly
incorporated, helping to prevent:

- Data inconsistencies
- Application performance issues.

[Advanced audit check] Many database systems can generate
a representation of the implemented database schema, but
this is not a substitute for the pre-implementation design
process that requires critical analysis. Ask the auditee to
provide documentation of data definitions created before the
design phase. Inquire how referential integrity was planned and
designed prior to database construction.

[Advanced audit activity] Ask for evidence of design as an
input to test case design. For example for error and exception
handling scenarios.

AUGUST 202535

QUASAR

SOFTWARE PRODUCTION LINE PHASE

FIGURE 10. DATABASE MANAGEMENT SYSTEM SCHEMA

COMPUTER TABLE

PK COMPID
FK TAGNUM

—>

PC TABLE

PK TAGNUM
FK COMPID —
LOCATION PK EMPNUM

FK TAGNUM

—

Figure 10 shows the implemented DB Schema (storage). The schematic represents the normalised database structure, maintaining
referential integrity: where the foreign key in one table corresponds to the primary key of another table (Pratt & Adamski®).

Low-level Design (for example)
+ Key software component algorithms
« Software component data structure

« Interface communication protocol (data message).

Code and Unit Test
The translation of design into programming language(s) represents the final stage of breaking down requirements into executable code.

Various tools are available to enforce coding standards, ensuring consistency in clarity, commenting, indentation and overall code
structure.

FIGURE 11. SQL CODE FOR FIG 10. DESIGN

CREATE TABLE PC
(TAGNUM CHAR (5),
COMPID CHAR (4),
EMPNUM DECIMAL(3),

CHECK (PC. LOCATION IN ('LAB'))
PRIMARY KEY (TAGNUM)
FOREIGN KEY (COMPID) REFERENCES COMPUTER

1

y)

3

4

5 LOCATION CHAR(12)

6

7

8

9 FOREIGN KEY (EMPNUM) REFERENCES EMPLOYEE

36 | AUGUST 2025

QUASAR

EXAMPLE VERIFICATION TECHNIQUES

(REFER TO QUASAR #171* FOR DETAILS ON THE
VERIFICATION TECHNIQUES)

[Verification technique] 1/3 presentations (group walkthrough),
inspection or informal review (via email/messenger tool with
information retained). Formal code review for less experienced
team members.

[Audit activity] Check for traceability back to high level design/

risk assessment.

[Verification technique] (In)formal code review for consistency,
style, adherence to (defensive) standards, errors, complexity and
ease of maintainability.

[Verification technique] Code walkthrough for design flaws, defects
and ease of maintainability. Typically (when used) they are applied
to critical code (FDA3, Quasar #1714).

[Verification technique] Use of static analysis tools to assess, for
example, clarity, conventions, complexity and security.

[Advanced quality assurance] Use of defensive programming

standards. (Quasar #159'°)

[Verification technique] White box unit testing of the code logic
over the testing of the feature level.

[Audit activity] Ensure that the higher risk features are
traceable to the code and that the associated code has been
subject to an appropriate review technique. Audit experience
indicates that code reviews are often informal, focusing mainly
on code structure and style, and heavily reliant on the reviewer’s
expertise. **note unit testing is reviewed as part of the code
review.

[Audit activity] Ensure that compiler warnings are checked -
at a minimum - for release candidates. Code reviews should
not approve code containing unresolved compiler warnings, as
warnings do not block software builds but can lead to defects
that may escape unit testing (FDA?).

[Audit tip] Don’t let concerns about technical depth deter you
from reviewing code-level activities. Use approachable questions
such as, “Can you explain this to me in layman’s terms?” or
“Show me the traceability for requirement 123 in the design,” or
“Can you demonstrate the unit test that verifies error handling
for invalid data inputs?”

AUGUST 202537

QUASAR

INDEPENDENT TEST

Unit testing marks the transition into white
box testing techniques (for further details
on testing methodologies, refer to Quasar
#1714).

Testing is a key focus during audits

because it is typically the one verification
activity that is performed at some level.
Consequently, testing can often provide
valuable metrics related to software product
quality, particularly defect identification.

Quasar #170° defined defects as, amongst
others, non-conformances to requirements.
Defects are of interest because they can
provide an insight into the software
product quality, derived from the software
production line (QMS) processes.

For those interested in deepening their
understanding of software production
Life cycle activities, the RQA offers

an introductory training course on
Computer System Validation (CSV)

twice annually. More information is
available on the RQA website

www. therqa.com/learn-develop-connect/
courses-and-events/events/course/introduction-

to-computer-systems-validation

FIGURE 12. TESTING STRATEGY EXAMPLE

TEST STRATEGY

There is no single test technique or phase
that can ensure that a software product

has been thoroughly tested (FDA?). The
absence of defects during testing should not
be interpreted as proof that the software is
defect free. That is why audit discussions are
looking for more than just ‘acceptance’ level
test objectives.

As per the previous articles in this series, an
effective strategy involves an aggregation
of various techniques across multiple test
phases. This layered approach strengthens
software product quality and reduces the
risk of operational issues.

A test strategy outlines the vendor’s
approach to verification activities, specifying
the techniques applied at key stages of the
software production line (see Figure 5),

the required levels of independence and
serving as a guiding framework for the
organisation. For further details on test
strategy components, refer to Quasar #170°
and Quasar #1704

TEST PLAN

While the test strategy defines an
organisation-wide, high-level approach to
testing, the test plan provides a detailed,
project- or release-specific roadmap for how
testing will be carried out. The strategy
serves as the blueprint to achieve the highest
software product quality, whereas the plan
tailors activities to the particular needs of a
given release.

Effective test planning should outline tasks,
defect and configuration management
processes, resource allocation, review
activities and potential project risks that
could delay testing or lead to defects being
released.

Several resources offer guidance on
the structure and content of test
documentation:

* IEEE 829 Standard for Test
Documentation (IEEE17) — now
deprecated buc still accessible online

e IEEE 29119-3 Test Documentation
Standard (IEEE18) — the current
replacement for IEEE 829.

TESTING STRATEGY

AUTOMATION
AND MANUAL MANUAL
(Incremental) Prototype
Early Design
Whiteboard Sessions Explgrator Test
Information X Scripted Tests
Test Design: System Test
Feedback - S T Usabili
Stabilit tory est sabl |tg/.
Y Functional Test Error Handling
Prevention Non-Functional Test Data/Process Flow
A E
Requirement/Design/ ceeptance
Code Review
Unit Tests Bespoke Harness/Stubs
Iptegratlon Test . Automation Framework
Information Continuous/Integration
nto API Tests Performance Tools
Feedback —

Early Detection

Regression Tests
Smoke Tests
Load Tests
Security Tests

AUTOMATION

Unix Distros

Static Analysis
Cl Tools...

TOOLS

Information
Feedback -
Early Detection
via Targeting
Testing

Information
Feedback -
Critique Solution

38| AUGUST 2025

QUASAR

A quality-focused vendor testing approach
aims to deliver effective and efficient testing
within the constraints of time and budget,
providing meaningful insights into software
product quality. Key attributes of such an
approach include:

* Prioritising test execution when the code
is ready

Empbhasising test process efficiency

Applying a software engineering mindset
to test cases — writing them once for
modular reuse and easy maintenance
(e.g., updating a single login instruction
test case referenced by many others)

* Employing a variety of testing techniques
and methods based on requirements,
design and risk considerations

Focusing on gathering, analysing,
and acting upon test information and

feedback

Defining a release-specific test strategy
that highlights critical features for
regression testing and uses risk
reassessment to target the highest-risk
areas

* Capturing and analysing test execution
progress and metrics

* Maintaining independence from
development teams to ensure objectivity.

An example of a test planning approach
is the Systematic Test and Evaluation
Process (STEP) that leverages the
concepts described in IEEE29119'8:

1) Create the plan: objectives, scope, test
approach, environment, resources.

2) Acquire the test-ware (test-ware — all
of the artefacts and resources required
for the test activity):

a. Inventory of the test

objectives (requirements, design,
implementation).

b. Design the tests (architecture,
environment, requirements, design
and implementation based, inputs,
steps and expected results).

3) Implement the plans and design
a. Prepare test data, setup
environment, review readiness.

4) Measure the software behaviour:

a. Execute tests, log outcomes, raise
incidents or anomalies.

b. Evaluate tests, compare results to

acceptance criteria.

5) Report:
a. Summarise findings, deviations and
results.
b. Conclusion: Evaluate the software
product quality, establish feature
quality, establish number of defects in
production release.

6) Evaluate the test process, store assets
and close.

Note: The authors do not follow

the complete set of documentation
requirements outlined by IEEE but
strongly support the critical thinking
necessary to produce meaningful
documentation content. In practice,

several IEEE documentation types can be
consolidated into a single artifact — for
example, a specification that includes test
design, data design and related test case
suites. The authors prioritise the quality

of information over the sheer volume of
documentation.

TEST PROTOCOL/
SPECIFICATION

The key to software test quality lies
primarily in the test elicitation phase
rather than in the execution itself (FDA?).
Test design requirements are derived from
the test strategy, system requirements,
regulations and design specifications. The
scope of testing can then be defined using
the ‘5W’s +” approach (who, what, where,
when, why and how), which helps establish
the expected outcomes to be verified and
challenged during testing. This line of
reasoning is often applied during vendor
audits when discussing test scope and
coverage.

Key test design attributes outlined by the
FDA (FDA?)*** include:

* The expected test outcome is defined in
advance

o Effective test cases have a high likelihood
of detecting errors

A successful test case identifies an error

* Testing is conducted independently from
development

Testing only typical scenarios is
insufficient

¢ Test documentation enables reuse and
independent verification of test results
during reviews and serves as a baseline
comparator if defects arise in later phases
or in operation.

** The next article will explore test
attributes related to automation.

Audit Check

When engaging vendor testing teams,
the authors focus on assessing the quality
of testing in addition to the quality of
documentation. Specifically, they seek

to understand the scope and variety of
testing techniques that make up the

release’s test strategy and how frequently

each test objective is executed (once,
multiple times) to evaluate the stability
of each requirement. This insight

may help inform a least-burdensome
validation approach.

TEST DATA

Many of the most challenging bugs to detect
are data-driven, so identifying appropriate
test data alongside the right test techniques
can significantly enhance defect detection
within a limited timeframe. Given the
inherent complexity of software (FDA?), test
data should be carefully defined to drive test

scenarios effectively.

Selecting test data depends on a clear
understanding of data flow and data
definitions, which means that the relevant
requirements and design documentation
(covering data flow and data definitions)
must be in place and approved. The process
of eliciting test data adds an additional layer
of design review.

Test data plays a critical role throughout the
various testing phases and activities outlined
in Quasar #170° and Quasar #1714,
enabling:

e Modularisation of test cases, where the
same test case instructions are reused
with different test data to generate varied
results

Keyword-driven automation testing,
where test flows are driven by test
data, aligning with automation design

paradigms

Comprehensive coverage of data types,
including positive and negative scenarios,
error handling and defect detection

Reduction of the risk of production
issues caused by omitted test data values
or types, as thorough test data coverage
inherently spans the range of production
data

* Demonstration of a high level of software
production line quality maturity.

Defect reports should include precise
definitions of the test data used, facilitating
efficient retesting to reproduce defect
scenarios and enabling faster root cause
analysis and remediation.

‘The key to software
test quality lies
primarily in the test
elicitation phase rather
than in the execution

itself (FDA?).

AUGUST 202539

QUASAR

TEST CASES

There are numerous methods and tools

a vendor can use to document test cases,
which is beyond the scope of this article.
What matters most is that the information
provided is appropriate for the specific
system under test. The level of detail often
requires balancing trade-offs. Detailed,
step-by-step test cases assume less tester
knowledge, making knowledge transfer
easier when testers change and improving
reproducibility. Conversely, high-level test
instructions reflect the experience of the
testers and should be considered when
engaging with vendors.

Frequently, the authors see that vendor’s

test cases mimic the regulatory industry’s
typical style and scope, often focusing on
user acceptance testing. When questioned,
vendors often explain this approach is driven
by auditor expectations. To satisfy auditors,
vendors tend to emphasise verifying test
documentation content and appearance.
However, a deeper review may reveal that
the same test scenario is repeated at multiple
levels (and in lieu of) unit testing, informal
testing (to confirm explicit test steps) and
formal testing (to produce the official
documentation). In such cases, considerable
time and effort are spent on documentation
style rather than on executing tests designed
to detect defects eatly, preventing them from
reaching production.

As effort is directed toward perfecting

test documentation, testing ensures the
system performs as expected for specific test
objectives. However, less time is available
to verify that the system does not perform
unintended actions by applying diverse

test techniques across different test phases.
Consequently, if end users operate outside
documented test scenarios, latent defects
may surface.

Is this approach truly effective against risks
associated with computerised systems,

such as data integrity errors or delays in
regulatory submissions due to hidden
defects? The authors advocate shifting some
focus away from documentation quality
toward the actual software product quality —
since product quality ultimately determines
operational risk, business impact and patient

safety.

‘To satisfy auditors,
vendors tend to
emphasise verifying
test documentation
content and
appearance.’

FIGURE 13. PROBLEM OF AN ACCEPTANCE LEVEL ONLY TEST FOCUS

What is needed is sufficient test case
information to ensure:

* Effective knowledge transfer to
stakeholders at later stages

A reliable control test for future defect
or regression testing, aiding root cause
analysis

Ease of maintenance. Well maintained
test cases reduce human error and
administrative burden. Adopting
programming best practices, such as
‘write once, reuse multiple times’, using
clear objective statements, employing
variables or placeholders for test data
and applying self-explanatory test case
identifiers can help achieve this

Design readiness for future test
automation

Provision of data that supports advanced
quality activities like software quality
analytics and reporting.

g
e oo
% i i @"77@}/}
Q
@ r:"\ "‘7
DD [OFEATUREZ | FEATUREn |
L SYSTEM UNDER TEST

@ Latent Defect

| > Positive Test Flow

FEATURE 2 Feature

O Corrected Defect P

> End User Flow

End User Revealed
Defect

40 | AUGUST 2025

QUASAR

FIGURE 14. WHAT DOES VERIFICATION ACTIVITIES TELL US ABOUT SOFTWARE
PRODUCT QUALITY?

What is the testing conclusion?
Do we have software product quality?

HIGH
A TEST QUALITY
Are we
4 here?
MANY DEFECTS FEW DEFECTS
QUALITY _ SOFTWARE
LEVEL . PRODUCT
QUALITY
MANY DEFECTS FEW DEFECTS
Are we
here?
» HIGH

QUALITY LEVEL

FIGURE 15. STATIC VERIFICATION MEASUREMENTS: DEFECT PREVENTION

COMMENT FOR PROJECT SUMMARY/REVIEW

Features 13 22 12 16 (Ma)jor and (Mi)nor defects were required to be
remedied prior to approvals. (Q)ueries and (1)
improvements were agreed between requirement
owners and reviewers

User 4 6 4 9 Non-functional deficiencies

stories

HLD 5 3 16 16 N/A

Devplan 1 6 10 7 Missing Review Action List and Information Form
Also version signed is 0.4 and not 0.10

Test plan - 1 - - Incorrect schedule duration

Test spec O 9 1 14 Needs another review after initial review updates

Code - - - - Measurements of deficiencies were not captured. Not

review following QMS review template. Needs to be enforced
in projects

SOFTWARE QUALITY
ANALYTICS

A vendor test report stating that all planned
tests were completed and all defects were
reviewed and deemed acceptable for release
does not, by itself, provide meaningful
insight into the actual quality of the
software product. Context is essential to
understand what constituted the ‘planned’
testing. Simply listing test case identifiers
often fails to convey the scope and depth
of the testing challenges, as highlighted in
Quasar 170 and Quasar 1714,

So what could meaningful information look
like? The following examples are extracts
from software quality analytics conducted
per vendor audits to highlight what
information could be provided/generated.

INTERNAL VENDOR ‘A’
(PREVENTATIVE FOCUS)

Vendor ‘A’: Clinical Trial Management
System. Static verification activities were
piloted to assess the effectiveness of the
production line processes in driving
improvement initiatives and to evaluate
whether these static checks reduced defect
volumes in later testing phases. The static
verification efforts yielded the following
results: Across the requirements and HLD
(High Level Design), a total of 53 defects
were prevented from being built into the
software product. This enhanced quality by
minimising false assumptions coded into
the system, reducing ripple effects caused
by software branching and decreasing delays
associated with fixing and retesting defects
in subsequent test cycles. The analytics
clearly showed that quality was proactively
built into the system.

‘... software validation is a matter of
developing a ‘level of confidence’ that the

device meets all requirements and user

expectations’(FDA?)

‘The static verification
efforts yielded the
following results: Across
the requirements and
HLD (High Level
Design), a total of

53 defects were
prevented from being
built into the software
product’.

AUGUST 2025 41

QUASAR

VENDOR ‘B’: PREDICTING
THE SOFTWARE
PRODUCTION QUALITY

The software production line employed

a risk-based approach, prioritising focus
on processes with higher operational and
technical risks. Both static and dynamic
verification activities were integrated
throughout the iterative and incremental
production line. Hand-offs (HOs)
transitioned work into the independent
testing phase, where a risk-based strategy
was applied — testing the highest-risk
features first and revisiting them
continuously across subsequent HOs. This
‘test early, test often’ approach emphasised
establishing quality levels for the system’s
most critical features.

The volume of defects raised fell drastically
after the third release into the test function.
The figures were used to predict the software
quality of the release.

At the end of HO2, HO1 detected 62

out of 77 known defects (80%). By HOG,
HOS5 had found 96% of the total defects
(86). Extrapolating, 100% would equal
approximately 89 defects, leading the
project team to estimate that three defects
remained at the end of HOG. Actual system
use in operations over three months revealed
four minor defects.

Additionally, defect counts from HO4 to
HOG were consistent and of low criticality,
supporting the decision to cease testing.

‘Software verification and validation are
difficult because a developer cannot test

forever, and it is hard to know how much
evidence is enough.” (FDA?)

VENDOR ‘C’ CTMS
AUTOMATION TOOL: SIMPLE
DEFECT TRENDING

The vendor’s QMS demonstrated a strong
level of detail regarding software production
line processes. However, the accompanying
test report lacked meaningful analytics. It
simply stated that ‘all planned tests were
executed and results were accepted’, without
further context or insight.

The audit team accessed the defect
management tool data during the audit.
Some of the analysis performed revealed a
downward trend in overall defect volume
over a 30-month period, suggesting
continuous improvement in both software
product quality and the underlying QMS

processes.

Another example was the analysis of
defect trends across key product features
(anonymised to reduce risk of product/
vendor identification).

FIGURE 16. DEFECTS FOUND PER SYSTEM TEST ITERATIONS

TOTAL
HO1 HO2 HO3 HO4 HOS5 HOé6 DEFECTS
5 1 2 3 3 86

Defect
Totals 62 !
DDP % - 80.5 98.72 97.5 96.39 96.51 -

FIGURE 17. DEFECT TOTALS ACROSS 30 MONTHS

SYSTEM TEST DEFECTS PER YEAR

2022 2023 2024 (6 months)

162 10 43

FIGURE 18. SIMPLE DEFECT TRENDING TO INDICATE FEATURE QUALITY ACROSS
30 MONTHS

TREND: DEFECTS PER YEAR TREND: DEFECTS PER YEAR

FEATURE TOTAL PERCENT 2022 2023 2024
A 136 43% 70 39 27
C 15 4% 9 5 1
D 1" 4% 7 3 1
E 20 6% 10 10 0
F 59 19% 36 18 5

The vendor committed to enhance future
release reporting by including software
product quality analytics, including the
breakdown of feature risk, aggregated test

While most features showed a decline in
defects, Feature B experienced a 100%
increase in defects in 2023 and Feature E
remained unchanged compared to 2022.
coverage and defect criticality analysis, to
aid the validation effort for the regulated
customer. This response aimed to support
a least burdensome validation effort for the
regulated customer while maintaining the

These insights prompted audit discussions in
which the vendor committed to investigating
and addressing the spike in Feature B and
reassessing the stagnant trend in Feature E.

As part of the outcome, this data-driven
analysis was shared with the vendor and the
regulatory customer to discuss a risk-based
validation strategy. Improved quality features
such as Feature D would be considered for

a reduced validation approach in future
releases. In contrast, Feature B would
undergo full validation and Feature A would
be earmarked for reduced validation pending
further positive trend data.

software quality oversight.

“The capability to monitor and detect
performance issues or deviations and
system errors may reduce the risk

associated with a failure of the software
to perform as intended and may be
considered when deciding on assurance
activities.” (FDA?)

42| AUGUST 2025

QUASAR

AUDIT ANALYTICS

A key aspect during vendor audits is to
assess the quality level of the software
product being released and to assess
whether this quality has improved over
successive releases. In many cases, vendors
either do not perform this analysis or lack
mature measurement practices to provide
meaningful insights. In such cases, when
conducting follow-up audits, the authors
will draw on the regulated customer’s
internal metrics. Software quality analytics
can uncover valuable insights into the
software production processes (i.e. the
QMS) that contribute to the overall product

quality.

‘A conclusion that software is validated is
highly dependent upon comprehensive
software testing, inspections, analyses,
and other verification tasks performed at

cach stage of the software development
life cycle’ (FDA?).

Vendor discussions typically focus on the
need to provide quantifiable, meaningful
information. Quantitative data offers
insight not only into the software product’s
quality for a given release but also into the
performance of the underlying production
processes and the maturity of the vendor’s
QMS. Vendors with more advanced quality
systems are generally able to produce this
level of information across each verification
stage of the software production line.

‘Software quality
analytics can uncover
valuable insights

into the software
production processes
(i.e. the QMS) that
contribute to the
overall product quality.’

CONCLUSION
The QMS governs the software production

line — the structured set of processes
designed to deliver a high-quality software
product. The ultimate goal is to produce
software that performs reliably for the

end user. However, the belief that simply
documenting a process guarantees quality is
a misconception: “The assumption is that a
documented process equates to quality, but

this is a fallacy.” (McDowall®).

‘Measures such as defects found in
specifications documents, estimates of
defects remaining, testing coverage, and
other techniques are all used to develop

an acceptable level of confidence before

shipping the product.” (FDA?)

FIGURE 19. 1SO91261: RELATIONSHIP BETWEEN THE SLC QUALITY PROCESS AND SOFTWARE PRODUCT QUALITY

MEASUREMENT

QMS/Software

Production Line Process

Determines

—

PROCESS

QUALITY

<—

Dependency

MEASUREMENTS

Determines

—

INTERNAL
QUALITY

‘—
Dependency

VALIDATION
QUALITY
MEASUREMENTS

Effect of use of
software product

Determines

—

PRODUCTION
USE QUALITY
MEASUREMENTS

‘—
Dependency

AUGUST 202543

QUASAR

Software product quality is a key differentiator between poor, good and excellent vendors. See Figure 20.

FIGURE 20. THE MORE COMPREHENSIVE AND MEASURABLE THE SOFTWARE PRODUCTION LINE (QMS) PROCESSES, THE
HIGHER THE RESULTING SOFTWARE QUALITY - OFTEN REFLECTED IN DEFECT REMOVAL EFFICIENCY (DRE)

2 |ER|ZR| B S lE e
o | = Z
m |[oO|%0| O) 5))
— JC | mC C = — m m
O |23|0x| ® = m s D
%) 2m|Z2m| m 2 (%) Z m
— wn
N |90z =2 = o <
Zm|(Zzm| m zZ m =
= z z| z o O =
> = =| = —
c) o)
B 2 z
2 m LAYERED
FORMAL = STRONG e
INSPECTION DESIGN AR
PROCESS FOCUS
(5+)
wnm
X
]
\O
ooy
mMm
Bz LAYERED
= TEST
% PHASES
o0
8'00
2=0
To
w
-
1" o8
\030 LIMITED TEST
SCEO (ACCEPTANCE)
=MD
e
(V]

" INCOMPLETE OR MISSING | PARTIALIMPLEMENTATION

FIGURE 21. SOFTWARE PRODUCT QUALITY MEASUREMENT: ISO, CMMI AND FDA

1ISO 9001/90003

CAPABILITY MATURITY MODEL
INTEGRATION (CMMI v2.0) - (2018)

ONILSTL
NOILVYDILNI
ONILSIL WILSAS
ONILS3L
IVNOILONNH NON
ONILSIL
NOISS3dO3H
3IONVLdIDODOV
ASV3I134-34d

ALTVYNO 378VLDId3dd

QA
OVERSIGHT FASTEST
OF APPROACH
PROCESS

METRIC
IMEASUREMEN!

QA-NO
PROCESS
OVERSIGHT

\[0)
METRICS

ERATIC

I maTURE PROCESS

FDA THOUGHTS

+ 1ISO 90011994: appropriate sources of

information...to... analysis and eliminate

Apply management via quantitative analysis

5 levels of quality maturity:

nonconformities (failure) ..
1. Initial: none

+ 4.20 Statistical Techniques (for quality

2. Managed: measurement and analysis
management)

3. Defined: process instruction
+1SO 90012015 9.1.3 Monitoring.

. . 4. Quantitatively managed: process
Measurement, Analysis and Evaluation Q Y ged:p

performance

« Conformity of (sof d
onformity of (software) product 5. Optimising: caused analysis and resolution

+ Measure the performances and effectiveness
of the QMS (software production line)

+ (Application of 9001 to software) ISO
90003 2018: 9.1 Monitoring, Measurement,
Analysis & Evaluation

+ Analysis of root cause of non-
conformities...(as) input to Preventative
Action (PA)... reverse unfavorable trends in

metric levels may be considered as PA.

General Principles of Software Validation

20023.1.2

Measures such as defects found in
specifications documents, estimates of
defects remaining, testing coverage and

other techniques are all used to develop an
acceptable level of confidence before shipping
the product.

44| AUGUST 2025

QUASAR

Quality outcomes are the cumulative

result of robust software production
processes. Low product quality signals

weak or missing practices, such as poor
design reviews, lack of code inspections,
ineffective static verification and narrow test
scope. Conversely, higher product quality
correlates with a mature QMS: one that
applies preventive and detective verification
activities at each stage of the life cycle.

Merely repeating acceptance-level tests to
produce compliant documentation adds
little value to the industry. Somewhere along
the way, the core intent may have been

diluted.

The principle of actively measuring product
quality during production dates back to
foundational quality thinkers like Shewhart
(1939) and Juran (1951) (UKEssays*'), and
remains central in current frameworks such
as ISO, CMMI and FDA guidance. These
measurement practices are applicable to

all software production lines, regardless of
development model.

The active measurement of software product
quality throughout the production process
is as old as the Quality Management System
approach itself: from Shewart (1939) and
Juran (1951) (UKEssays”) to ‘current’ I1SO,
CMMi and FDA thinking.

As measurement is applicable to any
software production line, it provides a
mechanism to compare one vendor to
another.

“When you can measure what you

are speaking about, and express it in
numbers, you know something about it;
but when you cannot measure it, when

you cannot express it in numbers, your

knowledge is unsatisfactory and you
have scarcely advanced in your thoughts
beyond the state of science.” (Kelvin?)

REFERENCES
|

1. Guideline for Good Clinical Practice E6 (R3), ICH, 2025
2. General Principals of Software Validation, FDA, 2002

3. Software Testing: Measuring Vendor Software Quality — Part One,
O'Neill, McManus, Quasar #170, RQA, 2024

4. Software Testing: Measuring Vendor Software Quality ~ Part Two,
O'Neill, McManus, Quasar #171, RQA, 2025

5. Annex1l
6. OECD17

7. IBM Technical Report (referred to in various IBM papers and
books, though original report is not publicly archived)

8. Software Engineering Economics, Boehm, B.W., Prentice-Hall,
1981

9. Jones, C. Applied Software Measurement: Global Analysis of
Productivity and Quality, McGraw-Hill, 2008

10. The Economic Impacts of Inadequate Infrastructure for Software
Testing, NIST 2002.

1. Empowerment Quality Engineering Ltd internal data.

12. Software Engineering Book of Knowledge (SWEBOK) v4.0,
IEEE, 2024

13. Guidance for industry, Computerised systems used in Clinical
investigation, FDA, 2007

14. Code complete 2, A practical handbooks for software
construction, 2004, McConnell, Microsoft press

15. Using Defensive Approaches to Build Security into Computerised
Systems: Auditor Tips, McManus, Quasar #159, RQA, 2022

16. Database Systems Management and Deign, Pratt & Adamski,
1994, Course Technologies

17. Standard for Test Documentation IEEE-829, IEEE, 2008
18. Standard for Test Documentation IEEE 29119-3, IEEE, 2021
19. Mangingin the Testing Process, 2nd Ed, Black, 2002

20. Computer Software Assurance: Perfect Solution or Confidence
Trick?, Bob McDowall, Technology Networks, 2024

21, AHistory of Total Quality Management, UKEssays, 2015, web
reference: https://www.ukessays.com/essays/management/a-
history-of-total-quality-management-management-essay.
php?vref=1

22. Electrical Units of Measurement, Kelvin, PLA, Vol 1,1883

PROFILES
|

Barry is a Principal Consultant for
Empowerment Quality Engineering Ltd,
a Computerised System Regulatory
consultancy that bridges the gap between
IT and quality.

He focuses on building quality and
security into Computerised Systems
(CS) by using quality techniques from
the wider software industry while
ensuring regulatory compliance. He leads
GxP CSV compliance and IT Supplier/
Service Provider audits across the globe;
performs IT supplier’s software life cycle
process improvement, risk assessments
to drive validation strategies, validation
projects and tailored training.

Barry has over 27 years’ experience in
Quality Assurance, Software Engineering
and IT Administration with vast technical
knowledge of every role and every
activity within the CS life cycle; including
multiple technologies, development
methodologies (traditional and agile),

databases and programming languages.

He is a member of the RQA IT
Committee, the MARSQA and was
a member of the ISPE Data Integrity

Project team.

Hugh is VP Operations and Quality at
PHARMASEAL International Ltd and an
independent computer systems validation
consultant.

He is an IT professional with over

35 years of experience of using
technology in the pharmaceutical
industry, initially as a developer, later
an implementer and more recently

specialising in compliance.

AUGUST 2025 | 45

