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Abstract

Background: In soldiers with posttraumatic stress disorder, symptom provocation was found to induce increased con-

nectivity within the salience network, as measured by functional magnetic resonance imaging and global brain connectivity

with global signal regression (GBCr). However, it is unknown whether these GBCr disturbances would normalize following

effective posttraumatic stress disorder treatment.

Methods: Sixty-nine US Army soldiers with (n¼ 42) and without posttraumatic stress disorder (n¼ 27) completed func-

tional magnetic resonance imaging at rest and during symptom provocation using subject-specific script imagery. Then,

participants with posttraumatic stress disorder received six weeks (12 sessions) of group cognitive processing therapy or

present-centered therapy. At week 8, all participants repeated the functional magnetic resonance imaging scans. The primary

analysis used a region-of-interest approach to determine the effect of treatment on salience GBCr. A secondary analysis was

conducted to explore the pattern of GBCr alterations posttreatment in posttraumatic stress disorder participants compared

to controls.

Results: Over the treatment period, present-centered therapy significantly reduced salience GBCr (p¼ .02). Compared to

controls, salience GBCr was high pretreatment (present-centered therapy, p¼ .01; cognitive processing therapy, p¼ .03) and

normalized post-present-centered therapy (p¼ .53) but not postcognitive processing therapy (p¼ .006). Whole-brain sec-

ondary analysis found high GBCr within the central executive network in posttraumatic stress disorder participants com-

pared to controls. Post hoc exploratory analyses showed significant increases in executive GBCr following cognitive

processing therapy treatment (p¼ .01).

Conclusion: The results support previous models relating cognitive processing therapy to central executive network and

enhanced cognitive control while unraveling a previously unknown neurobiological mechanism of present-centered therapy

treatment, demonstrating treatment-specific reduction in salience connectivity during trauma recollection.
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Introduction

Advances in neuroimaging and connectomics have led to a
shift in the clinical neuroscience field from an early focus
on brain regions and localization to identifying neural cir-
cuits, and more recently, to establishing network function-
ing in health and disease.1 The investigation of neural
correlates of posttraumatic stress disorder (PTSD) largely
followed a comparable path. Early neuroimaging PTSD
studies identified a number of regions of interest (ROIs),
which were then integrated into circuitry-related hypoth-
eses and more recently into network-based models.2–6

These network models suggested an association between
PTSD and increased salience network but reduced default
mode and central executive network connectivity.2,3,6

However, these models were primarily based on findings
from seed analyses of resting-state functional connectivity
magnetic resonance imaging (fcMRI) data in cross-sec-
tional studies. Unfortunately, the seed-based approach
does not fully interrogate the brain’s large-scale intrinsic
connectivity networks (ICNs).7 In addition, the resting-
state data may not necessarily generalize to functioning
during provoked symptoms or other tasks.8 Moreover,
the cross-sectional investigations are, by design, limited
to association evidence without the ability to ascertain
the network changes over the course of the illness. These
limitations could be partially mitigated by employing
graph-based measures and task fcMRI in longitudinal stu-
dies. Using a graph-based measure named global brain
connectivity with global signal regression (GBCr), the cur-
rent report complements previous literature by conducting
a longitudinal fcMRI investigation at rest and during
symptom provocation in active duty US Army soldiers
with and without PTSD. The participants with PTSD
were scanned pre- and postrandomized treatment with
group cognitive processing therapy (CPT) or present-
centered therapy (PCT).

Nodal strength (also known as nodal degree) is the
amount of connections between a node and the nodes
of the rest of the network. It is a fundamental measure
in a graph-based network, as the majority of other net-
work topology measures are ultimately related to it.9

Over the past decade, GBCr, a well-established measure
of nodal strength, provided robust and reproducible evi-
dence of network disturbances in several psychiatric dis-
orders.10–18 GBCr was also found to be sensitive to
treatment, with accumulating evidence of normalization

of GBCr disturbances following ketamine treatment of
depressed patients.10–12 In combat-exposed US military
veterans, prefrontal GBCr did not correlate with PTSD
total symptom severity.19 However, clusters of high pre-
frontal GBCr were found in those who reported high
arousal over the past month.19 This raises the question
whether the level of symptoms during the scan may have
increased the GBCr values in this subpopulation.
Recently, this hypothesis was supported by a data-
driven cross-sectional analysis demonstrating increased
GBCr within the salience network during symptom
provocation, but not at rest, in PTSD compared to
trauma and nontrauma control.20

In this report, we investigated the longitudinal effects
of psychotherapy on the GBCr alterations in the salience
network during symptom provocation. This was accom-
plished by conducting an ROI analysis examining the
effects of CPT and PCT on GBCr compared to a non-
treated combat control (CC) group without PTSD. Then,
using a previously established approach,10 we conducted
a data-driven whole-brain analysis comparing posttreat-
ment GBCr, during symptom provocation, between the
PTSD group and CC. The aim of this approach is to
identify patterns of normalization (i.e., absence of pre-
treatment disturbances) and adaptation (i.e., evidence of
new alterations). Follow-up ROI analyses examined
whether the posttreatment alterations were differentially
influenced by CPT and PCT. The study predictions were
that psychotherapy will significantly reduce salience
GBCr, leading to a normalization pattern posttreatment.

Methods

The behavioral and imaging data were provided by the
STRONG STAR data repository (https://tango.uthsc-
sa.edu/strongstar/subs/rpinfo.asp?prj¼12). The clinical
trial results for the PTSD treatment study were previously
reported21 (NCT01286415). The pretreatment GBCr data
were reported elsewhere.20 The posttreatment data and
analyses are new and have not been reported previously.

Study Population

PTSD (n¼ 42) and CC (n¼ 27) active military partici-
pants with successful scans were investigated (Table 1)
as a subset of a larger randomized controlled clinical
trial.21 The patients with PTSD completed pretreatment
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scans and received CPT (cognitive only22) or PCT23

group therapy (90-min sessions, twice per week for six
weeks). Posttreatment scans were repeated two weeks
after the end of treatment (i.e., a total of approximately
eight weeks between scans). Similarly, the CC group com-
pleted repeated scans, eight weeks apart, without receiv-
ing any intervention.

All participants completed informed consent prior to
participation. Study procedures were approved by institu-
tional review boards. All participants had no MR contra-
indication and had a negative drug screen on the day of the
scan. The clinical trial criteria were previously reported.21

Briefly, patients with PTSD were active duty US Army sol-
diers, following deployment to or near Iraq or Afghanistan,
who were 18 years or older with DSM-IV PTSD diagnoses
and were stable on or off psychotropic medications for at
least six weeks; they did not have imminent suicide or homi-
cide risk, psychosis, or more than mild traumatic brain
injury. The CC group endorsed a Criterion A traumatic
event during deployment but did not have current PTSD.
Severity of symptoms pretreatment and posttreatment
(week 8) was assessed using the PTSD Symptom
Scale—Interview Version (PSS-I),24 PTSD Checklist
(PCL) for DSM-IV,25 the Beck Depression Inventory-II
(BDI-II),26 and the Beck Anxiety Inventory (BAI).27

FcMRI Acquisition and Processing

The acquisition parameters were previously reported.20

Briefly, each functional magnetic resonance imaging
scan (voxel size¼ 2� 2� 3mm; TR¼ 3000ms;

TE¼ 30ms) included 10min at rest and 12min during
symptom provocation—that is, script imagery during
which participants listened to recorded retelling of a per-
sonal event (alternating between trauma and neutral)
over a 1-min period, followed by a 1-min period of think-
ing about the event and then a 1-min break. The Human
Connectome Pipeline was adapted to conduct surface-
based preprocessing and optimize registration.28 Details
of our image processing pipeline were previously
reported12 and are provided in the Supplemental
Information. Following our previous reports,10–12,19

GBCr values were computed as the average of the correl-
ations between each vertex/voxel and all other vertices/
voxels in the brain gray matter (see Supplemental
Information).

Statistical Analyses

We used the Statistical Package for the Social Sciences
(version 24) for the behavioral and ROI analyses. The
normal distribution of outcome measures was confirmed
using probability plots and test statistics. The standard
error of means was provided as estimates of variation.
Significance was set at p� .05, with two-tailed tests.
Analysis of variance and chi square test were used to
compare behavioral data across groups.

To investigate the salience ROI (Figure 1(a); based on
the study by Abdallah et al.20), we constructed a general
linear model (GLM) to determine the main effects of
group (PCT vs. CPT vs. CC), task (rest vs. scripts), and
time (pretreatment vs. posttreatment), as well as the

Table 1. Demographics and clinical characteristics.

PCT (n¼ 23) CPT (n¼ 19) Combat control (n¼ 27)

Mean (SEM) or N (%) Mean (SEM) or N (%) Mean (SEM) or N (%)

Age 32.7 (1.9) 32.3 (1.5) 31.8 (1.1)

Body mass index 29.6 (1.0) 28.4 (1.0) 28.2 (0.6)

Intelligence quotient 97 (1.8) 102 (2.6) 99 (2.1)

Sex (Male) 22 (96%) 17 (90%) 25 (93%)

Race (White) 16 (70%) 13 (68%) 17 (63%)

Race (Black) 4 (17%) 3 (16%) 6 (22%)

Ethnicity (Hispanic) 6 (26%) 3 (16%) 9 (33%)

Baseline BDI-II 28.0 (2.7) 28.4 (2.5)

Delta BDI-II 7.0 (1.9) 7.3 (2.8)

Baseline BAI 27.0 (3.0) 24.0 (2.5)

Delta BAI 8.3 (2.0) 8.6 (2.1)

Baseline PCL 56.7 (2.3) 56.4 (2.5)

Delta PCL 11.7 (2.7) 9.7 (3.8)

Baseline PSS-I 27.2 (1.5) 28.3 (1.7)

Delta PSS-I 6.1 (2.6) 6.2 (2.7)

Note: No significant differences between subgroups. SEM: standard error of means; PCT: present-centered therapy; CPT: cognitive processing therapy; BDI-

II: Beck Depression Inventory-II; BAI: Beck Anxiety Inventory; PCL: PTSD Checklist; PSS-I: PTSD Symptom Scale—Interview Version.
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interactions between the main effects, followed by post
hoc pairwise comparisons.

To determine the pattern of GBCr alterations following
treatment, we conducted a vertex-/voxel-wise fcMRI non-
parametric analysis using FSL Permutation Analysis of
Linear Models (PALM), with tail approximation and clus-
ter mass threshold of 1.96 for Type I error correction (cor-
rected �¼ .05).30 This data-driven whole-brain analysis
used independent t tests to identify posttreatment clusters
with altered GBCr during symptom provocation in the
PTSD group compared to CC. To facilitate the interpret-
ation of the whole-brain findings (i.e., increase in executive
GBCr), the identified clusters (vertex/voxel p< .005; cor-
rected �¼ .05) were extracted to conduct follow-up post
hoc ROI analyses to better characterize the executive
GBCr changes across time, tasks, and subgroups. This
was accomplished by conducting a GLM comparable to
the one used for investigating the salience ROI.

Finally, we conducted exploratory analyses examining
the correlation in the PTSD group between salience/
executive GBCr and improvement/severity measures
(BDI-II, BAI, PCL, PSS).

Results

Participants were well matched for age, sex, body mass
index, intelligence quotient, race, and ethnicity (Table 1).

Pretreatment PSS-I, PCL, BDI-II, and BAI did not
differ between treatment groups. In the clinical trial
participants, both CPT and PCT significantly
reduced clinical symptoms on the PSS-I, PCL, BDI-II,
and BAI at week 8 (all p values< .05), but there
were no significant differences between treatments (all
p values> .6).

Normalization: PCT Reduced Salience Functional
Connectivity

Investigating the salience ROI (Figure 1(a)), the GLM
revealed significant effects of group (F(2,55)¼ 4.8,
p¼ .01), task (F(1,55)¼ 6.1, p¼ 0.02), and task� group
interaction (F(2,55)¼ 4.4, p¼ .02; Figure 1(b)), with
increased salience GBCr during symptom provocation
compared to resting state in the PCT and CPT groups
but not in CC (Figure 1(c)). In addition, salience GBCr
values were higher in the PCT and CPT groups compared
to CC during symptom provocation but not at rest
(Figure 1(c)). We also found trends for time� task
(F(1,55)¼ 3.4, p¼ .07) and time� group interaction
(F(2,55)¼ 2.8, p¼ .07; Figure 1(d)), with significant reduc-
tion of salience GBCr following PCT (p¼ .02). Compared
to CC, salience GBCr was high pretreatment for the 2
PTSD groups (PCT, p¼ .01; CPT, p¼ .03) and normal-
ized post-PCT treatment (p¼ .53) but not post-CPT

Figure 1. The effects of psychotherapy on salience connectivity. (a) The Akiki-Abdallah29 map of 6 intrinsic connectivity networks:

ventral salience (blue), dorsal salience (orange), central executive (yellow), default mode (green), visual (red), and sensorimotor (purple).

The black lines mark the salience clusters based on previous cross-sectional findings. (b) There was a significant group by task interaction

effects on salience global brain connectivity with GBCr. (c) There was significant increase in GBCr during trauma recollection (i.e., script

imagery) compared to during resting state in PTSD patients treated with PCT or CPT, but not in CC. The higher GBCr values in PTSD

compared to CC were significant only during trauma recollection, but not a rest. (d) PCT, but not CPT, significantly reduced salience GBCr.

*p� .05; **p� .01; ***p� .001. PCT: present-centered therapy; CPT: cognitive processing therapy; CC: combat control.
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treatment (p¼ .006). There were no main time effects
(p¼ .48) or time� task� group interaction (p¼ .75).

Adaptation: CPT-Enhanced Central Executive
Functional Connectivity

In the participants with PTSD compared to the CC
group, posttreatment whole-brain analysis revealed a sig-
nificantly high GBCr in areas within the left ventrolateral
prefrontal, right rostral-ventrolateral, and dorsolateral
prefrontal cortices (Figure 2(a) and (b)). We also found
significant clusters of low GBCr in the rostral-ventral
areas of the cerebellum in the treated participants com-
pared to the CC group (Figure S1). Notably, the salience
cluster, which showed high GBCr in the two treated
groups compared to controls in the cross-sectional
study,20 appears to normalize following treatment with
adaptation shift toward higher GBCr within the central
executive network (Figure 2(c) and (d)). Hence, to facili-
tate the interpretation of the whole-brain findings, we
conducted post hoc analyses by extracting average
GBCr from each subject within this executive ROI,
which included areas that showed significantly high
GBCr in PTSD (Figure 2).

Investigating the executive ROI, the GLM revealed
significant effects of group (F(2,55)¼ 4.0, p¼ .02), task
(F(1,55)¼ 6.6, p¼ .01), and task� group (F(2,55)¼ 7.1,
p¼ .002; Figure 3(a) and (b)) and task� time interaction
(F(1,55)¼ 7.3, p¼ .009; Figure 3(c)), with increased execu-
tive GBCr during symptom provocation compared to
resting state in the CPT and PCT groups but not in CC
(Figure 1(c)). In addition, executive GBCr values were
higher in the PCT and CPT groups compared to CC
during symptom provocation but not at rest
(Figure 3(b)). We also found significant increases in
executive GBCr following CPT (p¼ .01) during symptom
provocation (Figure 3(d)). There were no main time
effects (p¼ .54), time� group interaction (p¼ .30), or
time� task� group interaction (p¼ .22). Additional ana-
lyses of the cerebellar ROI are provided in the
Supplemental Information (Figure S2).

Exploring the Relationship Between GBCr
and Symptoms

Pretreatment executive GBCr during symptom provoca-
tion was associated with improvement in PCL scores
(i.e., pre- minus posttreatment) over the treatment

Figure 2. Cortical global connectivity posttreatment. (a and b) The red-yellow clusters mark the vertices with increased global brain

connectivity with global signal regression (GBCr) in treated posttraumatic stress disorder (PTSD) compared to controls during symptom

provocation. The black lines mark the vertices with p< .005 and corrected �¼ .05. (c and d) The Akiki-Abdallah29 map of six intrinsic

connectivity networks: ventral salience (blue), dorsal salience (orange), central executive (yellow), default mode (green), visual (red), and

sensorimotor (purple). The dark yellow lines mark the salience cluster and the red lines mirror the black lines in (a) and (b), marking the

executive cluster.
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period (r¼ .36, p¼ .027). In addition, pretreatment
executive GBCr at rest was negatively associated with
pretreatment BAI (r¼ –.42, p¼ .008), PCL (r¼ –.43,
p¼ .006), and PSS-I scores (r¼ –.45, p¼ .004). No other
correlations between executive GBCr and symptoms
severity or improvement were found. We found no cor-
relations between salience GBCr and improvement of
symptoms. Finally, the readers should cautiously inter-
pret these exploratory findings, considering that they do
not survive correction for multiple comparisons.

Discussion

Overall, we found a pattern of salience network normal-
ization (i.e., reduction) and executive network adaptation
(i.e., increase) following evidence-based psychotherapy in
PTSD patients treated twice per week for six weeks.
There were no significant cortical connectivity changes
in the CC group. Post hoc analyses showed that CPT
induced a significant increase in executive connectivity
leading to adaptation changes with higher salience and
executive connectivity values post-CPT in PTSD com-
pared to CC. In contrast, PCT induced a significant
reduction in salience connectivity leading to normaliza-
tion and salience connectivity values comparable to CC.

Finally, the data-driven analysis posttreatment showed
reduced global connectivity in PTSD in areas within the
cerebellum, including both the spinocerebellum and cere-
brocerebellum (Figure S1). However, there was no
significant treatment effect compared to changes in CC
(Figure S2).

CPT is a cognitive therapy in which patients examine
their thinking and emotions about the traumatic event.
The patients are systematically taught how to change
their thinking to more balanced beliefs with the use of
Socratic questioning by the therapist.21,22 The findings of
CPT-related increases in global connectivity within the
executive network are consistent with the cognitive
model wherein executive control improves the processing
of trauma-related stimuli, resulting in moderated expres-
sion of emotion in response to trauma-related cues.
Consistent with this hypothesis, a previous study using
seed-based analysis showed CPT-induced increases in
central executive functional connectivity, which were
interpreted as indicative of top-down cognitive control
of affective processes that are disrupted in PTSD.31

Moreover, systemic reviews and meta-analyses of neuroi-
maging research have reported an association between
cognitive therapies and increased activity in brain regions
within the executive network.32,33 To further advance this

Figure 3. The effects of psychotherapy on executive connectivity. (a) There was a significant group by task interaction effects on

executive global brain connectivity with GBCr. (b) There was significant increase in GBCr during trauma recollection (i.e., script imagery)

compared to during resting state in PTSD patients treated with PCTor CPT, but not in CC. The higher GBCr values in PTSD compared to

CC were significant only during trauma recollection, but not a rest. (c) There was a significant time by task interaction effects on executive

GBCr. (d) CPT, but not PCT, significantly increased executive GBCr. n.s.: not significant; *p� .05; **p� .01; ***p� .001. PCT: present-

centered therapy; CPT: cognitive processing therapy; CC: combat control.
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hypothesis, future studies should investigate GBCr
during a cognitive task to determine the extent of pre-
treatment executive abnormalities in PTSD and whether
the connectivity of a cognitively engaged central executive
network could predict response to psychotherapy or
whether it is affected by treatment.

PCT was originally developed as an active comparator
to trauma-focused cognitive therapy.23 Hence, PCT
includes common components of efficacious psychother-
apy without focusing on the trauma or using cognitive or
supportive frameworks. PCT focuses on managing PTSD
symptoms using psychoeducation and problem-solving
strategies to generate possible solutions to current prob-
lems or PTSD symptoms that the patient can practice off-
sessions. Although neuroimaging studies examining the
effects of PCT are scarce, one pilot study reported
PCT-induced reduction in the activation of the insula
during the presentation of traumatic images and
sounds.34 Another study reported increased resting-state
functional connectivity between clusters within the
default mode network following PCT treatment.35

PTSD is associated with reduced default mode connect-
ivity,7 an abnormality that is believed to be the
result of an overactive salience network failing to effect-
ively arbitrate between default mode and central execu-
tive networks.2,3 In this context, the previously reported
PCT-induced reduction in insula activity during
trauma cues and increase in default mode connectivity
during resting state may reflect a pattern of normalization
of the salience network following PCT treatment.
This study results further support this model by demon-
strating significant reduction in trauma-induced glo-
bal brain connectivity within the salience network
following PCT. Although the data of this study do not
allow us to distinguish which components of PCT are
responsible for the reduction in salience connectivity,
we speculate that perhaps the out-of-sessions, repeated
practice of the symptom reduction solutions generated
through problem-solving strategies during the sessions
may have led to enhanced utilization of habitual
rather than cognitive reactions to trauma cues.
However, it is important to underscore the speculative
nature of this hypothesis and the need to fully test it in
future studies.

Finally, accumulating evidence repeatedly demon-
strates functional and structural abnormalities in the
cerebellum of PTSD patients.36–41 Moreover, two recent
studies have shown reduced functional nodal strength in
the cerebellum in PTSD.20,42 In this study, PTSD patients
continued to show reduction in cerebellar connectivity
posttreatment compared to controls (Figure S1).
Follow-up analyses showed persistently lower cerebellar
connectivity in PTSD during trauma recollection, regard-
less of treatment modality, with no significant treatment
effects compared to changes in CC (Figure S2).

Limitations and Strengths

Considering that both interventions were active, effica-
cious treatments, the study design cannot confirm that
the observed connectivity changes posttreatment are
due to the specific intervention rather than generalized,
nonspecific changes due to reduction in PTSD symptoms.
However, the differential changes in connectivity patterns
per treatment suggest a direct relationship between CPT
and PCT with executive and salience global connectivity,
respectively. Another limitation is that the executive ROI
analyses are dependent on the vertex-wise results.
Therefore, these data should be interpreted within the
context of better understanding data-driven findings,
rather than fully independent test results. Additional limi-
tations include the majority of participants were males,
thus it was not possible to investigate sex differences.
Moreover, we did not exclude mild traumatic brain
injury or patients on stable medications to enhance the
generalizability of the findings to the target of population
of combat PTSD. Therefore, it possible that these factors
may have contributed to the results. Similarly, the control
subjects were combat exposed; hence, it is not possible
to ascertain whether these findings would hold compared
to nontrauma-exposed control. However, previous
work suggests that the global brain connectivity alter-
ations we observe following trauma recall are specific to
PTSD patients compared to both nontrauma-exposed
and trauma-exposed control.20 Finally, the measure
of nodal strength is not limited to a specific ICN
but rather measures the role of each node within
the whole-brain network. Therefore, the salience and
executive connectivity alternations may either indicate
increased internal (i.e., within network) and/or external
connectivity (i.e., between networks). Future studies
could use network-restricted topology approaches7 to
further delineate the role of each ICN as well as the inter-
action of ICNs.

This study has many strengths including: (a) a longi-
tudinal design in an adequate sample with randomization
to two evidence-based efficacious treatments for these
purposes; (b) the inclusion of repeated scans in the con-
trol group to account for nonspecific test-retest changes;
(c) the use of symptom provocation paradigm to identify
trauma-specific dynamic shift in ICNs; (d) the use of a
well-validated measure of nodal strength. GBCr has been
repeatedly associated with psychopathology and success-
ful treatment.10–12 In addition, GBCr does not require a
priori selection of seed or ROI, which here permitted the
posttreatment data-driven analysis. In this study, the lack
of significant cortical GBCr changes in the control group
underscores the robustness of the measure and the speci-
ficity of the study paradigm; (e) the use of state-of-the-art
neuroimaging methods based on the Human Connectome
Pipeline, including enhanced registration, surface-based
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analysis, and nonparametric correction for the vertex/
voxel-wise multiple comparisons.

Conclusions

The results provide strong neurobiological evidence sup-
porting the role of the central executive network in the
mechanism of CPT treatment to engage cognitive control
and ultimately reduce PTSD symptoms. Intriguingly, the
study findings may have unraveled a previously unknown
neurobiological mechanism of PCT treatment, demon-
strating treatment-specific reduction in salience connect-
ivity during trauma recollection. It remains to be seen
whether the normalized salience connectivity is primarily
driven by the habitual reactions established through off-
session practicing of symptom-reduction solutions
devised during therapy sessions. In summary, evidence-
based psychotherapy exerted a pattern of normalization
within the salience network and adaptation in the execu-
tive network. Although the adaptational changes favored
CPT, the normalization was mostly limited to PCT. The
used biomarkers are well validated and have previously
shown notable reproducibility following pharmacothera-
peutic interventions.10–12 Therefore, future studies
may capitalize on current findings to determine the
clinical utility of these biomarkers in predicting or opti-
mizing treatment for millions of patients suffering
from PTSD.
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