

B022314(022)

B. Tech. (Third Semester) Examination, April-May 2023

(AICTE Scheme)

(CSE Engg. Branch)

DIGITAL ELECTRONICS & LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Part (a) is compulsory from each unit and carry equal 4 marks. attempt any two parts from (b), (c) and (d) from each question and carry equal 8 marks.

Unit-I

1. (a) Convert the Boolean Expression $\overline{((A+B)C)}D$ using NAND gates only.

(b) Reduce the following function using Karnaugh map and implement using basic gates

$$f(A, B, C, D) = \overline{ABD} + AB\overline{CD} + \overline{ABD} + ABC\overline{D}$$

(c) Reduce the following equation using Quine Meclusky method of minimisation

$$F(A, B, C, D) = \sum m(0, 1, 3, 4, 5, 7, 10, 13, 14, 15)$$

- (d) Do as directed:
 - (i) Convert (2AC5-D)_H to decimal, octal and binary
 - (ii) Solve $(DDCC)_{16} + (BBAA)_{16} = (\dots,)_{16}$

Unit-II

- 2. (a) Define the following parameter.
 - (i) Noise margin
 - (ii) Power dissipation
 - (iii) Propogation delay
 - (iv) Fan out
 - (b) Draw the circuit diagram and explain the operation of 2-input TTL NAND gate with open collector output.

B022314(022)

(c) Explain with neat diagram interfacing of a TTL gate driving CMOS gate and Vice versa

(d) Write short note on :

(i) PLA

1

(ii) PAL and FPGA

4

Unit-III

- (a) Explain design procedure for combinational circuit.
 - (b) Draw and explain the block diagram of n-bit parallel adder circuit.
 - (c) Design 32 to 1 multiplexer using two 74LS150 ICs
 - (d) Draw and explain circuit for 3 to 8 decoder

Unit-IV

- 4. (a) What is race around condition? How it is avoided
 - (b) Explain the working of 4 bit asynchronous counter.
 - (c) What are registers. Differentiate between Buffer Register & shift register

(d) Design the counter that goes through state 1, 2, 4, 5, 7, 10, 11, 1 using J-K flip flops.

Unit-V

- 5. (a) Define finite state machine.
 - (b) Differentiate between Mealy machine and Moore machine.
 - (c) What is VHDL. Give data flow and algorithmic and structural description.
 - (d) Write VHDL code to design 4 to 1 MUX.