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The growth in remote and hybrid work catalyzed by the COVID-19 pandemic could have 
significant environmental implications. We assess the greenhouse gas emissions of this 
transition, considering factors including information and communication technology, 
commuting, noncommute travel, and office and residential energy use. We find that, in 
the United States, switching from working onsite to working from home can reduce up to 
58% of work’s carbon footprint, and the impacts of IT usage are negligible, while office 
energy use and noncommute travel impacts are important. Our study also suggests that 
achieving the environmental benefits of remote work requires proper setup of people’s 
lifestyle, including their vehicle choice, travel behavior, and the configuration of home 
and work environment.

remote work | hybrid work | information and communication technology | climate change

The COVID-19 pandemic has prompted a significant shift from in-person to remote and 
hybrid work, carrying complex environmental and societal implications. Previous studies 
investigated the environmental impact of remote and hybrid work on limited domains such 
as transportation and home- and office-related energy consumption (1, 2). We further 
examine significantly more dimensions of remote and hybrid work, uncertainties in different 
work modes, and changes in information and communication technology (ICT) usage.

Here, we analyze five elements of fully remote, hybrid, and fully onsite work—ICT, 
residential energy use, office energy use, multimode commuting, and noncommute 
travel. Working from home (WFH) more than 1 d per week could reduce greenhouse 
gas (GHG) emissions, mainly from less office energy use and commuting. However, 
one day of WFH has no benefits due to offsetting factors like more noncommute travel 
(see Fig. 2A), home energy use (see Fig. 2D), and commuting distance (see Fig. 2G); 
changes in ICT due to remote work, on the other hand, have negligible effects on GHG 
emissions. Our sensitivity analysis further suggests that realizing the environmental 
benefits of remote work requires careful configurations of lifestyle, home and office, 
and coordinated sustainable practices and incentives across individuals, companies, and 
policymakers. Our study, focused on the United States, provides a conceptual framework 
applicable for analyzing other countries.

Results

Baseline Environmental Profile. Fig. 1 shows the variances in GHG emissions originating 
from five different sources, compared across remote, hybrid, and onsite workers. The per-
workday carbon footprint results of six different work settings (from fully remote to fully 
onsite) are presented in Fig. 2. Under the assumptions detailed in SI Appendix, remote 
workers could have a 54% lower carbon footprint compared to onsite workers; hybrid 
workers with two to four workdays at home can reduce GHG emissions by 11 to 29%. 
Office energy use is the main contributor to the carbon footprint of onsite and hybrid 
workers, while non-commute-related travel becomes more significant as the number of 
remote work days increases. In contrast, the effects of remote and hybrid work on ICT 
usage have negligible impacts on the overall carbon footprint. This highlights that people 
should shift their focus from ICT usage to commute decarbonization, facility downsizing, 
and renewables penetration for office buildings to mitigate GHG emissions of remote 
and onsite work.

Occasional remote work may not provide significant climate change mitigation benefits 
for hybrid workers; hybrid workers who work from home just 1 d a week cut their carbon 
footprint by only 2% due to offsetting factors such as increased noncommute travel 
(Fig. 2A) and home energy use (Fig. 2D) on remote work days, along with greater com­
muting distance (Fig. 2G). As the number of remote work days increases, the GHG 
emissions’ increase in residential energy use (Fig. 2D) is not significant enough to alter 
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the environmental profile of remote, hybrid, and onsite workers. 
In fact, decarbonizing office energy may make light remote work 
more carbon intensive than onsite (SI Appendix).

Commuting behavior varies across workers and affects their 
environmental portfolio. Hybrid workers tend to commute farther 
than onsite workers due to differences in housing choices (Fig. 2G). 
Although onsite workers tend to travel more for nonwork activities 
on noncommute days, the total distances driven for all types of 
non-commute-related activities are substantially higher for remote 
workers (Fig. 2 A–C). Specifically, we observe substantially more 
total travel miles for remote workers to drop off/pick up friends, 
conduct recreational activities, visit healthcare facilities, visit 
friends/relatives, and exercise. While the mean trip distance was 
37% lower for remote workers, their average number of trips was 
about 1.6 times higher. It is worth mentioning that the carbon 
footprint of commuting for employees investigated in this study 
may be lower than the US national average because the company 
is in a large city with reasonable mass transit options.

Uncertainty and Sensitivity Analysis. Achieving the environ­
mental benefits of remote and hybrid work requires proper 
configurations across all affected domains except ICT, as GHG 
emissions are highly dependent on many factors, such as the 
number of household members, office building configuration, 
the company’s remote and hybrid work policies, and personal 
decisions about traveling during remote and hybrid work days 
(3). Notably, non-commute-related travel (including non-work 
days) accounts for 79%, 33 to 50%, and 31% of GHG emissions 
for remote, hybrid, and onsite workers, respectively. An onsite 
worker commuting by train may have a lower carbon footprint 
than a hybrid worker driving alone to work. Switching from 
traditional buses or trains to electric versions could advance 
climate change mitigation with the power grid decarbonization. 
Replacing conventional cars with electric ones may cut workers' 
carbon footprint by 13 to 19%, and progressively decarbonized 
US power grids could enable a further 38% reduction by 
2050. However, the emissions’ reduction from electric vehicles 

depends on the extent of power grid decarbonization. Reducing 
the building attendance from 50 to 10% can double the 
carbon footprint of an onsite worker since a substantial share 
of buildings’ emissions is not sensitive to occupancy. On the 
contrary, seat sharing among workers under full building 
attendance can reduce GHG emissions by 28%, compared to 
the no-seat-sharing baseline. Thus, individuals, companies, and 
policymakers can implement coordinated sustainable practices 
to maximize the environmental benefits of remote and hybrid 
work, such as choosing public transit over driving, encouraging 
car sharing, assigning multiple headcounts per seat, reducing 
or eliminating office space for remote workers, and improving 
energy efficiency for office buildings.

Discussion

Our research shows the potential of remote work to reduce carbon 
footprint and the actions to realize it. Implementing the actions in 
practice requires proper tradeoffs. WFH can help relieve congestion 
during peak hours in high-density commuting zones, which may 
improve fuel economy and mitigate climate change (4). However, 
business service workers’ move from high- to low-density com­
muting zones during the COVID-19 pandemic (5) could result 
in higher commuting distances for hybrid workers and a greater 
carbon footprint due to poor accessibility to mass transit and 
the increased use of private vehicles. Moreover, WFH requires 
extra space at home (6), which can lead to extra residential energy 
consumption and higher GHG emissions for remote and hybrid 
workers. Besides, remote households own more vehicles than 
nonremote ones (7). If that relationship is causal, vehicle man­
ufacturing and low vehicle occupancy can create more GHG 
emissions for remote and hybrid workers. The existing literature 
suggested that non-commute-related travel might offset com­
muting trips on remote work days (8, 9). In terms of the effect 
of remote work on workers’ travel behaviors on their days off, 
our result suggests that climate change mitigation benefits of 
remote and hybrid workers remain as the resulting increase in 
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Fig. 1. Methodology to investigate the climate change mitigation effects of remote and hybrid work in the United States. Residential energy use, non-commute-
related travel, commuting, office energy use, and ICT services are included in the system boundary. Acronyms: natural gas (NG), remote work/remote worker 
(RW), onsite work/onsite worker (OW).
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the GHG emissions of transportation distance is similar when 
rest-day travel is accounted for, though a smaller increase in 
driving and a greater increase in flying is observed for remote 
workers compared to onsite workers. While remote work shows 
potential in reducing carbon footprint, careful consideration of 
commuting patterns, building energy consumption, vehicle 
ownership, and non-commute-related travel is essential to fully 
realize its environmental benefits.

Materials and Methods

We leveraged data from Microsoft, American Time Use Survey, National Household 
Travel Survey, and Residential Energy Consumption Survey to measure the energy 
and material use of remote, hybrid, and in-person workers in the United States. Our 
thorough sensitivity analysis accounting for temporal and spatial variations of key 

variables shows the uncertainty and variability of our results. See SI Appendix for 
extended methods.

Data, Materials, and Software Availability. The public datasets used and 
extended figures and data tables for reproducibility are available at https://
github.com/ylongqi/teleworking-sustainability (3). Due to employee pri-
vacy and other legal restrictions, raw confidential data from Microsoft  
Corporation are not available for public sharing. The underlying methodol-
ogies and emissions findings presented in this study may differ from those 
reflected in Microsoft’s corporate disclosures and the Emissions Impact 
Dashboards for Azure and Microsoft 365. See SI  Appendix for extended 
methods.
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