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A two-fold increase of carbon cycle sensitivity to
tropical temperature variations
Xuhui Wang1, Shilong Piao1,2, Philippe Ciais1,3, Pierre Friedlingstein4, Ranga B. Myneni5, Peter Cox4, Martin Heimann6,
John Miller7,8, Shushi Peng1, Tao Wang1,3, Hui Yang1 & Anping Chen9

Earth system models project that the tropical land carbon sink will
decrease in size in response to an increase in warming and drought
during this century, probably causing a positive climate feedback1,2.
But available data3–5 are too limited at present to test the predicted
changes in the tropical carbon balance in response to climate change.
Long-term atmospheric carbon dioxide data provide a global record
that integrates the interannual variability of the global carbon bal-
ance. Multiple lines of evidence6–8 demonstrate that most of this
variability originates in the terrestrial biosphere. In particular, the
year-to-year variations in the atmospheric carbon dioxide growth
rate (CGR) are thought to be the result of fluctuations in the carbon
fluxes of tropical land areas6,9,10. Recently, the response of CGR to
tropical climate interannual variability was used to put a constraint
on the sensitivity of tropical land carbon to climate change10. Here
we use the long-term CGR record from Mauna Loa and the South
Pole to show that the sensitivity of CGR to tropical temperature
interannual variability has increased by a factor of 1.9 6 0.3 in the
past five decades. We find that this sensitivity was greater when trop-
ical land regions experienced drier conditions. This suggests that the
sensitivity of CGR to interannual temperature variations is regu-
lated by moisture conditions, even though the direct correlation
between CGR and tropical precipitation is weak9. We also find that
present terrestrial carbon cycle models do not capture the observed
enhancement in CGR sensitivity in the past five decades. More
realistic model predictions of future carbon cycle and climate feed-
backs require a better understanding of the processes driving the
response of tropical ecosystems to drought and warming.

Climate variability related to El Niño/Southern Oscillation has a dom-
inant role in forcing year-to-year variation in CGR, particularly the
forcing of temperature variability9–13 (Fig. 1a and Extended Data Fig. 1).
The observed positive correlation between CGR and temperature reflects
the direct impacts of temperature variations in driving variations of
tropical carbon fluxes9,10, rather than, in reverse, the greenhouse effect
of atmospheric CO2 (Methods). Because tropical temperatures are thought
to be close to the optimal photosynthetic temperature14, rising tropical
temperatures could decrease vegetation photosynthesis and increase
ecosystem respiration, which amplifies the influence of temperature
on ecosystem carbon exchange9. However, vegetation productivity
and respiration both increase with higher precipitation and thus offset
each other9. These processes lead to a weaker correlation of CGR with
precipitation9 (with coefficient R 5 20.19; P . 0.10) than that of CGR
with temperature, on interannual timescale. An application of cau-
sality analysis (convergent cross-mapping15) also shows that temper-
ature is the major climatic driver of CGR variations (Extended Data
Fig. 2). Below, by analysing the atmospheric CO2 record, we investi-
gated how the sensitivity of tropical carbon fluxes to tropical land
surface mean annual temperature (MAT) has changed over the past
five decades (Methods).
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Figure 1 | Change in detrended anomalies in CGR and tropical MAT, in
dCGR/dMAT and in ªint

CGR over the past five decades. a, Change in detrended
CGR anomalies at Mauna Loa Observatory (black) and in detrended tropical
MAT anomalies (red) derived from the CRU data set16. Tropical MAT is
calculated as the spatial average over vegetated tropical lands (23uN to 23u S).
The highest correlations between detrended CGR and detrended tropical MAT
are obtained when no time lags are applied (R 5 0.53, P , 0.01). b, Change
in dCGR/dMAT during the past five decades. c, Change in cint

CGR during the past
five decades. In b and c, different colours show dCGR/dMAT or cint

CGR estimated
with moving time windows of different lengths (20 yr and 25 yr). Years on
the horizontal axis indicate the central year of the moving time window used to
derive dCGR/dMAT or cint

CGR (for example, 1970 represents period 1960–1979
in the 20-yr time window). The shaded areas show the confidence interval
of dCGR/dMAT and cint

CGR, as appropriate, derived using 20-yr or 25-yr moving
windows in 500 bootstrap estimates.
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The linear regression slope between CGR and tropical MAT (dCGR/
dMAT) indicates the sensitivity of the tropical carbon cycle to climate
interannual variability, and was used to constrain future projections
of carbon cycle/climate feedbacks10. Using CGR at Mauna Loa Obser-
vatory and tropical MAT from the Climatic Research Unit (CRU) at
the University of East Anglia16, we first calculated how dCGR/dMAT
changes with time using a 20-yr moving window between 1960 and
2011 (both variables detrended; Fig. 1b). Within each moving window,
there is a significant positive correlation between CGR and MAT
(R 5 0.49–0.71, P , 0.01). Furthermore, dCGR/dMAT increased from
3.4 6 0.4 Pg C yr21 uC21 (all uncertainties are s.e.; Pg C, petagrams of
carbon) during 1960–1979 to 5.4 6 0.4 Pg C yr21 uC21 during 1992–
2011 (Fig. 1b).

When interpreting this observed long-term increase of dCGR/dMAT,
it might be argued that it does not reflect the change in the true res-
ponse of CGR to temperature variations, but could be due to indirect
effects of other climate variables that tend to covary with temperature,
such as precipitation and solar radiation. Therefore, to isolate the role
of temperature better, we defined the interannual temperature sensitivity
of CGR (cint

CGR) as the partial derivative of CGR with respect to MAT in a
multiple regression of CGR against MAT, precipitation and solar radi-
ation (all variables detrended; Methods). The increase in dCGR/dMAT
was found to reflect mainly an enhanced cint

CGR, rather than a change
induced by covariations with the other climate variables (Extended Data
Fig. 3). As shown in Fig. 1c, the value of cint

CGR has increased by a factor of
two, from 2.7 6 0.4 Pg C yr21 uC21 to 5.5 6 0.4 Pg C yr21 uC21 between
1960–1979 and 1992–2011. The window-by-window changes in cint

CGR
were fitted with three different models (the Mann–Kendall trend test,
a regime shift model and a linear trend model), all of which showed
that cint

CGR has increased over the past five decades. However, there are
too few degrees of freedom, as a result of data overlapping in neigh-
bouring time windows. Thus, we focus below on the difference in cint

CGR
between the earliest time window (the first 20–25 yr) and the most
recent time window (the past 20–25 yr), which are derived from fully
independent subsets of the data (Methods).

We assessed the robustness of the inferred enhancement in cint
CGR

between the first and the last 20–25-yr period of the Mauna Loa CO2

records. Given the significant disturbance caused by the Mount Pinatubo
eruption to the global carbon cycle17, we first proposed that the cooler
post-Pinatubo years characterized by enhanced carbon sinks were an
unusual response of carbon sinks to MAT, which could alone explain
the higher cint

CGR value of the most recent two decades. Thus, we excluded
the two years following the Mount Pinatubo eruption (1992–1993)
from our calculation of cint

CGR, which had very little effect on its value,
during the most recent two decades (5.4 6 0.4 Pg C yr21 uC21) (Extended
Data Fig. 4a). To investigate whether extreme years could explain the
enhancement in cint

CGR, we performed 500 bootstrap analyses by ran-
domly selecting a subset of data in each 20-yr moving window to calcu-
late cint

CGR. The confidence interval of these estimates is shown in Fig. 1c
and confirms that the increase in cint

CGR is not particularly sensitive to a
few extreme years. For instance, we still obtain a significant increase in
cint

CGR (by a factor of 2.3–2.6) when excluding the two highest positive
anomalies in CGR (Fig. 1a), which correspond to the El Niño events of
1972–1973 and 1997–1998, respectively (Extended Data Fig. 4b).

We further verified that the enhancement in cint
CGR over the past five

decades is robust with respect to (1) the length of the moving window
for calculating cint

CGR (ranging from 20 to 25 yr); (2) the application of a
frequency decomposition method by singular spectrum analysis18 to
separate the interannual-timescale component in CGR and MAT, instead
of linear detrending (this resulted in cint

CGR increasing by a factor of 1.7
for the 25-yr time windows and by a factor of 2.0 for the 20-yr time
windows; Extended Data Fig. 4c); (3) the choice of climate data, using
MAT from the Global Historical Climate Network19, precipitation
from Global Precipitation Climatology Centre20 and data on short-wave
radiation21 (cint

CGR increased by a factor of 1.9–2.1; Extended Data Fig. 4d);
and (4) the choice of the other long-term CO2 record from the South

Pole (Methods) instead of Mauna Loa (cint
CGR increased by a factor of

1.7–1.9; Extended Data Fig. 4e). Overall, by analysing the histogram
distribution of cint

CGR values obtained with different data sources and
different sensitivity tests described above (Methods), we conclude that
cint

CGR has robustly increased from 2.6 6 0.5 Pg C yr21 uC21 to 4.8 6

1.0 Pg C yr21 uC21 (Fig. 2a). This represents an average relative increase
by a factor of 1.9 6 0.3 (Fig. 2b). This enhancement is very unlikely to
have resulted by chance (,1024).

Finally, we applied the same analysis using the land sink calculated
as a residual from all other terms of the global carbon budget, as an
alternative to CGR for measuring variations in the global land carbon
balance22, and also verified a doubling of cint

Land Sink (Extended Data Fig. 4f).
This test demonstrates that enhanced cint

CGR is not explained by any known
change in the variability of fossil fuel fluxes, ocean fluxes or emission
from land-use change.

Tropical lands have experienced increasing drought in the past five
decades23,24, particularly from the mid 1970 s to the early 1990 s (Extended
Data Fig. 5), when the increase in cint

CGR began (Fig. 1c). On the regional
scale, the more recent period (1992–2011) is drier than the earlier period
(1960–1979), mainly in northern and central Africa and eastern South
America (Extended Data Fig. 6), where a significant correlation between
local MAT variability and CGR is observed (Extended Data Fig. 1). Large
uncertainties exist in the spatiotemporal patterns of tropical drought
changes, as indicated by the spread in the temporal evolution of three
drought indices (the annual Palmer drought severity index23 (PDSI),
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Figure 2 | Histograms of ªint
CGR during the earliest period and during the

most recent period, and of relative change in ªint
CGR over the past five decades.

a, Early–recent comparison; b, relative change. The relative change in cint
CGR is

the ratio of the calculated difference in cint
CGR between the most recent period

(1992–2011 for a 20-yr time-window) and the earliest period (1960–1979 for
20-yr time window) to the value of cint

CGR during the earliest period. The
histograms of cint

CGR and of relative changes in cint
CGR are calculated using

bootstrap analyses, considering different data sources (CGR from Mauna Loa
or the South Pole, MAT from CRU16 or the Global the Historical Climate
Network19, precipitation from CRU16 or the Global Precipitation Climatology
Centre20, and solar radiation from CRU-NCEP, ref. 21 and cloud fraction
from CRU16 as a surrogate), different moving-window lengths (20–25 yr) to
calculate the cint

CGR, and different methods to filter out the long-term increase
in CGR with time (linear regression and singular spectrum analysis18).
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the standardized precipitation–evapotranspiration index24 (SPEI) and
the soil moisture estimated from the ORCHIDEE model25; Extended
Data Figs 5 and 6). For instance, the ORCHIDEE-estimated soil mois-
ture shows an increase since the 1990s, whereas PDSI and SPEI are
comparatively flat during the same period (Extended Data Fig. 5). To
gain insight into the possible impact of tropical droughts on cint

CGR, we
grouped cint

CGR into different bins of detrended tropical moisture anomaly
(Methods). Figure 3 shows that cint

CGR is higher when tropical regions are
drier. A Monte Carlo null experiment, assuming no change in moisture
conditions, indicates that this relationship between cint

CGR and drought is
very unlikely to occur purely by chance (P , 0.01; Extended Data Fig. 7).
This result suggests that soil moisture may control the response of trop-
ical terrestrial carbon fluxes to temperature fluctuations. Many trop-
ical ecosystems are not only subject to high temperature close to the
optimal temperature of photosynthesis14, but are also subject to water
limitations, at least during a dry season. Below a critical threshold for
plant root water uptake, soil moisture will limit any temperature-driven
increase in evapotranspiration during a warmer year. Photosynthesis
will thus drop during a warmer year when soil moisture is limiting
during a dry period. In turn, a reduction in photosynthesis will probably
result in a larger anomaly of CO2 input to the atmosphere26, because
respiration usually decreases less than photosynthesis during drought.
A soil-moisture-threshold-like response of photosynthesis to temper-
ature interannual anomalies thus can qualitatively explain why cint

CGR
is higher during drier periods, but additional investigation is needed
to confirm that this is the main mechanism. Droughts in mid lati-
tudes (23u–48unorth) have also increased, mostly over the past decade27

(Extended Data Fig. 5), but this is inconsistent with the observed change
in cint

CGR (Fig. 1c). Further statistical analyses suggest that changes in
mid-latitude climate must have only minor impacts on the observed
cint

CGR change (Extended Data Fig. 8).
Next, we explored whether terrestrial carbon cycle models can cap-

ture the observed increase in cint
CGR over the past 50 years. To address

this issue, we calculated the temperature sensitivity of simulated trop-
ical net biome productivity (cint

mod NBP) estimated by an ensemble of five
terrestrial biosphere models (Methods) previously used in ref. 22 to
reconstruct historical changes in the carbon budget. We found that only
one model produced an enhancement in cint

mod NBP over the past five
decades, and that enhancement was much smaller in magnitude than
the observed change (Extended Data Fig. 9). This implies that most of
the models used do not correctly capture the response of tropical car-
bon fluxes to climate variability9, probably because of biases in the res-
ponse of productivity or ecosystem respiration to climate, or because

of inaccurate representations of soil temperature and moisture in these
models. Thus, the problems present models have in reproducing the
observed response of the carbon cycle to climate variability on inter-
annual timescales may call into question their ability to predict the future
evolution of the carbon cycle and its feedbacks to climate. Yet it should
also be noted that a realistic simulation of the interannual carbon cycle
dynamics provides a necessary but not sufficient test of a model’s per-
formance for the next century, because, on longer timescales, additional
processes such as forest dynamics and changes in soil carbon stocks
with low turnover rates become important as well28.

The terrestrial carbon cycle has experienced significant changes over
the past five decades17,29,30. In addition to the enhanced magnitude of
the land carbon sink17,29, the observed significant enhancement in cint

CGR
found in this study provides a new perspective on a possible shift in
the terrestrial carbon cycle. Increased tropical droughts are found to
be related to cint

CGR enhancement, highlighting the potentially important
role of moisture-temperature interaction in regulating the terrestrial
carbon cycle. But it should also be noted that our understanding of the
mechanism of cint

CGR enhancement is still limited. Further studies are
needed on the response of fundamental carbon cycle processes in the
tropical ecosystems and of the sensitivity of ecosystem composition and
structure to environmental change. New insights could be obtained
from integrated studies, combining dynamic vegetation models with
data from long-term manipulative field experiments. Furthermore,
new observations of atmospheric CO2 over tropical land masses from
aircraft, towers and satellites may allow for more accurate correlation
with climate variables than using Mauna Loa or South Pole CO2 data.

METHODS SUMMARY
To estimate the interannual sensitivity of CGR to tropical MAT (cint

CGR), we use
atmospheric CGR from the two longest atmospheric records at Mauna Loa and
South Pole, gridded MAT from the CRU16 and from Global Historical Climate
Network data19, annual precipitation from CRU and from the Global Precipitation
Climatology Centre20, solar radiation data from CRU-NCEP and ref. 21, and cloud
fraction from CRU over vegetated areas (Methods) in the tropics. The value of cint

CGR
was calculated as the regression coefficient of temperature in a multilinear regres-
sion of CGR variations against variations in temperature, precipitation and solar
radiation over a running time window (ranging from 20 to 25 yr). Several statistical
tests (Methods) were done to assess the robustness of the increase in cint

CGR over the
past five decades. Two different drought indicators (PDSI23 and SPEI24) and soil
moisture estimated using the ORCHIDEE model25 were used to investigate the
effects of drought on cint

CGR. We grouped the 50 years of data into four distinct bins
of detrended tropical moisture anomaly (standardized departure (s) less than 21,
between 21 and 0, between 0 and 1, and more than 1). For each bin of detrended
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Figure 3 | ªint
CGR for each bin of detrended tropical moisture anomaly.

Two different drought indicators (PDSI and SPEI calculated on the 6-month
scale (SPEI6)), ORCHIDEE-estimated soil moisture and precipitation were
used. We grouped the 50 years’ worth of data into four distinct bins of
detrended tropical moisture anomaly: very dry (s less than 21), dry (s between

21 and 0), wet (s between 0 and 1) and very wet (s greater than 1) (Methods).
We then calculated cint

CGR for each bin of detrended moisture anomaly, using
Mauna Loa CO2 records. The error bars indicate the s.e. of cint

CGR calculated
using bootstrap method (Methods). *P , 0.05 for cint

CGR being significantly
different from zero.
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moisture anomaly, we calculated cint
CGR. Finally, the outputs of five terrestrial carbon

cycle models22 were analysed to test whether these models could capture the observed
increase in cint

CGR during the past 50 years.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Atmospheric CO2 concentration. The measurements of monthly mean atmo-
spheric CO2 concentration at the Mauna Loa Observatory were obtained from the
US National Oceanic and Atmospheric Administration for the period 1959 to
2011 (http://www.esrl.noaa.gov/gmd/ccgg/trends/) and that from the South Pole
station were obtained from the Scripps Institution of Oceanography (http://scrippsco2.
ucsd.edu/)31. Note that about 15% of monthly CO2 concentrations in the South
Pole station during 1959–2011, particularly during the 1960s, were gap-filled (see
http://scrippsco2.ucsd.edu for more processing details).
Gridded climate fields. Gridded climate fields used in this study include mean
annual temperature (MAT), precipitation, solar radiation, PDSI and SPEI.

Gridded MAT, annual precipitation data and cloud fraction data are from Cli-
matic Research Unit, University of East Anglia16 (CRU TS 3.2). CRU TS 3.2 pro-
vides monthly air temperature, precipitation and other climate variables with spatial
resolution of 0.5u3 0.5u over the global land surface during the period 1901–2011.
Because solar radiation is not included in the CRU TS 3.2 data set, we used cloud
fraction as a surrogate for variations in solar radiation. We further obtained solar
radiation from the CRU-NCEP data product (http://dods.extra.cea.fr/store/p529viov/
cruncep/). CRU-NCEP is a gridded climate data product combining CRU TS 3.1
and NCEP-NCAR reanalysis. It provides 6-hourly meteorological forcing fields,
including solar radiation, for carbon cycle model simulations (see, for example,
ref. 2). Given that the discontinuity of the assimilated observations possibly causes
the spurious trends in the reanalysis data set32, the monthly mean value of incom-
ing solar radiation from the NCEP-NCAR reanalysis was corrected in CRU-NCEP
to match the empirically derived monthly solar radiation using an approach based
on latitude and sunshine hours33, which was estimated to be proportional to observed
cloud fraction in CRU TS 3.1. The preparation of the CRU-NCEP data set was per-
formed in a carbon cycle model intercomparison project2. Among all the climate
stations used in generating this data set, about 500 are located between 23u north
and 23u south, but their spatiotemporal distribution is uneven16. For example,
ground measurements are particularly sparse over uninhabited area, including the
Amazon basin and the tropical rainforest area in Southeast Asia. Thus, we have
also used other climate data streams, including different interpolation approaches,
climate reanalysis and a combination of ground and satellite measurements, to test
the robustness of the inferred increase in cint

CGR to uncertainties in the climate fields.
The alternative climate data sets include air temperature fields of the Global Historical
Climate Network Gridded Product (GHCN v3) of the National Climatic Data
Center19, which has a spatial resolution of 5u3 5u; precipitation fields from the
Global Precipitation Climatology Centre20 (GPCC), which have a spatial resolu-
tion of 1u3 1u; and a solar radiation data set with a spatial resolution of 1u3 1u
(ref. 21). The short-wave radiation product from ref. 21 was obtained by correct-
ing radiation in NCEP-NCAR reanalysis product with satellite-derived SRB v3.0
radiation data34. All the data streams (ground measurement interpolation, climate
reanalysis, and combination of ground and satellite measurements) have advan-
tages and disadvantages, and thus could have differences despite the general
consistency35,36. For example, from the late 1990s onwards the CRU data set seems
to be giving higher estimates of global precipitation than does GPCC37. These
differences in the climate data are one of the major sources of uncertainty in cint

CGR
estimates (Fig. 2).

The PDSI is a widely used index of drought stress and aridity change27,38. We
used global PDSI data provided by University Corporation for Atmospheric Research24.
The PDSI data have a spatial resolution of 2.5u3 2.5u and a temporal resolution of
one month from 1850 to 2010. This PDSI data set calculates potential evapotran-
spiration using the Penman–Monteith equation, which gives more realistic estimates
than do Thornthwaite equations27,37.

The SPEI is a multiscalar drought index similar to the standardized precipita-
tion index but involving a climatic water balance considering both precipitation
and evapotranspiration24. The timescale of SPEI (or the standardized precipitation
index) is defined so that an n-month scale considers the water surplus or deficit
accumulated over n 2 1 previous months24. Previous studies suggest that time-
scales ranging from 3 to 12 months are best suited to monitoring various drought
types39. In this study, we adopted the same 6-month scale for SPEI (SPEI6) as in
ref. 40, but also performed all calculations with SPEI on timescales of 3 months
(SPEI3), 9 months (SPEI9) and 12 months (SPEI12). The global SPEI data set was
provided by ref. 41 with a spatial resolution of 0.5u3 0.5u and a temporal resolu-
tion of one month from 1901 to 2011.
Carbon fluxes and soil moisture from global ecosystem models. Annual net
biome productivity from 1901 to 2008 was simulated by five dynamic global vegeta-
tion models (DGVMs) (HyLand (HYL), Lund-Potsdam-Jena (LPJ), ORCHIDEE
(ORC), Sheffield-DGVM (SHE) and TRIFFID (TRI)) in the comparison study of
ref. 2, and land carbon sink simulations in ref. 22 (http://dgvm.ceh.ac.uk). Because
spatially explicit output from ORCHIDEE was not available before 1972 in this
data set, results from an updated ORCHIDEE simulation are used. Starting from

pre-industrial equilibrium for all ecosystem carbon pools reached after spin-up,
all models were forced with CRU-NCEP climate fields and increasing atmo-
spheric CO2 concentration for the period 1901–2008. It is important to note that
the DGVM models produce only land–atmosphere CO2 fluxes because of changed
climate and CO2; other drivers, such as nitrogen deposition, forest demography
changes and land-use change, are not considered. Four DGVM models (HYL, LPJ,
SHE and TRI) have a spatial resolution of 3.75u3 2.5u, and the updated ORCHIDEE
simulation has a spatial resolution of 0.5u3 0.5u.
Analyses. The annual CGR of a specific month is calculated as the difference between
the CO2 concentration in that month and in the same month the previous year.
Tropical MAT, annual precipitation, annual solar radiation, annual PDSI and annual
SPEI were all calculated as the spatial average over all the vegetated land area between
23u north and 23u south. The vegetated land area is defined as all grid points for
which the mean annual normalized difference vegetation index during 1982–2006
was larger than 0.1. Normalized difference vegetation index data were obtained
from the Global Inventory Monitoring and Modelling Studies group42.

Interannual variation of CGR was found to be driven by climate variations,
particularly by tropical temperature, on the basis of atmospheric CO2 observations
and terrestrial carbon cycle modelling (see, for example, refs 9, 10). This finding is
consistent with field observations that tropical forest growth is more closely linked
to variations in temperature than to variations in precipitation and solar radiation43.
To improve our understanding of the climate–CGR relationship, we also applied a
convergent cross-mapping method18 to detect the linkage between CGR and
tropical MAT (or other climate variables).

We calculated cint
CGR over a running time window (ranging from 20 to 25 yr)

during the study period. Linear trends, estimated by the least-squares method,
were removed from the CGR and tropical climate (MAT, annual precipitation,
mean annual solar radiation) time series within each time window. Then cint

CGR was
calculated as the regression slope of MAT in a multilinear regression of CGR against
MAT, annual precipitation and mean annual incoming solar radiation (all variables
detrended). Different time-window lengths were tested, up to a maximum length
of 25 yr. This avoids data overlapping between the first and the most recent time
window. Considering the fact that detrended CGR and MAT anomalies have 1–2-yr
autocorrelation (Extended Data Fig. 10), a minimum time-window length was
chosen as 20 yr. Note that, even though cint

CGR calculated with shorter time windows,
such as 15 yr, could be affected by autocorrelation, our main result—that cint

CGR
increased by a factor of two—is robust to changes in the length of the selected time
window. We also calculated cint

CGR using a linear mixed model that specifically accounts
for temporal autocorrelation with a first-order autocorrelation function44,45. The
results show that including data autocorrelation in the regression does not change
the value of cint

CGR (Extended Data Fig. 10).
The window-by-window change in cint

CGR was fitted using three different meth-
ods: the Mann–Kendall test46, linear regression of cint

CGR against time, and a regime
shift model. We noted that the data overlapping in neighbouring time windows
result in too few degrees of freedom to test the statistical significance of the trend in
cint

CGR. Thus, statistical tests were made to compare cint
CGR for the earliest time window

with that for the most recent time window, which are fully independent from each
other.

To test whether the shift in cint
CGR during the study period was an artefact of our

detrending method for CGR and tropical climate time series (MAT, annual pre-
cipitation and mean annual solar radiation), we applied frequency decomposition
by singular spectrum analysis (SSA; see, for example, ref. 18) to extract the inter-
annual variability of CGR and climate variables. Here the monthly CGR time series
was decomposed into four frequency components: a high-frequency component47,
a seasonal component, an interannual component and a long-term trend com-
ponent. Thresholds separating the frequency components were set a priori and
constrained by the temporal resolution and length of CGR time series. Frequency
components with the variability up to 4.5 months were regarded as the high-
frequency component, whereas the thresholds separating seasonal, interannual
and long-term trend components were respectively set to be 20 and 90 months,
which were equally spaced on the logarithm axis of the frequency domain (see
ref. 18 for more detailed descriptions of SSA). The interannual component of the
climate variables was obtained in the same way. Then a linear regression between
interannual components of CGR and those of the climate variables was calculated
to estimate cint

CGR.
To estimate uncertainty in cint

CGR, we calculated it in 500 bootstrap analyses48, for
each combination of different data sources (CGR from Mauna Loa or the South
Pole, MAT from CRU or from GHCN, precipitation from CRU or from GPCP,
solar radiation from CRU-NCEP and ref. 21, and cloud fraction from CRU as a sur-
rogate for solar radiation), different moving-window lengths (20–25 yr) to calculate
cint

CGR, and different methods for filtering the long-term increase in CGR with time
(linear regression and SSA). The uncertainty of change in cint

CGR was taken from the
72,000,000 sensitivity tests.
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To study the linkage between change in cint
CGR and tropical drought, we grouped

the 50 years’ worth of data into four distinct bins of detrended tropical moisture
anomaly (standardized departure (s) less than 21, between 21 and 0, between 0
and 1, and greater than 1). For each bin of detrended moisture anomaly, we
calculated cint

CGR. The detrended soil moisture (SM) index anomaly is defined as
the standardized departure from average of detrended SM:

s(i)~
SM(i){Mean(SM)

Std(SM)

Here SM(i) is the detrended SM for the year i, and Mean(SM) and Std(SM) are the
average and standard deviation of the SM during the whole study period, respect-
ively. An alternative of binning tropical moisture anomalies into eight bins on the
basis of s (less than 21.5, between 21.5 and 21, between 21 and 20.5, between
20.5 and 0, between 0 and 0.5, between 0.5 and 1, between 1 and 1.5, and greater
than 1.5) did not qualitatively change the result.

To test the robustness of the observed relationship between cint
CGR and anomalies

(Fig. 3), we performed a null Monte Carlo experiment. In the Monte Carlo experi-
ment, we randomly generated artificial time series of CGR, MAT, annual precip-
itation and annual solar radiation following a multivariate normal distribution
defined by the mean and covariations of the observed time series during 1960–
2011. Because the relationship between CGR and MAT is forced to be stable
during the entire period, we expected no change in cint

CGR (Extended Data Fig. 7).
The hypothesis to test is whether the covariations between CGR, MAT and pre-
cipitation could result in differences in cint

CGR for different bins of detrended precip-
itation anomalies, as observed in Fig. 3.
Impacts of interannual CO2 variations on interannual temperature varia-
tions. To estimate quantitatively the impacts of year-to-year variations in CO2

on temperature variations, we followed refs 49, 50 to calculate the radiative forcing
of CO2 from its concentration, and used the climate sensitivity from different
models. The transient temperature change due to changing CO2 concentration is50

Tiz1{Ti~
a

log (2)
log

Ciz1

Ci

� �

where Ti and Ci are the mean annual temperature and atmospheric CO2 concen-
tration in year i, respectively, and a is the transient temperature change in response
to the doubling of CO2 concentration. The likely range of transient climate sens-
itivity is a 5 1.0–2.5 uC (ref. 51). Here we used the largest value in this range to
estimate the maximum plausible impact of CO2 greenhouse effect on temperature
variations. The result suggests that the impact of CO2 variations on interannual
temperature variations is one order of magnitude smaller than the observed inter-
annual variations in mean annual temperature. It confirms that the impact of the
CO2 greenhouse effect on temperature is not the reason for the observed signifi-
cant correlation between CGR and temperature.
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Extended Data Figure 1 | Spatial distribution of the correlation coefficient
between detrended CGR and MAT anomalies. CGR anomalies are from
Mauna Loa Observatory and local MAT anomalies were derived from the CRU
data set for the period 1960–2011. The correlation coefficients 0.23 and 0.28 are
the critical thresholds at significance levels of 0.10 and 0.05 (n 5 52),
respectively.
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Extended Data Figure 2 | Convergent cross-mapping for reconstruction of
variations in MAT, annual precipitation and mean annual solar radiation
from variations in CGR. CGR data are from Mauna Loa Observatory. The
CGR-reconstructed temperature curve gradually converges to a large positive
correlation coefficient (R 5 0.70), whereas the CGR-reconstructed
precipitation (P) and radiation (R) curves lead to smaller correlation
coefficients (R 5 0.04 and R 5 0.23, respectively) as time-series length
increases, suggesting that CGR variations are mainly forced by temperature
variations rather than by variations in precipitation and solar radiation.
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Extended Data Figure 3 | Change in dCGR/dMAT, cint
CGR , and the effects of

interannual variations of precipitation and solar radiation on the estimate
of dCGR/dMAT. The changes are calculated between the latest two decades
and the earliest two decades in 1960–2011. Precipitation and radiation
effects are denoted f2 3 dP/dMAT and f3 3 dR/dMAT, respectively.
dCGR/dMAT is calculated as the slope of MAT in the regression of CGR at
Mauna Loa Observatory against MAT over the tropical vegetated land. cint

CGR,
f2 and f3 are the slopes of MAT, precipitation and radiation, respectively, in the
multiple regression of CGR against MAT, precipitation and radiation over
the tropical vegetated land. dP/dMAT is the slope of MAT in the regression of
precipitation against MAT. dR/dMAT is the slope of MAT in the regression of
radiation against MAT. Error bars indicate the 95% confidence interval of
the corresponding value derived from 500 bootstrap estimates.
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Extended Data Figure 4 | ªint
CGR and ªint

LandSink for the first and the last time
window during the study period 1960–2011. For 20-yr windows, the two
windows are 1960–1979 and 1992–2011. For 25-yr windows, they are
1960–1984 and 1987–2011. a, Data from 1992 and 1993 (post-Pinatubo years)
are excluded from cint

CGR estimates. b, Data from the record-high El Niño events
of 1972–1973 and 1997–1998 are excluded from cint

CGR estimates. c, Interannual
variations of CGR and climate variables are obtained from the frequency
decomposition by SSA (Methods). d, cint

CGR is estimated with alternative climate
data sets (tropical MAT is from the GHCN data set19, tropical annual

precipitation is from the GPCC20 and solar radiation is from ref. 21). e, CGR
is obtained from monthly CO2 records at the South Pole. f, Interannual
temperature sensitivity of the residual land carbon sink (cint

LandSink). The residual
land carbon sink of each year is estimated from the CGR by adding the ocean
sink and subtracting fossil fuel emission and emission due to land-use
change22. In a–d, cint

CGR is estimated from Mauna Loa CO2 records. Error bars
indicate the 95% confidence interval of cint

CGR derived from 500 bootstrap
estimates.
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Extended Data Figure 5 | Change in drought indices and 20-yr smoothed
drought indices over tropical and mid-latitude regions during the past five
decades. a, Change in tropical (23u south to 23u north) annual PDSI, SPEI6
and ORCHIDEE-estimated soil moisture. b, 20-yr smoothed tropical PDSI,
SPEI6 and ORCHIDEE-simulated soil moisture. c, Change in mid-latitude
(23u north to 48u north) annual PDSI, SPEI6 and ORCHIDEE-simulated soil

moisture. d, 20-yr smoothed mid-latitude PDSI, SPEI6 and ORCHIDEE-
simulated soil moisture. Years on the x-axis indicate the central year of the
20-yr time window (for example, 1970 represents 1960–1979). All variables are
normalized by their respective standard deviations. The changes in SPEI3,
SPEI9 and SPEI12 are close to that in SPEI6. Note that SPEI is available till 2011,
PDSI is available till 2010 and model soil moisture is available till 2009.
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Extended Data Figure 6 | Spatial distribution of the difference between the
latest and first 20-yr periods during the past five decades in PDSI, SPEI6 and
ORCHIDEE-estimated soil moisture. a, PDSI; b, SPEI6; c, ORCHIDEE-
simulated soil moisture. The changes in SPEI3, SPEI9 and SPEI12 are close to
that in SPEI6.
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Extended Data Figure 7 | Change in ªint
CGR and the relationship between ªint

CGR
and precipitation anomalies in the null Monte Carlo experiment. a, cint

CGR in
the first and last 20 yr during 1960–2011. b, cint

CGR for each bin of detrended
tropical precipitation anomalies, which are divided into four bins (standardized
departure (s) less than 21, between 21 and 0, between 0 and 1, and greater
than 1). Values of cint

CGR for different bins of detrended tropical precipitation
anomaly are similar. c, Frequency distribution of the difference between cint

CGR
calculated for s . 1 (wet conditions) and cint

CGR calculated for s , 21 (dry
conditions). The probability of the observed difference (ranging from 5.1 to
6.0 Pg C yr21 uC21; Fig. 3) occurring purely by chance is very low (P , 0.01).
Error bars indicate the confidence intervals of the corresponding estimates.
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Extended Data Figure 8 | Change in dCGR/dMAT and ªint
CGR and variational

effects on estimating dCGR/dMAT between the earlier and latest two
decades during 1960–2011. The effects of interannual variations of tropical
precipitation (P), tropical short-wave solar radiation (R), mid-latitude (23u
north to 48unorth) temperature (MidMAT), mid-latitude precipitation (MidP)
and mid-latitude short-wave solar radiation (MidR) are denoted f2 3 dP/
dMAT, f3 3 dR/dMAT, f4 3 dMidMAT/dMAT, f5 3 dMidP/dMAT and
f6 3 dMidR/dMAT, respectively, where f2, f3, f4, f5 and f6 are respectively the
slopes of P, R, MidMAT, MidP and MidR in the multiple regression of CGR
against P, R, MidMAT, MidP, MidR. dy/dx represents the slope of x in the
regression of y against x. Error bars indicate the 95% confidence interval of the
corresponding value derived from 500 bootstrap estimates.
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Extended Data Figure 9 | Change in ªint
CGR and ªint

modNBP during 1960–2008
with a 20-yr moving time window. cint

modNBP is the interannual temperature
sensitivity of tropical net biome productivity, estimated using five carbon cycle
models (HYL, LPJ, ORC, SHE and TRI). To be consistent with model estimated
annual net biome productivity, CGR of a specific year is calculated as the
difference between the December Mauna Loa CO2 concentration of the year
and that of December the previous year. Positive value of cint

modNBP indicates
reduced anomalies of carbon sinks during warm years.
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Extended Data Figure 10 | Autocorrelations in CGR and MAT, and their
impacts on the estimates of ªint

CGR. a, Autocorrelation coefficients for
detrended anomalies of CGR from Mauna Loa during 1960–2011.
b, Autocorrelation coefficients for detrended anomalies of MAT during
1960–2011. Dashed lines in a and b indicate 95% confidence bands. c, The
comparison between cint

CGR calculated in the multiple regression of interannual
variations of the Mauna Loa CGR record against interannual variations in
temperature, precipitation and solar radiation (x axis) and cint

CGR calculated in
the linear mixed model with same independent variables and a first-order
autocorrelation function (y axis). Solid line indicates 1:1 ratio. This 1:1
relationship holds for cint

CGR derived for different time-window lengths.
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