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Asynchronous carbon sink saturation in 
African and Amazonian tropical forests

  

Structurally intact tropical forests sequestered about half of the global terrestrial 
carbon uptake over the 1990s and early 2000s, removing about 15 per cent of 
anthropogenic carbon dioxide emissions1–3. Climate-driven vegetation models 
typically predict that this tropical forest ‘carbon sink’ will continue for decades4,5. 
Here we assess trends in the carbon sink using 244 structurally intact African tropical 
forests spanning 11 countries, compare them with 321 published plots from Amazonia 
and investigate the underlying drivers of the trends. The carbon sink in live 
aboveground biomass in intact African tropical forests has been stable for the three 
decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence 
interval 0.53–0.79), in contrast to the long-term decline in Amazonian forests6. 
Therefore the carbon sink responses of Earth’s two largest expanses of tropical forest 
have diverged. The difference is largely driven by carbon losses from tree mortality, 
with no detectable multi-decadal trend in Africa and a long-term increase in 
Amazonia. Both continents show increasing tree growth, consistent with the expected 
net effect of rising atmospheric carbon dioxide and air temperature7–9. Despite the 
past stability of the African carbon sink, our most intensively monitored plots suggest 
a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating 
asynchronous carbon sink saturation on the two continents. A statistical model 
including carbon dioxide, temperature, drought and forest dynamics accounts for 
the observed trends and indicates a long-term future decline in the African sink, 
whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of 
carbon into Earth’s intact tropical forests peaked in the 1990s. Given that the global 
terrestrial carbon sink is increasing in size, independent observations indicating 
greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our 
conclusion that the intact tropical forest carbon sink has already peaked. This 
saturation and ongoing decline of the tropical forest carbon sink has consequences 
for policies intended to stabilize Earth’s climate.

Tropical forests account for approximately one-third of Earth’s ter-
restrial gross primary productivity and one-half of Earth’s carbon 
stored in terrestrial vegetation11. Thus, small biome-wide changes in 
tree growth and mortality can have global impacts, either buffering or 
exacerbating the increase in atmospheric CO2. Models2,4,5,7,12, ground-
based observations13–15, airborne atmospheric CO2 measurements3,16, 
inferences from remotely sensed data17 and synthetic approaches3,8,18 
each suggest that, after accounting for land-use change, the remain-
ing structurally intact tropical forests (that is, those not affected by 
direct anthropogenic impacts such as logging) are increasing in carbon 
stocks. This structurally intact tropical forest carbon sink is estimated 
at approximately 1.2 Pg C yr−1 over 1990–2007 using scaled inventory 
plot measurements1. Yet, despite its relevance to policy, changes in 
this key carbon sink remain highly uncertain19,20.

Globally, the terrestrial carbon sink is increasing2,7,8,21. Between 1990 
and 2017 the land surface sequestered about 30% of all anthropogenic 
carbon dioxide emissions1,21. Rising CO2 concentrations are thought to 
have boosted photosynthesis more than rising air temperatures have 
enhanced respiration, resulting in an increasing global terrestrial car-
bon sink2,4,7,8,21. Yet, for Amazonia, recent results from repeated censuses 

of intact forest inventory plots show a progressive two-decade decline 
in sink strength primarily due to an increase in carbon losses from tree 
mortality6. It is unclear if this simply reflects region-specific droug 
ht impacts22,23, or potentially chronic pan-tropical impacts of either 
heat-related tree mortality24,25, or results from internal forest dynam-
ics as past increases in carbon gains leave the system26. A more recent 
deceleration of the rate of increase in carbon gains from tree growth is 
also contributing to the declining Amazon sink6. Again, it is not known 
whether this is a result of either pan-tropical saturation of CO2 ferti-
lization, or rising air temperatures, or is simply a regional drought 
impact. To address these uncertainties, we (1) analyse an unprecedented 
long-term inventory dataset from Africa, (2) pool the new African and 
existing Amazonian records6 to investigate the putative environmental 
drivers of changes in the tropical forest carbon sink, and (3) project its 
likely future evolution.

We collected, compiled and analysed data from structurally intact 
old-growth forests from the African Tropical Rainforest Observation 
Network27 (217 plots) and other sources (27 plots) spanning the period 
1 January 1968 to 31 December 2014 (Extended Data Fig. 1; Supplemen-
tary Table 1). In each plot (mean size, 1.1 ha), all trees ≥100 mm in stem 
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diameter were identified, mapped and measured at least twice using 
standardized methods (135,625 trees monitored). Live biomass carbon 
stocks were estimated for each census date, with carbon gains and 
losses calculated for each interval (Extended Data Fig. 2).

Continental carbon sink trends
We detect no long-term trend in the per unit area African tropical 
forest carbon sink over three decades to 2015 (P = 0.167; Fig. 1). The 
aboveground live biomass sink averaged 0.66 tonnes of carbon per 
hectare per year (0.66 Mg C ha−1 yr−1 with 95% confidence interval (CI) 
of 0.53–0.79 and n = 244) and was significantly greater than zero for 
every year since 1990 (Fig. 1; P < 0.001 for each time period in Table 1). 
Although very similar to past reports (0.63 Mg C ha−1 yr−1)13, this first 
estimate of the temporal trend in Africa contrasts with the significantly 
declining (P = 0.038) Amazonian trend6 (Fig. 1). A linear mixed effects 
model shows a significant difference in the slopes of the sink trends for 
the two continents over the common time window (pooled data from 
both continents, common time window, 1 January 1983 to mid-2011; 
P = 0.017). Therefore, the per unit area sink strength of the two largest 
expanses of tropical forest on Earth diverged in the 1990s and 2000s.

The proximal cause of the divergent sink patterns is a significant 
increase (P = 0.002) in carbon losses (from tree mortality, that is, the 
loss of carbon from the live biomass pool) in Amazonian forests, with 
no detectable trend over three decades in African forests (P = 0.403; 
Fig. 1; Table 1). A linear mixed effects model using pooled data shows 

a significant difference in slopes of carbon losses between the two 
continents over the common time window (P = 0.027; 1 January 1983 
to mid-2011). Long-term trends in carbon gains (from tree growth and 
newly recruited trees) show significant increases on both continents  
(P = 0.037 for Africa; P < 0.001 for Amazon; Fig. 1), and we could detect 
no difference in slopes between the continents (P = 0.348; carbon gains 
from tree growth alone also show no continental difference in long-term 
trends, P = 0.322). However, an assessment of how underlying environ-
mental drivers affect carbon gains and losses is needed to understand 
the ultimate causes of the divergent sink patterns.

Understanding the carbon sink trends
We first investigate those environmental drivers exhibiting long-term 
change that affect photosynthesis and respiration in theory-driven 
models: atmospheric CO2 concentration, surface air temperature and 
water availability. Bivariate models (Fig. 2) and a linear mixed effects 
model of carbon gains (Extended Data Table 1), with censuses nested 
within plots, and pooling the new African and published Amazonian 
data, show a significant positive relationship with CO2 (P = 0.021 in 
Fig. 2; P = 0.001 in Extended Data Table 1), and significant negative 
relationships with mean annual temperature (MAT; P < 0.001 in  
Fig. 2 and Extended Data Table 1) and drought (P = 0.003 in Fig. 2;  
P < 0.001 in Extended Data Table 1), with drought measured as the 
maximum climatological water deficit (MCWD)14. These results are 
consistent with a positive CO2 fertilization effect, and negative effects 
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Fig. 1 | Long-term carbon dynamics of structurally intact old-
growth tropical forests in Africa and Amazonia. a–c, Trends in net 
aboveground live biomass carbon (a), carbon gains to the system from wood 
production (b), and carbon losses from the system from tree mortality (c), 
measured in 244 African inventory plots (blue lines) and contrasting 
published6 Amazonian inventory data (brown lines; 321 plots). For Africa we 

show complete years with at least 25 plots monitored; for Amazonia we show 
the published record6. Shading corresponds to the 95% CI, with darker shading 
indicating a greater number of plots monitored in that year (the lightest 
shading indicates the minimum 25 plots monitored). The CI for the Amazonian 
dataset is omitted for clarity, but can be seen in Fig. 3. Slopes and  
P values are from linear mixed effects models (see Methods).
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of higher temperatures and drought on tree growth, consistent with 
temperature-dependent increases in autotrophic respiration, and tem-
perature- and drought-dependent reductions in carbon assimilation. By 
contrast, the equivalent models for carbon losses show no significant 
relationships with CO2 (P = 0.363 in Fig. 2; P = 0.344 in Extended Data 
Table 1), MAT (P = 0.789 in Fig. 2; P = 0.804 in Extended Data Table 1) or 
MCWD (P = 0.338 in Fig. 2; P = 0.325 in Extended Data Table 1).

We further investigate the responses of carbon gains and losses (for 
which the above analysis has no explanatory power) by expanding 
our potential explanatory variables to include five more. These are 
the changes in environmental conditions (CO2-change, MAT-change, 
MCWD-change, see Extended Data Fig. 3 for calculation details) and two 
attributes of forests that may influence their response to the same envi-
ronmental changes: the plot mean wood density (which in old-growth 
forests correlates with belowground resource availability28,29) and the 
plot carbon residence time (CRT, which measures how long fixed carbon 
remains in the system and hence reflects when past increases in carbon 
gains leave the system as elevated carbon losses30).

The minimum adequate carbon gain model using our expanded 
explanatory variables (best-ranked model using multimodel inference) 
has a significant positive relationship with CO2-change (P = 0.013), and 
significant negative relationships with MAT(P = 0.001), MAT-change 
(P < 0.001), MCWD (P < 0.001) and wood density (P = 0.015; Table 2; 
model-average results are similar, see Methods and Supplementary 
Tables 2–4). The retention of both MAT and MAT-change suggests that 
higher temperatures correspond to lower tree growth, and that trees 
only partially acclimate to recently rising temperatures, which further 
reduces growth, consistent with warming experiments31 and observa-
tions9. The inclusion of higher wood density and its relationship to lower 
carbon gains (Extended Data Fig. 4), alongside no temporal trends in 
wood density (Extended Data Fig. 5), suggests that old-growth forests 
with denser-wooded tree communities typically have fewer available 
below ground resources, or such patterns may also emerge from dis-
turbance regimes lacking large-scale exogenous events, consistent 
with previous studies26,28,32.

The minimum adequate carbon gain model using our expanded 
explanatory variables also highlights continental differences. Between 1 
January 2000 and 31 December 2014 modelled African forest carbon 

gains increased by 3.1% compared with a 0.1% decline in Amazonia over 
the same interval (Table 2). In Africa, from 2000 to 2015, the increase 
in carbon gains was composed of a 3.7% increase from CO2-change, 
partially offset by increasing droughts depleting gains by 0.5%, and only 
a slight decline in gains of 0.1% resulting from temperature increases 
(Table 2), because the rate of temperature change (MAT-change) decel-
erated over this time window (Extended Data Fig. 5). For Amazonia, 
the same 3.7% increase in carbon gains due to CO2-change was seen. 
Opposing this trend was increasing droughts—and the greater sensitiv-
ity to drought of Amazonian forests—which reduced carbon gains by 
2.7% (five times the impact in Africa), and temperature increases at the 
same rate as in the past (that is, MAT-change is zero) further reduced 
gains by 1.1% (ten times the impact in Africa), leaving a net change in 
gains slightly below zero (Table 2). Therefore, the stalling of carbon 
gain increases in Amazonia in the decade to mid-20116 is a response to 
drought and temperature and not due to an unexpected saturation 
of CO2 fertilization.

Overall, the larger modelled increase in carbon gains in Africa rela-
tive to Amazonia appear to be driven by slower warming, fewer or less 
extreme droughts, lower forest sensitivity to droughts, and overall 
lower temperatures (African forests are on average ~1.1 °C cooler than 
Amazonian forests, because they typically grow at higher elevations of 
~200 metres above sea level). Other continental differences may also be 
influencing the results, including higher nitrogen deposition in African 
tropical forests due to the seasonal burning of nearby savannahs33 and 
biogeographical history resulting in differing contemporary species 
pools and resulting functional attributes34,35.

The minimum adequate carbon loss model using our expanded 
explanatory variables shows significantly higher losses with CO2-change 
(P = 0.026) and MAT-change (P < 0.001) and significantly lower losses 
with MCWD (P = 0.030) and CRT (P < 0.001; Table 2). Thus, changes in 
carbon losses appear to be largely a function of past carbon gains. First, 
the greater losses in forests with shorter CRT conform to a ‘high-gain, 
high-loss’ forest dynamics pattern26,28. Second, wetter plots have a 
longer growing season and thus they have higher gains and correspond-
ingly higher losses, explaining the negative relationship with MCWD. 
Third, as increasing CO2 levels result in additional carbon gains, after 
some time these additional past gains leave the system, resulting in 

Table 1 | Carbon sink in structurally intact old-growth tropical forests in Africa, Amazonia and the pan-tropics, 1980–2040

Period Number of plots Per unit area aboveground live biomass C sink (Mg C ha−1 yr−1) Total C sink (Pg C yr−1)a

Africa Amazon Africa Amazon Pan-tropicsb Africa Amazon Pan-tropicsb

1980–1990 45 73 0.33 (0.06–0.63) 0.35 (0.06–0.59) 0.35 (0.07–0.62) 0.28 (0.05–0.53) 0.49 (0.08–0.82) 0.87 (0.16–1.52)

1990–2000 96 172 0.67 (0.43–0.89) 0.53 (0.42–0.65) 0.57 (0.39–0.74) 0.50 (0.32–0.66) 0.68 (0.54–0.83) 1.26 (0.88–1.63)

2000–2010 194 291 0.70 (0.55–0.84) 0.38 (0.26–0.48) 0.50 (0.35–0.64) 0.46 (0.37–0.56) 0.45 (0.31–0.57) 0.99 (0.70–1.25)

2010–2015c 184 172 0.66 (0.40–0.91) 0.24 (0.00–0.47) 0.40 (0.15–0.65) 0.40 (0.24–0.56) 0.27 (0.00–0.52) 0.73 (0.25–1.18)

2010–2020d – – 0.63 (0.36–0.89) 0.23 (–0.05–0.50) 0.38 (0.11–0.65) 0.37 (0.21–0.53) 0.25 (–0.05–0.54) 0.68 (0.17–1.16)

2020–2030d – – 0.59 (0.24–0.93) 0.12 (–0.29–0.51) 0.30 (–0.08–0.67) 0.31 (0.13–0.49) 0.12 (–0.29–0.52) 0.47 (–0.15–1.07)

2030–2040d – – 0.55 (0.08–0.99) 0.00 (–0.54–0.49) 0.21 (–0.29–0.67) 0.26 (0.04–0.47) 0.00 (–0.50–0.46) 0.29 (–0.46–0.97)

This table covers 1 January 1980 to 31 December 2014 and predictions to 31 December 2039. Mean values are in boldface, future predictions in italics, uncertainties in parentheses: 95% boot-
strapped confidence intervals for 1980–2015, and 2σ for the predictions (2010–2040). 
aThe total continental C sink is the per unit area aboveground C sink multiplied by intact forest area (from ref. 1; see Extended Data Table 2) and includes continent-specific estimates of trees with 
a diameter at breast height of <100 mm, lianas and roots (see Methods). 
bThe per unit area pan-tropical aboveground live biomass C sink is the area-weighted mean of African, Amazonian and Southeast Asian sink values. Southeast Asian values were from published 
per unit area carbon sink data15 (n = 49 plots) for 1990–2015, with 1980–1990 assumed to be the same as 1990–2000 owing to very low sample sizes. The pan-tropical total C sink is the sum of 
African, Amazonian and Southeast Asian total continental carbon sink values. The continental sink in Southeast Asia is a modest and declining contribution to the pan-tropical sink, owing to the 
very small area of intact forest remaining, at 0.11 Pg C yr−1, 0.08 Pg C yr−1, 0.07 Pg C yr−1 and 0.06 Pg C yr−1 in the 1980s, 1990s, 2000s and 2010s, respectively; hence uncertainty in the Southeast 
Asian sink cannot reverse the pan-tropical declining sink trend. 
cThe Amazonian sink in the 2010–2015 time window was calculated from 172 plots measured between 1 January 2010 and mid-2011. The lack of temporal coverage later in this period has little 
impact on the results; adding modelled results for 1 January 2012 to 31 December 2014 gives a per unit area aboveground sink of 0.25 Mg C ha−1 yr−1 (0.00–0.49), which would increase the  
pan-tropical total C sink by 0.01 Pg C yr−1. 
dPer unit area total C sink for 2010–2020, 2020–2030 and 2030–2040 was predicted using parameters from Table 2, except for the 2010–2020 sink in Africa, which is the mean of the measured 
sink from 2010–2015 and the modelled sink from 2015–2020. For the Asian sink we assumed the same parameters as for Africa, because Asian forest median CRT is 61 years, close to the African 
median of 63 years.
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greater carbon losses, which explains the positive relationship with 
CO2-change. Finally, in addition to these relationships with carbon 
gains, the inclusion of MAT-change (P < 0.001) indicates tree mortality 
induced by heat or by increased vapour pressure deficit24. Overall, our 
results imply that chronic long-term environmental change factors, 
temperature and CO2, rather than simply the direct effects of drought, 
underlie longer-term trends in tropical forest tree mortality, although 
other changes such as rising liana infestation rates seen in Amazonia36,37 
cannot be excluded.

The minimum adequate carbon loss model using our expanded 
explanatory variables replicates the continental trends (Fig. 3). The 
overall modelled lower loss rates in Africa reflect their longer CRT (69 
years, 95% CI, 66–72), compared with Amazonian forests (56 years, 95% 
CI, 54–59) while over the 2000–2015 window the much smaller mod-
elled increase in loss rates in Africa compared to Amazonia results from 
a slower increase in warming and a stable CRT in Africa compared to con-
tinued warming at previous rates and a shortening CRT in Amazonian 
forests (Table 2; Extended Data Fig. 5). Furthermore, given that losses 
appear to lag behind gains, they should relate to the long-term CRT of 
plots. This is what we find: the longer the CRT the smaller the increase 
in carbon losses, with no increase in losses for plots with CRT ≥ 77 years 
(Extended Data Fig. 6). Consequently, owing to the typically longer 
CRT of African forests, increasing losses in Africa ought to appear 
10–15 years after the increase in Amazon losses began (around 1995). 

Strikingly, in Africa the most intensely monitored plots suggest that 
losses began increasing from about 2010 (Extended Data Fig. 7), and 
plots with shorter CRT are driving the increase (Extended Data Fig. 8). 
Thus, a mortality-dominated decline of the African carbon sink appears 
to have begun very recently.

Future of the tropical forest carbon sink
Our carbon gain and loss models (Table 2) can be used to make a tentative 
estimate of the future size of the per unit area intact forest carbon sink 
(Fig. 3). Extrapolations of the changes in the predictor variables from 
1983–2015 forward to 31 December 2039 (Extended Data Fig. 5) show 
declines in the sink on both continents (Fig. 3). By 2030 the carbon sink in 
aboveground live biomass in intact African tropical forest is predicted to 
decline by 14% from the measured 2010–15 mean to 0.57 Mg C ha−1 yr−1 (2σ 
range, 0.16–0.96; Fig. 3). The Amazon sink continues to rapidly decline, 
reaching zero in 2035 (2σ range, 2011–2089; Fig. 3). Our estimated sink 
strength on both continents in the 2020s and 2030s is sensitive to future 
CO2 emissions pathways (CO2-change)38, resulting temperature increase 
(MAT, MAT-change) and hydrological changes (MCWD), plus changes 
in forest dynamics (CRT), but the sink is always lower than levels seen 
in the 2000s (see Methods and Supplementary Table 5). Therefore, the 
carbon sink strength of the world’s two most extensive tropical forests 
have now saturated, albeit asynchronously.
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Fig. 2 | Potential environmental drivers of carbon gains and losses in 
structurally intact old-growth tropical forests in Africa and Amazonia. 
Aboveground carbon gains, from woody production (a–c), and aboveground 
carbon losses, from tree mortality (d–f), are presented as time-weighted mean 
values for each plot, that is, each census within a plot is weighted by its length, 
against the corresponding values of atmospheric carbon dioxide 
concentration (CO2), temperature (MAT) and drought (MCWD), for African 
(blue) and Amazonian (brown) inventory plots. For visual clarity each data 
point therefore represents an inventory plot, and the shading represents the 
total monitoring length, with empty circles corresponding to plots monitored 
for ≤5 years and solid circles for plots monitored for >20 years. Solid lines show 

significant trends and dashed lines show non-significant trends calculated 
using linear mixed effects models with census intervals (n = 1,566) nested 
within plots (n = 565), using an empirically derived weighting based on interval 
length and plot area, on the untransformed pooled Africa and Amazon dataset 
(see Methods). Slopes and P values are from the same linear mixed effects 
models. Carbon loss data and models are presented untransformed for 
comparison with carbon gains, but transformation is needed to fit normality 
assumptions; performing linear mixed effects models on transformed carbon 
loss data does not change the presented significance trends, nor does 
including all three parameters and transformed data in a model (see Extended 
Data Table 1).
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Scaling results to the pan-tropics
Scaling our estimated mean sink strength by forest area for each 
continent signifies that Earth has passed the point of peak carbon 
sequestration into intact tropical forests (Table 1). The continental 
sink in Amazonia peaked in the 1990s, followed by a decline, driven 
by sink strength peaking in the 1990s and a continued decline in for-
est area (Table 1). In Africa the per unit area sink strength peaked later, 
in the 2000–2010 period, but the continental African sink peaked in 
the 1990s, owing to the decline in forest area in the 2000s outpacing 
the small per unit area increase in sink strength. Including the modest 
uptake in the much smaller area of intact Asian tropical forest15 indicates 
that total pan-tropical carbon uptake peaked in the 1990s (Table 1). 
From the peak pan-tropical intact forest uptake of 1.26 Pg C yr−1 in the 
1990s, we project a continued decline reaching just 0.29 Pg C yr−1 in the 
2030s (multi-decade decline of ~0.24 Pg C yr−1 per decade), driven by 
(1) reduced mean pan-tropical sink strength decline of 0.1 Mg C ha−1 yr−1 
per decade and (2) ongoing forest area losses of ~13.5 million ha yr−1 (see 
Extended Data Table 2 for forest area details). Critically, climate-driven 
vegetation model simulations have not predicted that the peak net 
carbon uptake into intact tropical forests has already been passed2,4,5.

Discussion
Our method of scaling to arrive at a pan-tropical sink estimate—in 
common with other studies using similar datasets1,6,13—is limited. Yet, 
pervasive net carbon uptake is expected given that we find a strong and 
ongoing CO2 fertilization effect. Using our CO2 response in Table 2, we 
find an increase in aboveground carbon stocks of 10.8 ± 3.7 Mg C ha−1 per 
100 ppm CO2, equivalent to 6.5 ± 2.2% (±standard error; using an area-
weighted pan-tropical mean aboveground C stock of 165 Mg C ha−1). 
This is comparable to the 5.0 ± 1.2% increase in tropical forest C stocks 
per 100 ppm CO2 derived from a recent synthesis of CO2 fertilization 
experiments, despite a lack of data from old-growth tropical forests39. 
Our result is within the range of climate-driven vegetation models2,7, 
although it is greater than results from a number of recently pub-
lished models that include potential nutrient constraints, reported 
as 5.9 ± 4.7 Mg C ha−1 per 100 ppm CO2 (ref. 40). We find that the CO2 

fertilization-driven uptake is currently only partially offset by the 
negative impacts of similarly widespread rising air temperatures 
(−2.0 ± 0.4 Mg C ha−1 °C−1, from Table 2), consistent with models7, limited 
experiments31 and independent observations9, plus negative responses 
to drought41,42. Long-term and extensive increases in satellite-derived 
greenness in tropical regions that have not experienced major changes 
in land-use management17,43, particularly in central Africa in the past 
decade44, indicate increases in tropical forest net primary productivity, 
providing further evidence that the sink is a widespread phenomenon.

Nonetheless, our analyses suggest that this pervasive intact tropical 
forest sink in live biomass is in long-term decline, having peaked first in 
Amazonia, and more recently followed by African forests, explaining 
the prior Africa–Amazon carbon sink divergence as part of a longer-
term pattern of asynchronous saturation and decline. Over time, the 
continued CO2 fertilization effect is being increasingly counteracted 
by the impacts of higher temperatures and droughts on tree growth 
and mortality, which are modulated by internal forest dynamics, with 
forests with the shortest CRT saturating first. From an atmospheric 
perspective, the full impacts of the contribution to the saturation of 
the sink from slowing carbon gains are experienced immediately, but 
the contribution from rising carbon losses is delayed because dead 
trees do not decompose instantaneously. Decomposition of this dead 
tree mass is about half complete in 4 years, and about 85% complete 
in 10 years, so rising carbon losses result in delayed carbon additions 
to the atmosphere45. Hence, from an atmospheric perspective, the 
intact tropical forest biomass carbon sink probably peaked a few years 
later than our inventory data indicate and the full impacts are not yet 
realized. The pan-tropical carbon sink in live biomass declined by 
0.27 Pg C yr−1 between the 1990s and 2000s (Table 1), but accounting 
for dead wood decomposition45 shows a smaller 0.17 Pg C yr−1 reduction 
from an atmospheric perspective (see Methods).

Given that the overall global terrestrial carbon sink is increasing, a 
weakening intact tropical forest sink implies that the extra-tropical 
carbon sink has increased over the past two decades. Independent 
observations of interhemispheric atmospheric CO2 concentration 
indicates that carbon uptake into the Northern Hemisphere landmass 
has increased at a greater rate than the global terrestrial carbon sink 

Table 2 | Minimum adequate models to predict carbon gains and losses in African and Amazonian forests

Carbon gains (Mg C ha−1 yr−1)

Predictor variable Parameter value Standard error t value P value 2000–2015 change in gains (%)a

Intercept 5.255 | 5.395 0.603 | 0.614 8.7 | 8.8 <0.001 −

CO2-change (ppm yr−1)b 0.238 0.096 2.5 0.013 3.69% | 3.71%

MAT (°C) −0.083 0.025 −3.3 0.001 −0.67% | −1.07%

MAT-change (°C yr−1)c −1.243 0.233 −5.3 <0.001 0.58% | 0.00%d

MCWD (mm × 1,000) −0.405 | −1.391 0.381 | 0.24 −1.1 | −5.8 0.289 | <0.001 −0.52% | −2.73%

Wood density (g cm−3) −1.295 0.530 −2.4 0.015 0.05% | 0.00%

Carbon losses (Mg C ha−1 yr−1)e

Predictor variable Parameter value Standard error t value P value 2000–2015 change in losses (%)a

Intercept 1.216 0.086 14.1 <0.001 −

CO2-change (ppm yr−1)b 0.130 0.059 2.2 0.026 11.38% | 14.81%

MAT-change (°C yr−1)c 0.766 0.162 4.7 <0.001 −1.56% | 0.00%

MCWD (mm × 1,000) −0.232 0.107 −2.2 0.030 −1.21% | −2.42%

CRT (years) −0.003 0.001 −6.1 <0.001 −0.57% | 1.39%

This table shows the best-ranked gains and loss models. Where continental values differ, those for Africa are reported first, followed by ‘|’, then the Amazonian values. 
aThe 1 January 2000 to 31 December 2014 change in gains/losses for each predictor variable was estimated allowing only the focal predictor to vary; this change was then expressed as a  
percentage of the annual gains/losses in the year 2000, allowing all predictors to vary. 
bChange over the past 56 years (see Extended Data Fig. 3). 
cChange over the past 5 years (see Extended Data Fig. 3). 
dA positive value for Africa indicates that MAT increased more slowly over 2000–2015 compared to the mean increase over 1983–2015, therefore contributing to an increase in gains; a zero 
value for Amazonia indicates that the rate of MAT increase was the same over 2000–2015 as the mean increase over 1983–2015. 
eCarbon loss values were normalized via power-law transformation, with power parameter λ = 0.361.
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since the 1990s, with a further disproportionate increase in the 2000s10. 
The interhemispheric analysis suggests a weakening of the tropical 
forest sink by ~0.2 Pg C yr−1 between the 1990s and 2000s10, which is 
similar to the 0.17 Pg C yr−1 weakening over the same time period that 
we find. This reinforces our conclusion that the intact tropical forest 
carbon sink has already saturated.

In summary, our results indicate that although intact tropical forests 
remain major stores of carbon and are key centres of biodiversity11, 
their ability to sequester additional carbon in trees is waning. In the 
1990s intact forests removed 17% of anthropogenic CO2 emissions. 
This declined to an estimated 6% in the 2010s, because the pan-tropical 
weighted average per unit area sink strength declined by 33%, forest 
area decreased by 19% and anthropogenic CO2 emissions increased by 
46%. Although tropical forests are more immediately threatened by 
deforestation46 and degradation47, and the future carbon balance will 
also depend on secondary forest dynamics48 and forest restoration 
plans49, our analyses show that they are also affected by atmospheric 
chemistry and climatic changes. Given that the intact tropical forest 
carbon sink is set to end sooner than even the most pessimistic climate-
driven vegetation models predict4,5, our analyses suggest that climate 
change impacts in the tropics may become more severe than predicted. 
Furthermore, the carbon balance of intact tropical forests will only 
stabilize once CO2 concentrations and the climate stabilizes.

Continued on-the-ground monitoring of the world’s remaining intact 
tropical forests will be required to test our prediction that the carbon 
sink in live trees will continue to decline, particularly as future changes 
in the tree species composition may alter the resilience of the sink and 
because we cannot exclude the possibility of decadal-scale climate 

impacts on these forests. Such direct ground-based measurements 
also provide a constraint on estimating the size, location and climate 
sensitivity of the terrestrial carbon sink. In addition, our conclusion 
that tree mortality and internal forest dynamics are important controls 
on the future of the tropical forest carbon sink may assist in improving 
the vegetation components of Earth System Models50 and contribute to 
reducing terrestrial carbon cycle feedback uncertainty19,20. Our findings 
also have policy implications. At the individual country level, given that 
intact tropical forests are a carbon sink but the rate of reduction will 
differ continentally and probably regionally (for example, aseasonal 
Amazon forests are less affected by droughts), national greenhouse gas 
reporting will require careful forest monitoring. At the international 
level, given that tropical forests are likely to sequester less carbon in 
the future than Earth System Models predict, an earlier date by which to 
reach net zero anthropogenic greenhouse gas emissions will be required 
to meet any given commitment to limit the global heating of Earth.
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Methods

Plot selection
Closed canopy (that is, not woody savannah) old-growth mixed-age 
forest inventory plots were selected using commonly used crite-
ria6,13,27: structurally intact (that is, free of fire and industrial logging); 
all trees with diameter at reference height ≥100 mm measured at least 
twice; area ≥0.2 ha; altitude <1,500 m above sea level; MAT ≥20.0 °C51; 
annual precipitation ≥1,000 mm51; located ≥50 m from anthropogenic 
forest edges. Of the 244 plots included in the study, 217 contribute  
to the African Tropical Rainforest Observatory Network (AfriTRON; 
www.afritron.org), with data curated at www.ForestPlots.net52,53. These 
include plots from Sierra Leone, Liberia, Ghana, Nigeria, Cameroon, 
Gabon, Republic of Congo, Democratic Republic of Congo, Uganda and 
Tanzania52,53 (Extended Data Fig. 1). Fifteen plots are part of the TEAM 
network, from Cameroon, Republic of Congo, Tanzania and Uganda54–57. 
Nine plots contribute to the ForestGEO network, from Cameroon and 
Democratic Republic of Congo58 (9 plots from Democratic Republic of 
Congo, with codes SNG, contribute to both AfriTRON and ForestGEO 
networks, included above in the AfriTRON total). Finally, three plots 
from Central African Republic are part of the CIRAD network59,60. The 
large majority of plots are sited in terra firme (not inundated by river 
water) forests and have mixed species composition, although four are in 
seasonally flooded forest and 14 plots are in Gilbertiodendron dewevrei 
monodominant forest, a locally common forest type in Africa (Supple-
mentary Table 1). The 244 plots have a mean size of 1.1 ha (median, 1 ha), 
with a total plot area of 277.9 ha. The dataset comprises 391,968 diam-
eter measurements on 135,625 stems, of which 89.9% were identified 
to species, 97.5% to genus and 97.8% to family. Mean total monitoring 
period is 11.8 years, mean census length 5.7 years, with a total of 3,214 
hectare years of monitoring. The 321 Amazon plots are published and 
were selected using the same criteria6, except in the African selection 
criteria we specified a minimum anthropogenic edge distance and 
added a minimum temperature threshold.

Plot inventory and tree biomass carbon estimation
Tree-level aboveground biomass carbon is estimated using an allomet-
ric equation with parameters for tree diameter (in mm), tree height (in 
m) and wood mass density (in g cm−3)61. The calculation of each is dis-
cussed in turn. All calculations were performed using the R statistical 
platform, version 3.2.1 (ref. 62) using the BiomasaFP R package, version 
0.2.1 (ref. 63).

Tree diameter. In all plots, all woody stems with ≥100 mm diameter at 
1.3 m from the base of the stem (‘diameter at breast height’, DBH, in mm), 
or 0.5 m above deformities or buttresses, were measured, mapped and 
identified using standard forest inventory methods64,65. The height of 
the point of measurement (POM) was marked on the trees and recorded, 
so that the same POM is used at the subsequent forest census. For stems 
developing deformities or buttresses over time that could potentially 
disturb the initial POM, the POM was raised approximately 500 mm 
above the deformity. Estimates of the diameter growth of trees with 
changed POM used the ratio of new to old POMs, to create a single tra-
jectory of growth from the series of diameters at two POM heights6,13,65. 
We used standardized protocols to assess typographical errors and 
potentially erroneous diameter values (for example, trees shrinking 
by >5 mm), missing values, failures to find the original POM, and other 
issues. Where necessary we estimated the likely value via interpolation 
or extrapolation from other measurements of that tree, or when this 
was not possible we used the median or mean growth rate of trees in 
the same plot, census and size-class. We used the median growth rate 
for size classes of DBH = 100–199 mm or 200–399 mm. We used the mean 
growth rate for a size class with DBH > 400 mm, as there were fewer trees 
in the largest size class65. We interpolated measurements for 1.3% of 
diameters, extrapolated 0.9%, and used median growth rates for 1.5%.

Tree height. Height of individuals from ground to the top leaf, hereafter 
Ht, was measured in 204 plots, using a laser hypsometer (Nikon forestry 
Pro) from directly below the crown (most plots), a laser or ultrasonic 
distance device with an electronic tilt sensor, a manual clinometer, or 
by direct measurement, that is, climbing the tree. Only trees where 
the top was visible were selected66. In most plots, tree selection was 
similar: the 10 largest trees were measured, together with 10 randomly 
selected trees per diameter from five classes: 100–199 mm, 200–299 
mm, 300–399 mm, 400–499 mm, and 500+ mm trees, following stand-
ard protocols66. We measured the actual height of 24,270 individual 
trees from 204 plots. We used these data and the local.heights function 
in R package BiomasaFP63 to fit 3-parameter Weibull relationships:

H a= (1 − e ) (1)b
t

− DBHc

We chose the Weibull model (with Weibull parameters a, b and c) 
because it is known to be robust66,67. We parameterized separate Ht-
DBH relationships for four different combinations of edaphic forest 
type and biogeographical region: (1) terra firme forest in West Africa, 
(2) terra firme forest in Lower Guinea and the Western Congo Basin, (3) 
terra firme forest in Eastern Congo Basin and East Africa, (4) seasonally 
flooded forest from Lower Guinea and the Western Congo Basin (there 
were no seasonally flooded forest plots in the other biogeographi-
cal regions). The parameters are: (1) terra firme forest in West Africa, 
a = 56.0; b = 0.0401; c = 0.744; (2) terra firme forest in Lower Guinea and 
the Western Congo Basin, a = 47.6; b = 0.0536; c = 0.755; (3) terra firme 
forest in the Eastern Congo Basin and East Africa, a = 50.8; b = 0.0499; 
c = 0.706; and finally (4) seasonally flooded forest from Lower Guinea 
and the Western Congo Basin, a = 38.2; b = 0.0605; c = 0.760. For each 
of these combinations of forest type and bioregion, the local.heights 
function combines all height measurements from all plots belonging to 
that forest type/bioregion and fits the Weibull model parameters using 
nonlinear least squares (nls function in R with default settings), with 
starting values of a = 25, b = 0.05 and c = 0.7 chosen because they led 
to regular model convergence. We fitted these models either treating 
each observation equally or with weights proportional to each tree’s 
basal area. These weights give more importance to large trees during 
model fitting. We selected the best fitting of these models, determining 
this to be the model that minimized prediction error of stand biomass 
when calculated with estimated heights or observed heights. In this 
way, we selected the non-weighted model for terra firme forests in 
Lower Guinea/Western Congo Basin and for flooded forests in the Lower 
Guinea/Western Congo Basin; we selected the weighted model for the 
other two biogegraphical regions (West Africa and Eastern Congo Basin/
East Africa). The parameters were used to estimate Ht from DBH for all 
tree DBH measurements for input into the allometric equation. Median 
measured individual total tree height is 20.5 m; the height range is 3.1 
to 72.5 m. The root mean squared error (RMSE) between the full dataset 
of measured heights and the predicted heights is 5.7 m, which is 8.0% 
of the total range. Furthermore, RMSE is 5.3 m in terra firme forest in 
West Africa (7.5% of the range; n = 9,771 trees); RMSE is 6.4 m in terra 
firme forest in Lower Guinea and the Western Congo Basin (8.7% of the 
range; n = 10,838 trees); RMSE is 4.8 m in terra firme forest in the Eastern 
Congo Basin and East Africa (8.8% of the range; n = 3,269 trees); and 
RMSE is 4.1 m in seasonally flooded forest from Lower Guinea and the 
Western Congo Basin (12.5% of the range; n = 392 trees).

Wood density. Dry wood density (ρ) measurements were compiled 
for 730 African species from published sources and stored in www.
ForestPlots.net; most were sourced from the Global Wood Density 
Database on the Dryad digital repository (www.datadryad.org)68,69. 
Each individual in the tree inventory database was matched to a taxon-
specific mean wood density value. Species in both the tree inventory 
and wood density databases were standardized for orthography and 
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synonymy using the African Plants Database (www.ville-ge.ch/cjb/bd/
africa/) to maximize matches13. For incompletely identified individuals 
or for individuals belonging to species not in the ρ database, we used the 
mean ρ value for the next-highest known taxonomic category (genus or 
family, as appropriate). For unidentified individuals, we used the mean 
wood density value of all individual trees in the plot13,52.

Allometric equation. For each tree we used a published allometric 
equation61 to estimate aboveground biomass. We then converted this 
to carbon, assuming that aboveground carbon (AGC, in Mg C ha−1) is 
45.6% of aboveground biomass70. Thus:

ρ HAGC = 0.456 × (0.0673 × ( × DBH × ) )/1,000 (2)t
2 0.976

with DBH in mm, dry wood density ρ in g cm−3, and total tree height Ht 
in m (ref. 61). Aboveground carbon in living biomass for each plot at 
each census date was estimated as the sum of the AGC of each living 
stem, divided by plot area (in hectares).

Carbon gain and carbon loss estimation
Net carbon sink (in Mg C ha−1 yr−1) is estimated as carbon gains minus 
carbon losses. Carbon gains (in Mg C ha−1 yr−1) are the sum of the above-
ground live biomass carbon additions from the growth of surviving 
stems and the addition of newly recruited stems (recruits are stems 
reaching a DBH ≥ 100 mm during a given census interval), divided 
by the census length (in years) and plot area (in hectares). For each 
stem that survived a census interval, carbon additions from its growth 
(Mg C ha−1 yr−1) were calculated as the difference between its AGC at the 
end census of the interval and its AGC at the beginning census of the 
interval. For each stem that recruited during the census interval (that 
is, reaching DBH ≥ 100 mm), carbon additions were calculated in the 
same way, assuming DBH = 0 mm at the start of the interval, follow-
ing standard procedures6,65. Carbon losses (in Mg C ha−1 yr−1) are esti-
mated as the sum of aboveground biomass carbon from all stems that  
died during a census interval, divided by the census length (in years) 
and plot area (in hectares). Both carbon gains and carbon losses are 
calculated using standard methods6, including a census interval bias 
correction, using the SummaryAGWP function of the R package Bio-
masaFP63,64,68.

As carbon gains (and losses, see below) are affected by a census 
interval bias, with the underestimate increasing with census length, 
we corrected this bias by accounting for (1) the carbon additions from 
trees that grew before they died within an interval (unobserved growth) 
and (2) the carbon additions from trees that reached 100 mm DBH (that 
is, were recruited) and then died within the same interval (unobserved 
recruitment)65,71.

The first component, the unobserved growth of a stem that died 
during a census interval, is estimated as the difference between AGC 
at death and AGC at the start of the census. These are calculated using 
equation (2), from DBHdeath and DBHstart, respectively. The latter is part 
of the data, the first can be estimated as: DBHdeath = DBHstart × G × Ymean, 
where G is the plot-level median diameter growth rate (in mm yr−1) of the 
size class the tree was in at the start of the census interval (size classes 
are defined as DBH < 200 mm, 400 mm > DBH ≥ 200 mm and DBH ≥ 400 
mm) and Ymean is the mean number of years that trees survived in the 
census interval before dying. Ymean is calculated from the number of trees 
that are expected to have died in each year of the census interval, which 
is derived from the plot-level per capita mortality rate (ma; as percent-
age of dead trees per year) calculated following equation (5) in ref. 71.

The second component, the growth of recruits that were not 
observed because they died during the census interval, is estimated 
by calculating the number of unobserved recruits and diameter at death 
for each unobserved recruit. The number of unobserved recruits in a 
given year (stems ha−1 yr−1) is estimated as: Nu.r = Ra – Psurv × Ra, where Ra 
(number of recruited stems ha−1 yr−1) is the per-area annual recruitment 

calculated following equation (11) in ref. 71 and Psurv is the probability of 
each recruit surviving until the next census: Psurv = (1 − ma)T, where T is the 
number of years remaining in the census interval. Summing Nu.r for each 
year in a census interval gives the total number of unobserved recruits 
in that census interval. We then estimate diameter at death for each 
unobserved recruit, which is given in millimetres by DBHdeath,u.r = 100 + 
(Gs × Ymean-rec), where Gs is the plot-level median diameter growth rate (in 
mm yr−1) of the smallest size class (that is, DBH  < 200 mm) and Ymean-rec 
is the mean number of years that unobserved recruits survived in the 
census interval before dying. Ymean-rec is calculated as follows: from ma 
we can calculate the number of recruits in a given year that died in each 
subsequent year, and from this calculate the mean lifespan of recruits 
in a given year that died before the next census; Ymean-rec is then the mean 
of each year’s recruit-lifespan, weighted by the number of unobserved 
recruits in each year.

The census interval bias correction (components one and two com-
bined) typically add <3% to plot-level carbon gains calculated for each 
plot census interval. Carbon losses are affected by the same census 
interval bias, so we corrected this bias by accounting for the additional 
carbon losses from the trees that were recruited and then died within 
the same interval, and the additional carbon losses resulting from the 
growth of the trees that died in the interval6,15,63. These two components 
are calculated in the same way as for carbon gains and typically add 
<3% to plot-level carbon losses.

Carbon gains include both gains from the growth of surviving stems 
and new recruits. Separating carbon gains from the tree growth of sur-
viving stems and newly recruited stems shows that carbon gains from 
recruitment are small overall, and are significantly lower in Africa than 
in the Amazon (in Africa, 0.17 Mg C ha−1 yr−1; CI: 0.16–0.18 versus in the 
Amazon, 0.27 Mg C ha−1 yr−1; CI: 0.25–0.28, P < 0.001; two-way Wilcoxon 
test), but this is compensated by carbon gains from survivors being 
significantly larger in Africa (2.33 Mg C ha−1 yr−1; CI: 2.27–2.39) than in 
the Amazon (2.13 Mg C ha−1 yr−1; CI: 2.09–2.17, P = 0.014). Therefore, 
gains overall (sum of gains from surviving stems and newly recruited 
stems) are indistinguishable between the continents (in Africa, 
2.57 Mg C ha−1 yr−1; CI: 2.51–2.67 versus in the Amazon, 2.46 Mg C ha−1 yr−1; 
CI: 2.41–2.50, P = 0.460; two-way Wilcoxon test). The lower carbon 
gains from recruitment in Africa are probably due to the lower stem 
turnover rates and longer CRT.

Long-term gain, loss and net carbon sink trend estimation
The estimated mean and uncertainty in carbon gains, carbon losses and 
the net carbon sink of the African plots from 1 January 1983 to 31 Decem-
ber 2014 (Fig. 1, Extended Data Fig. 7 and Extended Data Fig. 8) were 
calculated following ref. 6 to allow direct comparison with published 
Amazonian results. First, each census interval value was interpolated for 
each 0.1-year period within the census interval. Then, for each 0.1-year 
period between 1 January 1983 and 31 December 2014, we calculated 
a weighted mean of all plots monitored at that time, using the square 
root of plot area as a weighting factor6. Confidence intervals for each 
0.1-year period were bootstrapped.

Trends in carbon gains, losses and the net carbon sink over time were 
assessed using linear mixed effects models (lmer function in R, lme4 
package72), providing the linear slopes reported in Fig. 1. These models 
regress the midpoint of each census interval against the value of the 
response variable for that census interval. Plot identity was included 
as a random effect, that is, by assuming that the intercept can vary ran-
domly among plots. We did not include slope as a random effect, con-
sistent with previously published Amazon analyses6, because models 
did not converge owing to some plots having too few census intervals. 
Observations were weighted by plot size and census interval length. 
Weighting for the Africa data was derived empirically, by assuming 
a priori that there is no significant relation between the net carbon sink 
and census interval length or plot size, following ref. 13. The following 
weighting removes all pattern in the residuals:



Weight = length + plotsize − 1 (3)3 4
int

where lengthint is the length of the census interval, in years. Significance 
was assessed by regressing the residuals of the net carbon sink model 
against the weights (P = 0.702). Similar published weighting was used 
for the Amazon plots6.

Differences in long-term slopes between the two continents for 
carbon gains, carbon losses and net carbon sink, reported in the main 
text, were also assessed using linear mixed effects models and weight-
ing, as described above, but performed on the combined African and 
Amazonian datasets and limited to their common time window, 1 Janu-
ary 1983 to mid-2011. For these three tests on the pooled data (gains, 
losses and net sink) we included an additional interaction term between 
census interval date and continent, where a significant interaction 
would indicate that the slopes differ between continents. The statisti-
cal significance of continental differences in slope were assessed using 
the F-statistic (ANOVA function in R, car package73). Shortening the 
common time window to the 20 years when the continents are best-
sampled, mid-1991 to mid-2011, gave very similar results, including a 
divergent continental sink (P = 0.04).

Continental and pan-tropical carbon sink estimates
The per unit area total net carbon sink (in Mg C ha−1 yr−1) for each time 
period in Table 1 (each decade between 1 January 1980 and 31 December 
2009; and between 1 January 2010 and 31 December 2014) is the sum 
of three components. The first component is the per unit area above-
ground carbon sink from living trees and lianas with DBH ≥ 100 mm. 
For Africa we use the per unit area net carbon sink values presented 
in this paper. For Amazonia, we use data in ref. 6. For Southeast Asia, 
we use inventory data collected using similar standardized methods 
from 49 plots in ref. 15. For each time window, we use all plots for which 
census dates overlap the period, weighted by the square root of plot 
area, as for the solid lines in Fig. 1. The second component is the per 
unit area aboveground carbon sink from living trees and lianas with 
DBH <100 mm. This is calculated as 5.19%, 9.40% and 5.46% of the first 
component (that is, aboveground carbon of large living trees) in Africa, 
Amazonia and Southeast Asia respectively74. The third component is 
the per unit area belowground carbon sink in live biomass, that is, roots. 
This is calculated as 25%, 37% and 17% of the aboveground carbon of 
living trees with DBH ≥100 mm in Africa13, Amazonia6 and Southeast 
Asia75 respectively.

For each time period in Table 1 we calculated the continental-scale 
total carbon sink (Pg C yr−1) by multiplying the per unit area total net 
carbon sink described above by the area of intact forest on each con-
tinent at that time interval (in ha) reported in Extended Data Table 2. 
Decades are calculated from 1 January 1990 to 31 December 1999. For 
comparability with previous continental-sink results, we used conti-
nental values of intact forest area for 1990, 2000, 2005 and 2010 as 
published in ref. 1, that is, total forest area minus forest regrowth. We 
used the 1990–2010 data to fit an exponential model for each continent 
and used this model to estimate intact forest area for 1980 and 2015.

Finally, in the main text we calculated the proportion of anthro-
pogenic CO2 emissions removed by Earth’s intact tropical forests, as 
the total pan-tropical carbon sink from Table 1 divided by the total 
anthropogenic CO2 emissions. Total anthropogenic CO2 emissions 
are calculated as the sum of emissions from fossil fuel and land-use 
change and are estimated at 7.6 Pg C yr−1 in the 1990s, 9.0 Pg C yr−1 in 
the 2000s, and 11.1 Pg C yr−1 in the 2010s (ref. 21, assuming 1.7% growth 
in fossil fuel emissions in 2018 and 2019, and mean 2010–2017 land-use 
change emissions for 2018 and 2019).

Carbon sink from an atmospheric perspective
To estimate the evolution of the carbon sink from an atmospheric 
perspective, we assumed that the contribution to the atmosphere 

from carbon gains are experienced immediately, while the contribu-
tion to the atmosphere from carbon losses must take into account 
the delay in decomposition of dead trees. We did this by calculating 
total forest carbon loss (Mg C ha−1 yr−1) for each year in the period  
1 January 1950 to 31 December 2014, using the mean 1 January 1983 to 
31 December 2014 records from Fig. 1 and assuming constant losses 
before 1983 (1.9 Mg C ha−1 yr−1 and 1.5 Mg C ha−1 yr−1 for Africa and Ama-
zonia respectively). Then, for each focal year in the period 1950–2014, 
we calculated how much carbon was released to the atmosphere in the 
subsequent years as follows: yi = x0 × e−0.17(i − 1) − x0 × e−0.17i, where x0 is the 
total forest carbon loss of the focal year; yi is the carbon released to the 
atmosphere at i years from the focal year; and −0.17 yr−1 is a constant 
decomposition rate calculated for tropical forests in the Amazon45. 
For example, carbon loss was 1.95 Mg C ha−1 in 1990 in African forests 
(Fig. 1), from which 0.31 Mg C ha−1 was released to the atmosphere in 
1991; 0.26 Mg C ha−1 in 1992; 0.22 Mg C ha−1 in 1993; 0.07 Mg C ha−1 in 
2000 and 0.01 Mg C ha−1 in 2010. Hence, of the full 1.95 Mg C ha−1 dead 
tree biomass from 1990, ~50% was released to the atmosphere after 4 
years, ~85% after 10 years, and ~97% after 20 years. Finally, for each year 
between 1983 and 2014, the total contribution to the atmosphere from 
carbon losses was calculated as the sum of all carbon contributions 
released at that year, including all carbon loss pools from previous 
years that are released during the focal year (an approach similar to 
ref. 6). We then calculated decadal-scale mean contributions to the 
atmosphere from carbon losses to estimate the carbon sink from an 
atmospheric perspective, reported in the main text.

Predictor variable estimates (1983–2015)
For each census interval of each plot, we examined potential predictor 
variables that may explain the long-term trends in carbon gains and 
carbon losses, reported in Table 2 and Extended Data Table 1. First, 
the environmental conditions during the census interval; second, the 
rate of change of these parameters; and third, forest attributes that 
may affect how different forests respond to the same environmental 
change. The predictor variable estimates for each census need to avoid 
bias due to seasonal variation, for example the intra-annual variability 
in atmospheric CO2 concentration. We therefore applied the following 
procedure to avoid seasonal variability impacts on long-term trends: 
(1) the length of each focal census interval was rounded to the nearest 
complete year (for example, a 1.1-year interval became a 1 year interval); 
(2) we computed dates that minimized the difference between actual 
fieldwork dates and complete-year census dates, while ensuring that 
subsequent census intervals of a plot do not overlap. The resulting 
sequence of non-overlapping census intervals was used to calculate 
interval-specific means for each environmental predictor variable to 
remove seasonal effects. The mean difference between the actual field-
work dates and the complete-year census dates is 0.13 decimal years.

The first group of potential predictor variables, estimated for each 
census interval of each plot, are theory-driven choices: atmospheric 
CO2 concentration, MAT and drought intensity, which we quantified 
as MCWD14,20,76,77.

Atmospheric CO2 concentration. CO2 (in ppm) is estimated as the 
mean of the monthly mean values from the Mauna Loa record78 over the 
complete year census interval. While atmospheric CO2 concentration is 
highly correlated with time (R2 = 0.98), carbon gains are slightly better 
correlated with CO2 (Radj

2 = 0.0027) than with time (Radj
2 = 0.0025), as 

expected from theory.

Mean annual temperature. MAT (in °C) was derived from the tempo-
rally resolved (1901–2015) dataset of monthly mean temperature from 
the Climatic Research Unit (CRU TS version 4.03; ~3,025-km2 resolution; 
released 15 May 2019; https://crudata.uea.ac.uk/cru/data/hrg/)79. We 
downscaled the data to ~1-km2 resolution using the WorldClim v2 data-
set51,80, by subtracting the difference in mean monthly temperature, 
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and applying this monthly correction to all months81. We then calcu-
lated MAT for each complete year census interval of each plot using 
the downscaled monthly CRU record.

Maximum climatological water deficit. MCWD (in mm) was derived 
from the ~3,025-km2 resolution Global Precipitation Climatology Centre 
dataset (GPCC version 6.0) that includes many more rain gauges than 
CRU in tropical Africa82,83. Because GPCC ends in 2013 we combined it 
with satellite-based Tropical Rainfall Measurement Mission data (TRMM 
3B43 V7 product, ~757-km2 resolution)84. The fit for the overlapping time 
period (1998–2013) was used to correct any systematic difference be-
tween GPCC and TRMM: GPCC′ = a + b × GPCC, with GPCC′ the adjusted 
GPCC record and a and b being different parameters for each month 
of the year and for each continent. Precipitation was then downscaled 
to ~1-km2 resolution using the WorldClim dataset51,80, by dividing by 
the ratio in mean monthly rainfall, and applying this monthly correc-
tion to all months81. For each census interval we extracted monthly 
precipitation values and estimated evapotranspiration to calculate 
monthly climatological water deficit (CWD), a commonly used metric 
of dry season intensity for tropical forests14,76,77. Monthly CWD values 
were calculated for each subsequent series of 12 months (complete 
years)77. Monthly CWD estimation begins with the wettest month of 
the first year in the interval, and is calculated as 100 mm per month 
evapotranspiration (ET) minus monthly precipitation (P). Then, CWDi 
values for the subsequent 11 months (i) were calculated recursively 
as: CWDi = ET − Pi + CWDi − 1, where negative CWDi values were set to 
zero77 (no drought conditions). This procedure was repeated for each 
subsequent complete 12 months. We then calculated the annual MCWD 
as the largest monthly CWD value for every complete year within the 
census interval, with the MCWD of a census interval being the mean 
of the annual MCWD values within the census interval. Larger MCWD 
indicates more severe water deficits.

We assume evapotranspiration is 100 mm per month on both conti-
nents, based on measurements from Amazonia76,77, more limited meas-
urements from West Africa summarized in ref. 85, predictive skill86, and 
use in past studies on both continents14,87. MCWD therefore represents 
a precipitation-driven dry season deficit, given that evapotranspiration 
remains constant. An alternative assessment, using a data-driven evapo-
transpiration product88,89, gave a mean evapotranspiration of 95 mm 
and 98 mm per month for the African and Amazonian plot networks 
respectively (mean for the 1982–2008 period). Using these values did 
not affect the results.

To calculate the environmental change of potential predictor vari-
ables, CO2-change (in ppm yr−1), MAT-change (in °C yr−1) and MCWD-
change (in mm yr−1), we selected an optimum period over which to 
calculate the change, derived empirically by assessing the correlation 
of carbon gains (all plots, all censuses) with the change in each envi-
ronmental variable, using linear mixed effects models (lmer function 
in R, lme4 package72). The annualized change in the environmental 
variable was calculated as the change between the focal interval and 
a prior interval (termed the baseline period) with a lengthening time 
window ranging from 1 year through to 80 years before the focal interval 
(that is, 80 linear mixed effects models per variable). We calculated 
Akaike’s Information Criterion (AIC) for each model and selected the 
interval length with the lowest AIC. Thus, MAT-change = (MATi − MATb)/
(datei − dateb), where MATi is the MAT over the focal census interval 
calculated using the procedure described above, MATb is the MAT over 
a baseline period before the focal interval, datei is the mid-date of the 
focal census interval and dateb is the mid-date of the baseline period. 
The lmer results show that the baseline period for MAT-change is 5 years 
and for CO2-change it is 56 years, while MCWD showed no clear trend, 
so MCWD-change was not included in the models (see Extended Data 
Fig. 3). All three results conform to a priori theoretical expectations. 
For CO2 a maximum response to an integrated 56 years of change is 
expected because forest stands will respond most strongly to CO2 when 

most individuals have grown under the new rapidly changing condition, 
which should be at its maximum at a time approximately equivalent to 
the CRT of a forest stand30,90 (mean of 62 years in the pooled dataset). 
For MAT, 5 years is consistent with experiments showing temperature 
acclimation of leaf- and plant-level photosynthetic and respiration 
processes over half-decadal timescales31,91. MCWD has no overall trend 
suggesting that once a drought ends, its impact on tree growth fades 
rapidly, as seen in other studies14,92. Furthermore, in the moist tropics 
wet-season rainfall is expected to recharge soil water, so lagged impacts 
of droughts are not expected.

We calculated estimates of two forest attributes that may alter 
responses to environmental change as potential predictor variables: 
wood density and CRT. In intact old-growth forests, mean wood density 
(in g cm−3) is inversely related to resource availability28,93,94, as is seen in 
our dataset (carbon gains and plot-level mean wood density are nega-
tively correlated; Extended Data Fig. 4). Wood density is calculated for 
each census interval in the dataset, as the mean wood density of all trees 
alive at the end of the census interval, to be consistent with the previous 
Amazon analysis6. Carbon residence time (CRT, in years) is a measure 
of the time that fixed carbon stays in the system. CRT is a potential 
correlate of the impact of past carbon gains on later carbon losses30. 
To avoid circularity in the models, the equation used to calculate CRT 
differed depending on the response variable. If the response variable 
is carbon loss, the CRT equation is based on gains: CRT = AGC/gains, 
with AGC for each interval based on AGC at the end of the interval, and 
the gains for each interval calculated as the time-weighted mean of 
the gains in the interval and the previous intervals (that is, long-term 
gains). If the response variable is carbon gains, the CRT equation is 
based on losses: CRT = AGC/losses. The equation employed for use in 
the carbon loss model (based on gains) is the standard formula used 
to calculate CRT and is retained in the minimum adequate model (see 
below and Table 2). The non-standard CRT equation (based on losses) 
used in the carbon gain model is not retained in the minimum adequate 
model (see below).

Statistical modelling of the carbon gain, loss and sink trends
We first constructed two models including those environmental driv-
ers exhibiting long-term change that impact theory-driven models 
of photosynthesis and respiration as predictor variables: CO2, MAT 
and MCWD. One model had carbon gains as the response variable, the 
other had carbon losses as the response variable (both in Mg C ha−1 yr−1). 
Models were fitted using the lme function in R, with maximum likeli-
hood (NLME package95). All census intervals within all plots were used, 
weighted by plot size and census length (using equation (3)). Plot iden-
tity was included as a random effect, that is, assuming that the intercept 
can vary randomly among plots. All predictor variables in the models 
were scaled without centring (scale function in R, RASTER package62). 
Carbon gain values were normally distributed but carbon loss values 
required a power-law transformation (λ = 0.361) to meet normality 
criteria. Multi-parameter models are: carbon gains = intcp + a × CO2 + 
b × MAT + c × MCWD (model 1); carbon losses = intcp + a × CO2 + b × MAT + 
c × MCWD (model 2); where intcp is the estimated model intercept, and 
a, b and c are model parameters giving the slope of relationships with 
environmental predictor variables. For multi-parameter model outputs 
see Extended Data Table 1, for single-parameter relationships, Fig. 2.

The second pair of models include the same environmental pre-
dictors (CO2, MAT, MCWD), plus their rate of change (CO2-change, 
MAT-change, but not MCWD-change, as explained above), and forest 
attributes that may alter how forests respond to the same environmen-
tal change (wood density, CRT), as described above. We also evaluated 
the possible inclusion of a differential continent effect of each variable 
in the full model. We first constructed models with only a single pre-
dictor variable, and allowed different slopes in each continent. Next, 
if removal of the continent-specific slope (using stepAIC function in 
R, MASS package96) increased model AIC then the continent-specific 



slope was included in the full model for that variable. Only MCWD 
showed a significant differential continent-specific slope (P < 0.001). 
This implies that forests on both continents have common responses 
to CO2, CO2-change, MAT, MAT-change, wood density and CRT, but 
respond differently to differences in MCWD. This may be because wet-
adapted species are much rarer in Africa than in Amazonia as a result of 
large differences in past climate variation34. Last, we allowed different 
intercepts for the two continents to potentially account for differing 
biogeographical or other continent-specific factors. For the carbon 
loss model, we applied the same continent-specific effects for slope 
as for the carbon gain model. Carbon loss values were transformed 
using a power-law transformation (λ = 0.361) to meet normality criteria.

For both carbon gains and losses we parameterized a global model 
including the significant continent-specific effect of MCWD, select-
ing the most parsimonious simplified model using all-subsets regres-
sion97,98. To do so, we first generated a set of models with all possible 
combinations (subsets) of fixed effect terms in the global model using 
the dredge function of the MuMIn package in R99. We then chose the 
best-ranked simplified model based on the second-order Akaike Infor-
mation Criterion (known as AICc), hereafter called the ‘minimum 
adequate carbon gain/loss model’, reported in Table 2. The minimum 
adequate models are: carbon gains = intcp × continent + a × CO2-change 
+ b × MAT + c × MAT-change + d × MCWD × continent + e × wood density 
(model 3); carbon losses = intcp + a × CO2-change + b × MAT-change + 
c × MCWD + d × CRT (model 4). Wood density was retained in the carbon 
gain model, probably because growth is primarily affected by resource 
availability, whereas CRT was retained in the carbon loss model, prob-
ably because losses are primarily affected by how long fixed carbon is 
retained in the system.

Table 2 presents model coefficients of the best-ranked gain model 
and best-ranked loss model selected using all-subsets regression. 
These best-ranked gain and loss models have weights of 0.310 and 
0.132 respectively, which is almost double the weight of the second-
rank models (0.152 and 0.075 respectively). In Supplementary Table 2 
we also used the model.avg function of the MuMIn package to calcu-
late a weighted mean of the coefficients of the models that together 
represent a cumulative weight-sum of 0.95 (that is, a 95% confidence 
subset). Supplementary Table 2 (model-averaged) and Table 2 (best-
ranked) model parameters are very similar. Supplementary Tables 3 
and 4 report the complete sets of carbon gains and loss models that 
contribute to the model average results.

The model-average results show the same continental differences in 
sensitivity to environmental variables as the best-ranked models. From 
1 January 2000 to 31 December 2014, carbon gains increased owing to 
CO2-change (+3.7% in both the averaged and the best-ranked models, 
both continents), whereas temperature rises led to a decline in gains, 
which especially had an effect in the Amazon (−1.14% and −1.07% due to 
MAT and MAT-change together in the averaged and best-ranked model 
respectively). Finally, both model-average and best-ranked models 
result in similar predictions of the net carbon sink over the 1 January 
1983 to 31 December 2039 period: the future net sink trend in Africa is 
−0.004 and −0.003 in the best-ranked and averaged models, respec-
tively; in Amazonia the future net sink trend is −0.013 and −0.011 in 
the best-ranked and averaged models, respectively. The Amazon sink 
reaches zero in 2041 using model-averaged parameters compared to 
2035 using the best-ranked models.

Estimating future predictor variables to 2040
To calculate future modelled trends in carbon gains and losses 
(Fig. 3), we first estimated annual records of the predictor variables 
(CO2-change, MAT, MAT-change, MCWD, wood density and CRT) to 31 
December 2039 (Extended Data Fig. 5).

To do so, we first calculated annual records for the period of the 
observed trends for each plot location (that is, from 1 January 1983 to 31 
December 2014 in Africa and 1 January 1983 to mid-2011 in Amazonia). 

For CO2-change, MAT, MAT-change and MCWD we extracted monthly 
records as described in the Methods section ‘Predictor variable esti-
mates (1983–2014)’. For wood density and CRT we interpolated to a 
0.1-year period within each census interval (as in Fig. 1). Then, we cal-
culated the mean annual value of each predictor variable from the 244 
plot locations in Africa, and separately the mean annual value of each 
predictor variable from the 321 plot locations in Amazonia (solid lines in 
Extended Data Fig. 5). For each predictor variable, we calculated annual 
records of upper and lower confidence intervals by respectively adding 
and subtracting 2σ to the mean of each annual value (shaded area in 
Extended Data Fig. 5). Second, for each predictor variable we param-
eterized a linear model for each continent using the annual records for 
the period of the observed trends. Then for each predictor variable, 
the continent-specific linear regression models were used to estimate 
predictor variables for each plot location from 1 January 2015 to 31 
December 2039 in Africa and from mid-2011 to 31 December 2039 in 
the Amazon (dotted lines in Extended Data Fig. 5).

Estimating future carbon gain, loss and sink trends
We used the minimum adequate models (Table 2) to predict annual 
records of carbon gain, carbon loss and the carbon sink for the plot 
networks in Africa and Amazonia over the period 1983 through to 2040 
(Fig. 3). We extracted predicted carbon gain and loss values using the 
mean annual records for each predictor variable (predictSE.lme func-
tion, AICcmodavg package100). Upper and lower confidence intervals 
were calculated accounting for uncertainties in the model (both fixed 
and random effects) and predictor variables using the 2σ upper and 
lower confidence interval for each predictor variable (using predictSE.
lme). Finally, the net carbon sink was calculated by subtracting the 
losses from the gains. To obtain sink values in the future, reported in 
Table 1, annual per unit area sink predictions (from Fig. 3) were aver-
aged over each decade and multiplied by the future forest area, as 
described above.

To test the sensitivity of the future predictions in Fig. 3, we reran the 
analysis by modifying future trajectories of predictor variables one 
at a time, while keeping all others the same, to assess the mean C sink 
over 2010–15 and 2030 (averaging at 2030 is not necessary as trends 
in MAT-change and MCWD, which largely drive modelled inter-annual 
variability, are estimated as smooth trends in the future). For each pre-
dictor variable, we explored the potential impacts of the likely bounds 
of possibility: (1) by taking the steepest slope of either continent from 
the extrapolated trends, doubling this slope and applying it on both 
continents; and (2) by taking the steepest slope of either continent 
from the extrapolated trends, taking the additive inverse of this slope 
and applying it on both continents. These bounds represent deviations 
of >2σ from observed trends. Change in MAT also alters MAT-change,  
so we present the sensitivity of both parameters together.

Additionally, for CO2-change and MAT, we also calculated future 
slopes under three future Representative Concentration Pathway (RCP) 
scenarios38 with different radiative forcing in 2100: RCP2.6, RCP4.5 and 
RCP8.5. Future RCP CO2-change slopes (ppm yr−1) were calculated using 
RCP CO2 concentration data for the years between 2015 and 2030 inclu-
sive. Future RCP MAT and MAT-change slopes were obtained from plot-
specific MAT values extracted from downscaled ~1-km2resolution data 
for current80 and future51 climate from WorldClim, and averaged over 
19 CMIP5 models. We subtracted the mean 2040–2060 climate MAT 
(that is, 2050) from the mean 1970–2000 climate MAT (that is, 1985), 
divided by 65 years to give the annual rate of change. We then calculated 
a mean slope over all plots per continent. Finally, to avoid mismatches 
between RCP-derived values of CO2 and MAT and the observed records, 
we removed any difference in intercept between the RCP trends and 
observed trends, so that the RCP trends were a continuation of the 
end-point of the observed trajectory (31 December 2014). We did not 
estimate the sensitivity of MCWD under the RCP scenarios, because the 
mean of the CMIP5 models do not show drought trends for our forest 
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plot networks, unlike rain gauge data for the recent past41,42, and thus 
would show little or no sensitivity to MCWD. For each modified slope, 
Supplementary Table 5 reports the absolute decline in the sink in each 
continent in 2030 compared to the 2010–15 mean sink. This shows that 
the future sink strength is sensitive to future environmental conditions, 
but within both RCP scenarios and our bounds of possibility we show a 
decline in the sink strength in both continents over the 2020s.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | Map showing the locations of the 244 plots included in 
this study. Dark green represents all lowland closed-canopy forests, 
submontane forests and forest-agriculture mosaics; light green shows swamp 
forests and mangroves, blue circles represent plot clusters, referred to by 
three-letter codes (see Supplementary Table 1 for the full list of plots). Clusters 

<50 km apart are shown as one point for display only, with the circle size 
corresponding to sampling effort in terms of hectares monitored. Land cover 
data are from The Land Cover Map for Africa in the Year 2000 (GLC2000 
database)101,102. This map was created using the R statistical platform, version 
3.2.1 (ref. 62), which is under the GNU Public License.



Extended Data Fig. 2 | Long-term aboveground carbon dynamics of 244 
African structurally intact old-growth tropical forest inventory plots. 
Points in the scatterplots indicate the mid-census interval date, with horizontal 
bars connecting the start and end date for each census interval for net 
aboveground biomass carbon change (a), carbon gains (from woody 
production from tree growth and newly recruited stems) (b), and carbon losses 

(from tree mortality) (c). Examples of time series for three individual plots are 
shown in purple, yellow and green. Associated histograms show the 
distribution of the plot-level net aboveground biomass carbon (with a three-
parameter Weibull probability density distribution fitted in blue, showing that 
the carbon sink is significantly larger than zero; one-tailed t-test: P < 0.001) (d), 
carbon gains (e) and carbon losses (f).
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Extended Data Fig. 3 | AIC from correlations between the carbon gain in 
tropical forest inventory plots and changes in atmospheric CO2, 
temperature (MAT) or drought (MCWD), each calculated over ever- 
longer prior intervals. Panels show the AIC from linear mixed effects  
models of carbon gains from 565 African and Amazonian plots and 
corresponding changes in atmospheric CO2 (CO2-change) (a), MAT (MAT-
change) (b), and drought (MCWD-change) (c). For CO2 the AIC minimum was 
observed when predicting the carbon gain from the change in CO2 calculated 
over a 56-year-long prior interval length. We use this length of time to calculate 
our CO2-change parameter. Such a value is expected because forest stands will 
respond most strongly to CO2 when most individuals have grown under the new 
rapidly changing condition, which should be at its maximum at a time 
approximately equivalent to the CRT of a forest stand30,90 (mean of 62 years in 

this pooled African and Amazonian dataset). For MAT the AIC minimum was  
5 years, which we use as the prior interval to calculate our MAT-change 
parameter. This length is consistent with experiments showing temperature 
acclimation of leaf- and plant-level photosynthetic and respiration processes 
over approximately half-decadal timescales31,91. For MCWD the AIC minimum is 
not obvious, while the slope of the correlation, shown in panel d, shows no 
overall trend and oscillates between positive or negative values, meaning there 
is no relationship between carbon gains and the change in MCWD over intervals 
longer than 1 year; therefore MCWD-change is not included in our models. This 
result suggests that once a drought ends, its impact on tree growth fades 
rapidly, as seen in other studies14,92. Furthermore, in the moist tropics wet-
season rainfall is expected to recharge soil water, and hence lagged impacts of 
droughts are not expected.



Extended Data Fig. 4 | Potential forest dynamics-related drivers of carbon 
gains and losses in structurally intact old-growth African and Amazonian 
tropical forest inventory plots. The aboveground carbon gains, from woody 
production (a, b), and aboveground carbon losses, from tree mortality (c, d), 
are plotted against the CRT, and wood density for African (blue) and 
Amazonian (brown) inventory plots. Linear mixed effects models were 
performed with census intervals (n = 1,566) nested within plots (n = 565) to 
avoid pseudo-replication, using an empirically derived weighting based on 
interval length and plot area (see Methods). Significant regression lines from 

the linear mixed effects models for the complete dataset are shown as a solid 
line; non-significant regressions are shown as a dashed line. Each dot 
represents a time-weighted mean plot-level value; the shading of the dot 
represents total monitoring length, with empty circles corresponding to plots 
monitored for ≤5 years and solid circles for plots monitored for >20 years. 
Carbon loss data are presented untransformed for comparison with carbon 
gains; linear mixed effects models on transformed data to fit normality 
assumptions do not change the significance of the results. Note that CRT is 
calculated differently for the carbon gains and losses models (see Methods).
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Extended Data Fig. 5 | Trends in predictor variables used to estimate long-
term trends in aboveground carbon gains, carbon losses and the resulting 
net carbon sink in African and Amazonian structurally intact old-
growth tropical forest inventory plot networks. Mean annual CO2-change (a), 
MAT (b), MAT-change (c), MCWD (d), CRT (e) and wood density (f) for African 
plot locations in blue, and corresponding variables for Amazon plot locations 
in brown (g–l). Solid lines represent observational data where >75% of the plots 
were monitored; long-dashed lines are plot means where <75% of plots were 
monitored. Dotted lines are future values estimated from linear trends from 

the 1 January 1983 to 31 December 2014 (Africa) or 1 January 1983 to mid-2011 
(Amazon) data (slope and P value reported in each panel), see Methods for 
details. Upper and lower confidence intervals (shaded area) for the past are 
calculated by respectively adding and subtracting 2σ to the mean of each 
annual value. Upper and lower confidence intervals for the future (Africa: 1 
January 2015 to 31 December 2039; Amazonia: mid-2011 to 31 December 2039) 
were estimated by adding and subtracting 2σ from the slope of the regression 
model.



Extended Data Fig. 6 | The change in carbon losses versus CRT of long-term 
structurally intact old-growth forest inventory plots in Africa and 
Amazonia. For plots with two census intervals, we calculated the change in 
carbon losses (‘∆losses’) as the carbon losses (in Mg C ha−1 yr−1) of the second 
interval minus the carbon losses of the first interval, divided by the difference 
in mid-interval dates. For plots with more than two intervals, we calculated the 
change in carbon losses for each pair of subsequent intervals, then calculated 
the plot-level mean over all pairs, weighted by the time length between mid-
interval dates. This analysis includes only plots with at least two census 
intervals that were monitored for ≥20 years (that is, roughly one-third of the 
mean CRT of the pooled African and Amazon dataset; n = 116). Breakpoint 
regression was used to assess the CRT length below which forest carbon losses 
begin to increase. Plots with CRT <77 years show a recent long-term increase in 
carbon losses; longer CRT plots do not. Blue points are African plots, brown 
points are Amazonian plots.
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Extended Data Fig. 7 | Trends in net aboveground live biomass carbon, 
carbon gains and carbon losses from intensively monitored structurally 
intact old-growth tropical forest inventory plots in Africa. Trends are 
calculated for the last 15 years of the twentieth century (a–c) and the first 15 
years of the twenty-first century (d–f). Plots were selected from the full dataset 
if their census intervals cover at least 50% of the respective time windows, that 
is, they are intensely monitored (n = 56 plots for 1 January 1985 to 31 December 
1999, and n = 134 plots for 1 January 2000 to 31 December 2014, respectively). 

Solid lines show mean values, and shading corresponds to the 95% CI, as 
calculated in Fig. 1. Dashed lines, slopes and P values are from linear mixed 
effects models, as in Fig. 1. The data shows a difference compared to Fig. 1, 
notably the sink decline after about 2010 driven by rising carbon losses. This is 
because in Fig. 1 we include all available plots over the 1 January 1983 to  
31 December 2014 window, which includes clusters of plots monitored only in 
the 2010s, often monitored for a single census interval, that had low carbon 
loss and high carbon sink values.



Extended Data Fig. 8 | Twenty-first-century trends in aboveground biomass 
carbon losses from structurally intact old-growth African tropical forest 
inventory plots with either long or short CRT. a, b, All plots, that is, as in Fig. 1, 
but split into a long-CRT group (a) and a short-CRT group (b), each containing 
half of the 244 plots. c, d, Plots are restricted to those spanning >50% of the 
time window, that is, intensely monitored plots, as in Extended Data Fig. 7, but 

split into a long-CRT group (c) and a short-CRT group (d), each containing half 
of the 134 plots. Solid lines indicate mean values, shading the 95% CI, as for 
Fig. 1. Dashed lines, slopes and P values are from linear mixed effects models, as 
for Fig. 1. Carbon losses increase at a higher rate in the short-CRT than the long-
CRT group of plots, in both datasets, although this increase is not statistically 
significant.
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Extended Data Table 1 | Models to predict carbon gains and losses in structurally intact old-growth African and Amazonian 
tropical forests

Models to predict carbon gains and losses in structurally intact old-growth African and Amazonian tropical forests, including only environmental variables, show long-term trends that affect 
theory-driven models of photosynthesis and respiration. Carbon loss values were normalized via power-law transformation, λ = 0.361.



Extended Data Table 2 | Forest area estimates used to calculate total continental forest sink

Intact forest area for 1990, 2000, 2005 and 2010 is published in ref. 1 (that is, the total forest area minus forest regrowth). To estimate intact forest area for the other years in this table, we fitted 
exponential models for each continent using the published data1.
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n/a Confirmed
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We reconstruct the evolution of the per unit area African tropical forest carbon sink (in Mg C ha-1 yr-1) over three decades to 2015 
(Figure 1). To do so, we collected, compiled and analysed data from 244 repeatedly measured permanent forest inventory plots in 11 
African countries. Selected plots are situated in structurally intact old-growth forests and are part of the African Tropical Rainforest 
Observation Network (AfriTRON; www.afritron.org; 217 plots) and other sources (27 plots). Plot monitoring periods span 2 to 40 
years, between 1968 to 2015 (Extended Data Figure 1). In each plot (mean size, 1.1 ha), all trees ≥100 mm in stem diameter were 
identified, mapped and measured on at least two occasions using standardized methods (135,625 trees monitored) and live biomass 
carbon stocks were estimated for each census date, with carbon gains and losses calculated for each interval (Extended Data Figure 
2). We compared trends in the per unit area African tropical forest carbon sink with published long-term trends in the Amazonian 
carbon sink (Brienen, et al. 2015). We pooled the new African and existing Amazonian plot inventory data together to investigate the 
putative environmental drivers of changes in the tropical forest carbon sink, and  project its likely future evolution. 
 
Aboveground Carbon (AGC, in Mg C ha-1) in living biomass for each plot at each census date was estimated as the sum of the AGC of 
each living stem, then divided by plot area (in hectares). 
 
Carbon Gain is the sum of the aboveground live biomass carbon additions from the growth of surviving stems and the addition of 
newly recruited stems, using standard methods (Brienen, et al. 2015). For each stem that survived a census interval, carbon additions 
from its growth (Mg C ha-1 yr-1) were calculated as the difference between its AGC at the end census of the interval and its AGC at 
the beginning census of the interval. For each stem that recruited during the census interval (i.e. reaching DBH≥100 mm), carbon 
additions were calculated in the same way, assuming DBH=0 mm at the start of the interval (Talbot, et al. 2014).The carbon additions 
in an interval, from surviving and newly recruited stems, were summed, then divided by the census interval length (in years), and 
scaled by plot area (in hectares) (Talbot, et al. 2014). As carbon gains are affected by a census interval bias, with the underestimate 
increasing with census length, we corrected this bias by accounting for (i) the carbon additions from trees that recruited and then 
died within the same interval (unobserved recruitment), and (ii) the carbon additions from trees that grew before they died within an 
interval (unobserved growth) (Talbot, et al. 2014). These typically add <3% to plot-level carbon gains.  
 
Carbon Loss (in Mg C ha-1 yr-1) is estimated, using standard methods (Brienen, et al. 2015), as the sum of aboveground biomass 
carbon from all stems that died during a census interval, divided by the census length (in years) and scaled by plot area (in hectares). 
Carbon loss is also affected by the same census interval bias, hence we corrected this bias by accounting for (i) the additional carbon 
losses from the trees that were recruited and then died within the same interval, and (ii) the additional carbon losses resulting from 
the growth of the trees that died in the interval (Kohyama, et al. 2018; Talbot, et al. 2014). Calculation details of both components 
are explained in Supplementary Methods. 
 
Net Carbon Sink (in Mg C ha-1 yr-1) is estimated as carbon gains minus carbon losses.  
 
The estimated mean carbon gains, carbon losses and the net carbon sink of the African plots from 1983-2014, the solid lines in Figure 
1, were calculated following (Brienen, et al. 2015) to allow direct comparison with published Amazonian results. First, each census 
interval value was interpolated for each 0.1-yr period within the census interval. Then, for each 0.1-yr period between 1983 and 
2014, we calculate a weighted mean of all plots monitored at that time, using the square root of plot area as a weighting factor. 
Finally, confidence intervals for each 0.1-yr period are bootstrapped. 
 
References: 
 
Brienen, R. J. W., et al. 
 2015 Long-term decline of the Amazon carbon sink. Nature 519(7543):344-348. 
Kohyama, Takashi S., et al. 
 2018 Definition and estimation of vital rates from repeated censuses: Choices, comparisons and bias corrections focusing on trees. 
Methods in Ecology and Evolution 9(4):809-821. 
Talbot, Joey, et al. 
 2014 Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management 
320:30-38. 

Research sample We use data from 244 plots in 11 African countries to present the first assessment of the temporal evolution of the tropical forest 
carbon sink in Africa. It represents 10 years of new field campaigns in Africa, extending sampling into extremely remote and 
previously unsampled regions. This is the first new manuscript using long-term inventory plots to estimate the intact forest carbon 
sink in Africa since (Lewis, et al. 2009) was published in Nature.  
Plot selection: 244 permanent inventory plots were selected from 11 countries. These plots are situated in closed canopy (i.e. not 
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woody savanna) old-growth mixed-age forests and were selected using commonly used criteria (Brienen, et al. 2015; Lewis, et al. 
2009; Lewis, et al. 2013): free of fire and industrial logging; all trees with diameter at reference height ≥100 mm measured at least 
twice; ≥0.2 ha area; <1500 m.a.s.l. altitude; MAT ≥20.0 °C (Hijmans, et al. 2005); annual precipitation ≥1000 mm; located ≥50 m from 
anthropogenic forest edges. 
 
References: 
 
Brienen, R. J. W., et al. 
 2015 Long-term decline of the Amazon carbon sink. Nature 519(7543):344-348. 
Hijmans, Robert J., et al. 
 2005 Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15):1965-1978. 
Lewis, S. L., et al. 
 2009 Increasing carbon storage in intact African tropical forests. Nature 457(7232):1003-1006. 
Lewis, Simon L., et al. 
 2013 Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: 
Biological Sciences 368(1625):20120295-20120295. 

Sampling strategy No sample size calculation was performed. We selected all available plots meeting the criteria described above. All African tropical 
forest regions (West Africa, Lower Guinea, Congo Basin, East Africa) are adequately represented. This is the largest dataset of  
repeatedly measured plots ever used to calculate long-term trends in African forest carbon dynamics.

Data collection Plot inventory data was collected by teams led by at least one of the 104 researchers co-authoring this paper. All permanent 
inventory plots are part of one or several networks. Of the 244 plots included in the study, 217 contribute to the African Tropical 
Rainforest Observatory Network (AfriTRON; www.afritron.org), with data curated at www.ForestPlots.net. These include plots from 
Sierra Leone, Liberia, Ghana, Nigeria, Cameroon, Gabon, Republic of Congo, Democratic Republic of Congo (DRC), Uganda and 
Tanzania (Lopez-Gonzalez, et al. 2011; Lopez-Gonzalez, et al. 2009) (Extended Data Figure 1). Fifteen plots are part of the TEAM 
network, from Cameroon, Republic of Congo, Tanzania, and Uganda (Hockemba 2010; Kenfack 2011; Rovero, et al. 2009; Sheil and 
Bitariho 2009). Nine plots contribute to the ForestGEO network, from Cameroon and DRC (Anderson-Teixeira, et al. 2015) (9 plots 
from DRC, codes SNG, contribute to both AfriTRON and ForestGEO networks, included above in the AfriTRON total). Finally, three 
plots from Central African Republic are part of the CIRAD network (Claeys, et al. 2019; Gourlet-Fleury, et al. 2013). 
 
Tree-level aboveground biomass carbon is estimated using an allometric equation (Chave, et al. 2014) with parameters for tree 
diameter, tree height and wood mass density. The estimated aboveground biomass of a plot is the sum of the estimated biomass of 
all live trees at that census date.  
 
Tree Diameter: In all plots, all woody stems with ≥100 mm diameter at 1.3 m from the base of the stem (‘diameter at breast height’, 
DBH), or 0.5 m above deformities or buttresses, were measured, mapped and identified using standard forest inventory methods 
(Phillips, et al. 2016). The height of the point of measurement (POM) was marked on the trees and recorded, so that the same POM 
is used at the subsequent forest census. For stems developing deformities or buttresses over time that could potentially disturb the 
initial POM, the POM was raised approximately 500 mm above the deformity. Estimates of the diameter growth of trees with 
changed POM used the ratio of new and old POMs, to create a single trajectory of growth from the series of diameters at two POM 
heights (Brienen, et al. 2015; Lewis, et al. 2009; Talbot, et al. 2014). We used standardized protocols to assess typographical errors 
and potentially erroneous diameter values (e.g. trees shrinking by >5 mm), missing values, failures to find the original POM, and 
other issues. Where necessary we estimated the likely value via interpolation or extrapolation from other measurements of that tree, 
or when this was not possible we used the median growth rate of trees in the same plot, census and size-class, defined as DBH = 
100-199 mm, or 200-399 mm, or >400 mm (Talbot, et al. 2014). We interpolate measurements for 1.3% of diameters, extrapolate 
0.9%, and use median growth rates for 1.5%.  
 
Tree height: Height of individuals from ground to the top leaf, hereafter Ht, was measured in 204 plots, using a laser hypsometer 
(Nikon forestry Pro) from directly below the crown (most plots), a laser or ultrasonic distance device with an electronic tilt sensor, a 
manual clinometer, or by direct measurement, i.e. tree climbing. Only trees where the top was visible were selected (Sullivan, et al. 
2018). In most plots, tree selection was similar: the 10 largest trees were measured, together with 10 randomly selected trees per 
diameter from five classes: 100-199 mm, 200-299 mm, 300-399 mm, 400-499 mm, and 500+ mm trees, following standard protocols 
(Sullivan, et al. 2018). We use these data and the local.heights function in R package BiomasaFP (Lopez-Gonzalez, et al. 2017) to fit 3-
parameter Weibull relationships (see Supplementary Methods for a full explanation of this procedure): 
 H_t=a ×(1-e^((-b ×(DBH/10)^c ) )) (equation 1).  
We chose the Weibull model as it is known to be robust when a large number of measurements are available (Feldpausch, et al. 
2012; Sullivan, et al. 2018). We parameterize this Ht-DBH relationship for four different combinations of edaphic forest type and 
biogeographical region (parameters in parentheses): (i) terra firme forest in West Africa (a=56.0; b=0.0401; c=0.744); (ii) terra firme 
forest in Lower Guinea and Western Congo Basin (a=47.6; b=0.0536; c=0.755); (iii) terra firme forest in Eastern Congo Basin and East 
Africa (a=50.8; b=0.0499; c=0.706); and finally (iv) seasonally flooded forest from Lower Guinea and Western Congo Basin (a=38.2; 
b=0.0605; c=0.760). The parameters were used to estimate Ht from DBH for all tree DBH measurements for input into the allometric 
equation.  
 
Wood Density: Dry wood density (ρ) measurements were compiled for 730 African species from published sources and stored in 
www.ForestPlots.net; most were sourced from the Global Wood Density Database on the Dryad digital repository 
(www.datadryad.org)(Chave, et al. 2009; Zanne, et al. 2009). Each individual in the tree inventory database was matched to a 
species-specific mean wood density value. Species in both the tree inventory and wood density databases were standardized for 
orthography and synonymy using the African Flowering Plants Database (www.ville-ge.ch/cjb/bd/africa/) to maximize matches 
(Lewis, et al. 2009). For incompletely identified individuals or for individuals belonging to species not in the ρ database, we used the 
mean ρ value for the next higher known taxonomic category (genus or family, as appropriate). For unidentified individuals, we used 
the mean wood density value of all individual trees in the plot (Lewis, et al. 2009; Lopez-Gonzalez, et al. 2011). 
 
Allometric equation: For each tree we use a published allometric equation (Chave, et al. 2014) to estimate aboveground biomass. We 
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then convert this to carbon, assuming that aboveground carbon (AGC) is 45.6% of aboveground biomass (Martin, et al. 2018). Thus: 
AGC=0.456×  (((0.0673×(ρ ×(DBH/10)^2  ×H_t )^0.976))⁄(1000)) (equation 2), with DBH in mm, dry wood density, ρ, in g cm-3, and 
total tree height, Ht, in m (Chave, et al. 2014). 
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Timing and spatial scale The large majority of plots are sited in terra firme forests and have mixed species composition, although four are in seasonally 
flooded forest and 14 plots are in Gilbertiodendron dewevrei monodominant forest, a locally common forest type in Africa 
(Supplementary Table 1). The 244 plots have a mean size of 1.1 ha (median, 1 ha), with a total plot area of 277.9 ha. The dataset 
comprises 391,968 diameter measurements on 135,625 stems, of which 89.9% were identified to species, 97.5% to genus and 97.8% 
to family.  
 
Plots were measured at least twice and maximum 10 times, between 1968 and 2015. Plot monitoring periods span 2 to 40 years; 
mean total monitoring period is 11.8 years, mean census length 5.7 years, with a total of 3,214 ha years of monitoring. The 321 
Amazon plots are published and were selected using the same criteria (ref.6), (Brienen, et al. 2015)except in the African selection 
criteria we specified a minimum anthropogenic edge distance and added a minimum temperature threshold. 
 
Brienen, R. J. W., et al. 
 2015 Long-term decline of the Amazon carbon sink. Nature 519(7543):344-348.

Data exclusions Plots were selected using the criteria described above (section Research sample). Plots that did not meet one or several of these 
criteria were not used for analysis.

Reproducibility Our analysis does not include experimental findings.

Randomization Trends in carbon gains, losses and the net carbon sink over time were assessed using linear mixed effects models (lmer function in R, 
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Randomization lme4 package (Bates, et al. 2013)), providing the linear slopes reported in Figure 1. These models regress the mid-point of each 

census interval against the value of the response variable for that census interval. Plot identity was included as a random effect, i.e. 
assuming that the intercept can vary randomly among plots. Observations were weighted by plot size and census interval length. 
Weightings were derived empirically, by assuming a priori that there is no significant relation between the net carbon sink and census 
interval length or plot size (Lewis, et al. 2009). 
 
References: 
 
Bates, D., et al. 
 2013 lme4: Linear mixed-effects models using Eigen andS4.Rpackage version, 1.0-4. Available at http://www.inside-r.org/packages/
lme4/versions/1-0-4. 
Lewis, S. L., et al. 
 2009 Increasing carbon storage in intact African tropical forests. Nature 457(7232):1003-1006.

Blinding Blinding was not relevant to our study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions All plots are located in African tropical forests receiving at least 1000 mm rainfall annually and with a mean annual temperature 

of at least 20 °C. 

Location Plots are located at low elevations (<1500 m.a.s.l. altitude). A map showing locations of all plots is presented in Extended Data 
Figure 1.

Access and import/export This paper is a product of the African Tropical Rainforest Observatory Network (AfriTRON), the TEAM network, the ForestGEO 
network, and the CIRAD network. These permanent inventory plot networks only exists thanks to the  support of governments, 
local administrations and villages across Africa who have given us permission for, and helped us complete, our fieldwork. A full 
list of partner institutions (excluding those in the co-author affiliations) can be found in (on-line only) acknowledgements. 
Furthermore, plot inventory data are the product of many field-teams which mainly consisted of local assistants. A full list of 
people involved in data collection can  be found in (on-line only) acknowledgements, along with a full list of villages and 
communities that hosted the field-teams and provided logistical and infrastructural support. 
 
This paper includes 264 plot-censuses (out of 746) that are published for the first time here, including censuses from plots 
located in extremely remote areas such as the Salonga National Park in the heart of the Congo Basin. Each plot-census 
represents several months of preparation, transport, data collection, digitalisation and data quality assessment.

Disturbance No significant disturbance was caused by our measurements. Trees were tagged using a single aluminum nail (no iron), avoiding  
damage to trees due to corrosion. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Animals and other organisms

Human research participants

Clinical data

Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging
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