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While it is understood that cities generate the majority of carbon emissions, for most cities, 

towns, and rural areas around the world no carbon footprint (CF) has been estimated. The 

Gridded Global Model of City Footprints (GGMCF) presented here downscales national CFs 

into a 250m gridded model using data on population, purchasing power, and existing 

subnational CF studies from the US, China, EU, and Japan. Studies have shown that CFs are 

highly concentrated by income, with the top decile of earners driving 30-45% of emissions. Even 

allowing for significant modeling uncertainties, we find that emissions are similarly 

concentrated in a small number of cities. The highest emitting 100 urban areas (defined as 

contiguous population clusters) account for 18% of the global carbon footprint. While many of 

the cities with the highest footprints are in countries with high carbon footprints, nearly one 

quarter of the top cities (41 of the top 200) are in countries with relatively low emissions. In 

these cities population and affluence combine to drive footprints at a scale similar to those of 

cities in high-income countries. We conclude that concerted action by a limited number of local 

governments can have a disproportionate impact on global emissions.  

 

Introduction 

The IPCC 5th Assessment Report concluded that urban areas generate the majority of carbon 
emissions from final energy use (Creutzig et al 2015, IPCC 2014). However, it is not well understood 
how carbon footprints are distributed among cities, or how the contribution of total national carbon 
footprints vary by different types of urban settlements. Detailed carbon footprint (CF) inventories 
based on local data have been built for a number of individual cities and states (we survey these 
below). However while reporting standards are emerging (e.g. (Carbon Disclosure Project 2016)) for 
conducting such assessments, individual city inventories are generally neither comparable nor 
comprehensive (as discussed in (Fong et al 2016, Kennedy et al 2010, Pichler et al 2017). 
Furthermore, for most cities no carbon footprint estimate exists. 

Urban areas are home to about 54% of total global population and account for more than 70% of 
global energy use (IPCC 2014, UN Department of Economic and Social Affairs Population Division 
2015). Among all cities, economic growth is relatively highly concentrated: it has been estimated that 
600 urban centers generate about 60% of global GDP (McKinsey Global Institute 2011). Economists 
point to this enormous concentration of buying power as an opportunity to develop economic growth 
strategies focused on a few local governments. If emissions footprints are similarly highly 
concentrated, then a relatively small number of local governments could have a disproportionate 
effect on reducing national, and thus global, emissions. 

In order to examine the spatial distribution of carbon footprints at the household level, we 
developed a top-down, globally consistent gridded model. The model uses gridded population and 
income data to disaggregate existing subnational carbon footprint models for the US, China, Europe, 
the UK, and Japan, and national data for other countries. While this top-down approach does not take 
city specific characteristics, such as urban form, subnational variation in carbon intensity of 
electricity, or building infrastructure into account (variation in these factors is part of the uncertainty 
ranges accompanying the model results), it does offer some advantages over more detailed bottom-up 
assessments. First, a top-down method is comprehensive, and can provide results for every city in 
every country. Second, it has the advantage of consistency. Bottom-up inventories often use different 
methods, different study boundaries, and are based on different kinds of data, depending on local data 
availability (Lombardi et al 2017), and thus cannot be directly compared. A top-down approach can 
provide a consistent estimate across many cities. 
 

Methods 
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Here we present an overview of the Gridded Global Model of Carbon Footprints (GGMCF) model. 
Additional details can be found in the Supplementary Information. The model uses urban vs. rural 
consumption patterns and purchasing power as the main predictors of per capita footprint. Income is a 
strong predictor of CF (Wiedenhofer et al 2018). Minx and colleagues (Minx et al 2013) found that in 
the UK the CF of cities is mainly determined by socio-economic rather than geographic and 
infrastructural drivers, and that income is one of the main determinants. Non-income factors such as 
car ownership, household size, and education also influence the distribution of footprints. Other 
studies have reported that income is a useful predictor of an individual’s CF, explaining at least 50% 
of the variation in footprint (Ivanova et al 2015, Steen-Olsen et al 2016, Weisz and Steinberger 2010), 
and furthermore even at high levels of income there is no clear evidence that household CF levels off 
(Isaksen and Narbel 2017, del P. Pablo-Romero and Sánchez-Braza 2016).  

 
Data sources used in each step of the model 

1. National carbon footprints, from the Eora global MRIO (Kanemoto et al 2016, Lenzen et al 
2012), for year 2015 

2. Existing subnational carbon footprints for USA (31,000 zip codes; Jones and Kammen 2014); China 
(30 provinces; (Wang et al 2015)), Europe (178 NUTS2 regions over 20 countries; (Ivanova et al 
2017)), UK (408 districts; (Minx et al 2013)), and Japan (47 prefectures; (Hasegawa et al 2015)). 

3. National statistics on the composition of urban vs rural household spending patterns, from Eurostat, 

US BEA, and the World Bank, covering 113 countries (responsible for 81% of global CO2 
emissions) for year 2015 

4. The GHS-POP 250m global gridded population model (Pesaresi and Freire 2016), for year 2015. 
The GHS-SMOD urbanization layer identifying urban areas, in year 2015. A global map of per-

capita purchasing power for 20,159 regions, based on tax statistics collected by the market 
intelligence company MB International, for year 2015 
 

Table 1 Overview of data sources used to construct the GGMCF model

 
The GGMCF was built in four steps. Data sources for each step are identified in Table 1. The steps 

are: 
 

1. National CFs of consumption (��� ) for 189 countries covering ≈100% of global CO2 
emissions were taken from the Eora multi-region input-output (MRIO) database for the year 
2015.  

2. For the EU, UK, USA, Japan, and China, existing subnational CF models were used to 

disaggregate ���  into subnational regions ��� , where the regions r range in size from 
postcode to province (see Table 1). In steps 3 and 4 these subnational regions are treated the 
same as countries. We use the term “regions” to mean the collection of disaggregated 
subnational regions plus countries which are not disaggregated. 

3. Within each region the ���  was disaggregated between urban vs rural residents according to 
the difference in urban vs rural resident expenditure patterns and the total urban vs rural 
population. For 76 countries (a mixture of developed and developing countries, driving 19% 
of global CO2 emissions; full list in SI) no comparative expenditure data were available. In 
these countries all households were assumed to have a national average expenditure pattern. 

4. CFs of grid cells within a region were calculated by further disaggregating step 3 using 
gridded population maps and gridded income data (see Table 1). The first step involved 
identifying the urban and rural grid cells and subsequently distributing the total urban and 
rural footprint on the basis of the share of aggregate purchasing power in each cell. Urban 
cells were identified using the GHS-SMOD layer of urban areas (high and low density 
population clusters). GHS-SMOD uses a clustering algorithm to identify urban areas as 
clusters of contiguous cells with a total population and population density above specified 
thresholds. Aggregate purchasing power per grid cell was determined by multiplying the 
population in the cell by the mean purchasing power at that location. Carbon footprints of 
cities are then defined as the CF of those cells in the GHS-SMOD layer that are high-density 
clusters of contiguous grid cells with ≥1500 inhabitants/km2 and with a minimum population 
of 50,000 (see below). 
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Defining “cities” is not trivial (Uchiyama and Mori 2017). In some countries there are up to seven 

levels of administrative divisions. In this model the EU Global Human Settlement Layer, GHS-
SMOD, was used. GHS-SMOD identifies “towns” as low-density clusters of contiguous grid cells 
with ≥300 inhabitants/km2 with a minimum population of 5000, and “cities” as high-density clusters 
of contiguous grid cells with ≥1500 inhabitants/km2 with a minimum population of 50 000. GHS-
SMOD defines 13,844 cities and 96,336 towns. Since GHS-SMOD identifies clusters looking at 
contiguous urban fabric, this often includes suburbs and exurbs and thus the urban areas identified in 
GHS-SMOD are generally larger than the strict legal boundaries of a city jurisdiction. This issue 
particularly affects contiguous urban fabric e.g. Tokyo/Yokohama, New York, New Jersey, 
Guangzhou/Hong Kong, and similar cases. Using other spatial administrative divisions would be 
useful in delineating administrative responsibility within contiguous urban fabric. Per-city GDP (gross 
domestic product; note this is also sometimes called gross regional product when calculated for 
subnational regions) was calculated by applying the GHS-SMOD city boundaries to the G-Econ 4.0 
(Nordhaus 2006) global gridded model of GDP. 

The results provided by this top-down model provide a general view of how consumption hotspots 
drive global emissions and to identify patterns, similarities, and clusters, and can offer a rough 
comparison of CFs across urban areas.  However to more accurately compare the CFs of individual 
households and cities or to track how a city’s footprint evolves over time, more detailed models and 
accounts based on local data are needed. 

There are a number of assumptions and sources of uncertainty and variability at the household and 
city level that can affect the results. These sources of uncertainty and variability can be categorized in 
several broad groups: (1) the relative carbon intensity of equivalent expenditure in urban vs. rural 
areas is assumed to be equal (i.e. we assume $1 of expenditure in a product category in an urban and 
rural area are equally carbon intensive). (2) The consumption patterns of urban and rural residents are 
assumed to be homogenous within each region. This is not so problematic when the region is a 
postcode as in the case of the US, but is a bigger issue when the region is large, e.g. India. In future 
development of the GGMCF model we do anticipate including more subnational CF assessments as 
they become available. (3) As with consumption patterns, purchasing power is homogenous within 
each of the regions identified by the purchasing power database. (4) Direct emissions from 
households, which importantly includes heating (or district heating) and vehicle fuel, are currently 
attributed evenly per capita across each region. (5) The CF associated with non-household national 
expenditure (primarily government spending and capital formation) is currently allocated evenly per 
capita in each region. The rationale for this decision was so that the model allocates 100% of total 
emissions. Note that excluding these emissions from essential services would lead to even more 
relative inequality among households within a country as the results would then consider only 
discretionary spending and not common infrastructure (health, education, highways, etc.). In the 
countries for which subnational models were used we followed their regional allocation of non-
household expenditure. (6) Allocation and aggregation error are possible, including in the matching of 
purchasing patterns to the corresponding goods in the IO model, the inclusion of utilities in rent, and 
varying carbon intensity of same-sector goods (e.g. electricity may have different carbon intensity in 
different areas of a country). One study by (Min and Rao 2017) suggests that such errors lead to an 

uncertainty of ±20% for household footprints. (7) Error in the national CF results from Eora (this has 

a heteroskedastic distribution among countries, with the error <±10% for most developed countries, 

up to ±25% for others, and a tail distribution of smaller countries with higher uncertainty (Moran and 
Wood 2014, Inomata and Owen 2014)). 

To account for all of these source of uncertainty the model was subjected to a sensitivity analysis 
with generous margins of uncertainty. Confidence was estimated for all results by allowing the per-
capita CF estimates at the grid cell and individual city level to vary with a coefficient of variation of 

1.0 to 10.0 (i.e. meaning it is 99% likely that the correct value is within ±300-3000% of the model 
estimated result). To construct the range of alternative global Lorenz curves (shown as shaded areas in 
Figs. 3 and 4) a Monte Carlo procedure was employed. The total carbon footprint per grid cell (���) 
was randomly drawn from a normal distribution using mean ��	equal to the original ��� estimate and 

two different scenarios for variance ��
	. In the “lower uncertainty” scenario, ��

	 is specified such that 

the coefficient of variation CV (the standard deviation relative to the mean, or �� ��⁄ ) CV=1.0, and in 
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the “higher uncertainty” scenario �� ��⁄ � 10. During the sampling ��� was constrained to a lower 
limit of 1% of the original estimate to prevent negative values. The resulting CFs were then 

normalized within each region to sum to the total ��� 	for that region r, where during each perturbation 

���  was itself also randomly drawn from a normal distribution with CV=0.25 in order to account for 
both the uncertainty of the national CF result from the Eora database and the uncertainty of the 
subnational disaggregation where that was used. A Lorenz curve was constructed for each 
perturbation scenario, and the shaded ranges in Fig. 3 indicates the range of these alternative Lorenz 
curves in the two scenarios. The variance of individual city CFs were calculated in a similar manner. 
All urban cells within a country were assumed to have a CV=10.0, and the total rural footprint in a 
country assumed to have a CV=1.0. This allows for uncertainty around the splitting of footprint into 
urban and rural components. These sampled values were then rescaled to sum to ���, which again was 
itself sampled from a normal distribution with CV=0.25. The CF of each city was calculated during 
each perturbation, and the variance of each city CF was taken from the population of perturbed 
results. 

 

Results & Discussion 

The gridded model results are shown in absolute value in Fig. 1 and in per capita terms in Fig. 2.  
 

 

Fig. 1 Gridded model of carbon footprints. High-income cities in Europe and US and dense middle- and upper-income cities in Asia are 
emissions hotspots in absolute terms. 

 
 

 

Fig. 2 Per capita results from gridded model of carbon footprints. Per capita CFs are also spatially concentrated. High per capita CFs are 
typically coincident with dense areas. Zoom-in panels are color-scaled independently.
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Similar to the concentration of economic activity, we find that a relatively few number of urban 
areas account for a disproportionate share of the world’s carbon footprint (Fig. 3). The top 100 urban 
areas by carbon footprint contain 11% of the world’s population but drive 18% of the global CF. In 
most countries a few urban areas account for a disproportionate share of the total footprint. In 98 of the 
187 countries assessed, the top three urban areas drive more than one-quarter of the national CF. City 
footprints generally correspond to their share of the population. This degree of concentration within 
countries indicates that in many cases local-level governments have jurisdiction over emissions of the 
same order of magnitude as national governments. 

 
Fig. 3 Urban areas contain 60% of global population and drive ~68% of global CF. But within this the CF is highly concentrated in a small 
number of high CF urban areas and high CF per-capita exurbs, while populous low CF urban rural areas contribute relatively little to the total 
global CF. Shaded area shows the range of alternative Lorenz curves constructed during the sensitivity analysis, with coefficient of variation 
= 1.0 (dark shading) and 10.0 (lighter shading) (see SI for details). Comparing city CF to projected growth rate (lower graph; same x-axis but 
independent y axis) reveals highest growth in low CF urban areas (zone ③) and declining growth in rural areas (zone ④). Other notable 
features include ①	 modestly high growth rates, around 1-2% yr-1 for top-CF urban areas, ② horizontal bands visible for urban clusters in 
India (1.9% projected growth rate) and China (0.6% projected growth rate) across all city sizes, ③	 the fastest-growing urban areas currently 
contribute little to global CF, and ④	 declining rural populations all CF pers.-1, with rural depopulation in Japan (-2.8% pers. yr--11) visible, 
but some projected growth in the least CF-intensive regions. The Lorenz curve is computed for individual urban clusters each of which 
consist of varying numbers of grid cells.  

 
Plotting a Lorenz curve (showing cumulative population in descending order of intensity vs. the 

cumulative carbon footprint) reveals the degree of concentration, i.e. how much of the total global 
carbon footprint are the top N% of emitters responsible for. Our results corroborate previous studies 
showing that CFs are highly concentrated. Hubacek and colleagues (Hubacek et al 2017) estimated 
that the top 10% of income-earners globally drive 30% of global GHG emissions; Chancel and 
Pikkety (Chancel and Pikkety 2015) estimated the top decile to drive 45%, and our results (Fig. 4) 
indicate that the top decile drive between 38% and 47%-68% (lower and higher uncertainty estimates) 
of global emissions.  
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Fig 4. The Lorenz curve of gridded carbon footprints shows highest CF per-capita decile of population drives ~35% of the global carbon 
footprint. The shaded area indicate the range of alternative Lorenz curves constructed during the sensitivity analysis (dark indicates 
coefficient of variation=1.0; lighter indicates coefficient of variation=10.0; see SI for details). Most of the scenarios from the uncertainty 
analysis suggest a more unequal distribution of carbon footprints than the base model predicts. This is because CFs must be greater than zero 
and, at the same time, can be become many times larger as those from the base model and thus the scenarios in the sensitivity analysis are 
constrained with a lower bound of 10% of the original CF but no upper bound. Note: this Lorenz curve is computed at grid cell level, but 
error measurements for individual cities were calculated separately and used in Figs. 3 and 5. 

 
It is possible to use the model to identify top CF urban areas globally (Fig. 5; full list of top urban 

areas is provided at the website and in the SI) and to decompose the role of population size and carbon 
intensity (CF per capita) in the total CF.  
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Fig 5. The urban clusters with the largest total footprints (named here are the top 20) have a large CF due to a combination of population and 
high CF per capita (bubble size). Cairo and Jakarta have relatively low CF per capita but large populations, while Miami and Al-Ahmadi in 
Kuwait have smaller populations with higher average footprints, and thus similar total CFs. Vertical lines show one standard deviation for 
each city CF estimate. 

 
While many of the urban areas with the highest CF are in countries with high carbon footprints, 41 

of the top 200 (e.g. Dhaka, Cairo, Lima) are in countries where total and per capita emissions are low 
(e.g. Senegal, Egypt, Peru). In these urban areas, population and affluence combine to drive footprints 
at a similar scale as counterparts in the highest income countries. 

The largest urban clusters almost all have carbon footprints in excess of their direct emissions (Fig. 
6). This means if their carbon accounts do not include indirect emissions embodied in consumption, 
they will under-estimate their total carbon footprint. Among mid-tier population urban areas, there is a 
clear differentiation by city GDP: midsize urban areas with a lower GDP are usually net exporters, 
with direct Scope 1 emissions greater than their Scope 3 footprint, while midsize urban areas with a 
higher GDP are importers (Fig 6). Smaller urban clusters are predominantly importers. The division 
between wealthy consumer areas and lower-income producer areas clearly stands out. Urban areas 
with higher GDP, and small towns, tend to have Scope 3 footprints larger than their direct emissions.  

 

 
Fig. 6 : Types of urban areas: i. populous, high GDP with large footprints (Scope 3 exceeds Scope1); ii. smaller, mid-GDP net embodied 
carbon importers (Scope 1>Scope 3); iii.  larger, low GDP producers (carbon exporters); and iv. smaller communities where predominantly 
Scope 3>Scope 1  

 
In addition to the role of key large and/or affluence cities in driving the global CF, the contribution 

of affluent, low-density areas is also clear. The top 5% of non-urban residents globally (by CF per 
capita) generate 32% of the entire national footprint in the US, and a similar share (21%) in China. In 
those two countries, the top ten urban plus top 5% of suburban residents drive more than half of the 
national carbon footprint. In most countries, however, even the most footprint-intensive suburbs are 
outshone by the scale of consumption in urban centers. 

Given expected urbanization trends (cities are projected to add 2.5-3 billion inhabitants by 2050), it 
is important to understand whether the most footprint-intensive cities are also the fastest growing. The 
model results show that current footprint hotspots are not in the fastest-growing cities (Fig. 3). But if 
left to grow with today’s current per-capita footprint intensity, the global carbon footprint will grow 
and spread. The fastest-growing cities today contribute a minority share to the global footprint, but this 
can be expected to change as those cities grow in terms of infrastructure, population, and affluence. 

While urban direct emissions and associated reduction opportunities are comparatively well-
studied (e.g. (Satterthwaite 2008, Hurth and McCarney 2015, Grubler et al 2012, Kennedy et al 2014) 
the full emissions driven by households include significant indirect emissions embodied in supply 
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chains e.g. from travel, food, and imported goods. Considering the complete Scope 3 footprint induced 
by consumption can expand a city’s carbon footprint 2-3 times over its direct emissions (Minx et al 
2013, Feng et al 2014, Athanassiadis et al 2016, Wackernagel et al 2006, Lin et al 2015, Fry et al 
2017). State and local governments can benefit by better understanding the distribution and drivers of 
footprints. While national-level policies can be powerful, programs can be more effective if they are 
targeted to consider local consumer profiles, including income and consumption patterns which vary 
across regions (Jones and Kammen 2011, Minx et al 2013, Baiocchi et al 2010, Chen et al 2018).  

Cities can consider options to lower their induced footprint beyond their direct Scope 1 emissions 
(Creutzig et al 2016, Croci et al 2017, Chen et al 2017). Local governments can encourage low-carbon 
lifestyles through traditional direct tools such as taxation and regulation, using soft policies to 
encourage businesses and households to reduce their carbon footprints, adopting green purchasing 
practices, and advancing demand-side management measures e.g. to reduce energy waste, encourage 
lower-carbon diets, and decelerate demand for discretionary air travel. Cities may also adopt more 
radical de-carbonization policies, such as restricting private cars in the city center, aggressively 
rewarding vehicle electrification, and take advantage of the fact that many of the highest-income, 
highest-consumption households may be willing and able to pay for decarbonization, for example by 
shifting the entire city electricity supply to renewables. In comparison to national or state-level 
policies, cities can more easily direct programs to target different districts and demographic segments. 
Experimentation, iteration, and sharing success stories will be key to this process (Castán Broto and 
Bulkeley 2013). 

There have been many studies to calculate CFs for individual cities. Most of such studies consider 
multiple cities; this is advantageous both because it benefits multiple cities and also because single 
studies generally use the same method and system boundaries so within one study city CFs can be 
compared. (Kennedy et al 2009) and (Sovacool and Brown 2010) provided some of the first such 
studies, calculating footprints of 10 and 12 megacities respectively. The C40 coalition of cities used an 
MRIO-based method to estimate the footprint of 79 cities ((C40 Cities 2018). Other studies covering 
in the range of 2-10 cities include (Creutzig et al 2015, Hu et al 2016, Lin et al 2015, Isman et al 
2017, Feng et al 2014, Baabou et al 2017, Fry et al 2017, Kennedy et al 2015). The city footprint 
databases initiated by the Carbon Disclosure Project and the website http://metabolismofcities.com are 
beginning to collect individual city CF results. Collecting such results should help improve and refine 
CF results for individual cities. Establishing frameworks for city footprints has been discussed by 
(Lenzen and Peters 2009, Dodman 2009). A recent innovation has been combining a foreground city 
or regional input-output table with a larger background global MRIO table (Wiedmann et al 2015). 

GHG mitigation efforts become easier to realize when specific leverage points can be identified. 
Recent studies have shown that emissions are concentrated not only spatially but in other dimensions 
as well. For example in China a small number of industries and provinces account for the bulk of 
emissions embodied in exports (Liu et al 2015). Other recent work on spatially explicit footprints has 
been able to locate emissions hotspots driven by a given set of consumers (Kanemoto et al 2016). 
Continued research to pinpoint hotspots of consumption and emissions and to isolate carbon intensive 
nodes in global supply chains will make it easier to take specific and practical measures to reduce 
carbon intensity at those leverage points. 

 

Conclusion 

Cities represent intense concentrations of populations and consumption. Even allowing considerable 
margins of uncertainty it is clear that footprints are highly concentrated. The spatially disaggregated 
map of carbon footprints presented here can help address a range of further questions regarding 
strategies to reduce carbon footprint. Beyond identifying hotspots, spatially explicit models of carbon 
footprints can be used together with scenarios on population dynamics to forecast urban footprints, 
connected to marketing or demographic data to help target policies (ultimately, conceivably even to 
the neighborhood or individual level), and compared with other spatial data, for example of expected 
climate-related impacts. Our results suggest that there is significant opportunity for focusing strategies 
to reduce CF to a few hundred localities. The confluence of high concentration of global GDP and 
global CFs augurs well for future development of innovative strategies to reduce footprints. The fact 
that CFs are highly concentrated in affluent cities means that targeted measures in a few places and by 
selected coalitions can have a large effect covering important consumption hotspots.   
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The model results are available at the GGMCF website: http://folk.ntnu.no/daniemor/cities [temporary 
URL] 
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