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Abstract—Efficient arrangement of UAVs in a swarm formation
is essential to the functioning of the swarm as a temporary
communication network. Such a network could assist in search
and rescue efforts by providing first responders with a means of
communication. We propose a user-friendly and effective system
for calculating and visualizing an optimal layout of UAVs. An
initial calculation to gather parameter information is followed
by the proposed algorithm that generates an optimal solution. A
visualization is displayed in an easy-to-comprehend manner after
the proposed iterative genetic algorithm finds an optimal solution.
The proposed system runs iteratively, adding UAV at each
intermediate conclusion, until a solution is found. Information is
passed between runs of the iterative genetic algorithm to reduce
runtime and complexity. The results from testing show that the
proposed algorithm yields optimal solutions more frequently than
the k-means clustering algorithm. This system finds an optimal
solution 80% of the time while k-means clustering is unable to
find a solution when presented with a complex problem.

Index Terms—UAV network, genetic algorithm, positioning

I. INTRODUCTION

UAVs (Unmanned Aerial Vehicles), colloquially known as
drones, have seemingly endless use cases and applications.
The ability to use a swarm of UAVs to complete a task is of
particular interest. UAV swarms can perform countless func-
tions, such as creating a temporary communication network for
search and rescuers. Networks of a singular UAV have been
created, though such a network would likely be connected to
some other external network [1]. Whether the UAVs create
a self-contained network (for short range communication) or
are externally connected (for external communication such as
cellular) [2], interconnected UAV base stations (UAV-BS) have
useful applications. UAVs can support pre-existing infrastruc-
ture or create a new, standalone network. UAV-BS may play a
crucial role in forthcoming technological advancements, such
as the evolution of cellular connectivity [3]. Natural disasters
can destroy existing communication infrastructure and render
it useless [4]. Search and rescue could be improved by a
standalone communication network in natural disaster areas
or areas lacking infrastructure.

In creating a temporary network of UAVs, an optimized
organization, rather than random placement, allows more net-
work users to be connected simultaneously. Such a system
will drastically improve search and rescue efforts in remote
areas, and do so in a cost effective manner. We assume the

Fig. 1: Example of temporary network application

UAVs form a mesh network for connectivity and one or more
are designated to act as the gateway, similar to the system
described in [3]. Fig. 1 illustrates an example architecture of
such a system.

We propose an iterative genetic algorithm (GA) that com-
putes the most efficient coverage for a subset of or all users
in a given map to provide an optimized layout for the UAVs
to arrange. The algorithm passes information from iteration-
to-iteration, thus improving the solution at each step. Visual-
ization software is also provided to display the arrangement
of UAVs and search area over the original map.

Previous research has been consulted to calculate the cov-
erage range of an antenna installed on a UAV. The antennas
are pointed downward to maximize the signal projected onto
the ground. The coverage range is a function of the height
of the UAV and the beamwidth of the installed antenna [5].
The value for the beamwidth is dependent only upon the given
specifications of an antenna, while the maximum height of the
UAV can be calculated by using specifications of the antenna
and Friis transmission equation [6].

Our proposed algorithm accepts a map of an area and a
minimum percentage of the network users in the map that must
be provided coverage. The map allows for areas of varying
network demand. The higher the demand in a given area, the
more likely that area will be provided coverage. The proposed
algorithm can provide a map of the area with a minimal



number of UAVs overlayed by using the predetermined and
calculated parameters.

An iterative approach is used because the underlying GA
alone is unable to account for multiple UAVs. Because of
this limitation, the proposed algorithm runs the GA iteratively
with one UAV, and if it fails, it attempts two, and so on
until a solution is found. This alone would be computationally
exorbitant, so information is passed between executions of the
GA to provide increased efficiency.

The remainder of this paper is organized as follows: Section
II discusses background information needed to fully under-
stand the problem and presented solution, Section III describes
the proposed algorithm, Section IV explains how the system
has been validated and compares its performance to another
leading algorithm: k-means clustering, and Section V lays out
conclusions and future work possible in this field.

II. BACKGROUND

UAVs can be organized into a swarm into a temporary
network in the steps outlined in the following subsections.

A. Optimal UAV Positioning

Optimal positioning is ideal when using a UAV swarm to
provide a means of communication. In the past, such swarms
have been used for autonomous vehicles to communicate with
one another [7]. This system is focused on UAV and network
capabilities. The vehicles were theoretically provided with
internet connectivity by overhead UAVs connected to a nearby
base station. This system could be combined with the proposed
algorithm to create a usable positioning scheme for UAVs.

A purely mathematical approach was used to find the
optimal placement for a singular UAV [1], but it has not been
applied to a multiple UAV system. Line-of-sight calculations
were used to find the best location. An additional mathematical
approach has been used to calculate optimal base station
location, given an arrangement of UAVs [8]. This system
requires extensive mathematical knowledge because complex
calculations need to be performed for each UAV and each
base station. The proposed algorithm does not require such
comprehensive understanding.

Received signal strength indications (RSSI) could also be
used to maintain network connectivity within a mesh network
[4]. In [4], the mesh network is self-contained. For the
applications of this paper, it is necessary to instead have the
UAV network connected to a centrally located, powerful base
station.

GAs have been used for route planning of UAVs, par-
ticularly in a system named DIANA (Dynamic Intelligent
Autonomous Navigation Algorithm). DIANA uses a GA to
plan a path for a UAV; however, DIANA does not coordinate
the organization of multiple UAVs [8].

B. Genetic Algorithms

Once all of the parameters are known (coverage radius,
height, and density map of network demand) a GA can be
used to determine the best coverage map for the network users

represented in the given density map. GAs are more efficient
than guess-and-check methods because from each generation
to the next, more is learned about the correct solution [9]. GAs
consist of a series of steps: setup and a draw loop consisting of
a fitness calculation, natural selection, mutation, and condition
check [10].

The setup consists of filling a population with proposed
solutions - a starting block of random guesses. The fitness
function examines each proposed solution within the popu-
lation and ranks it relative to an ideal solution. The draw
function takes the value from the fitness function and per-
forms natural selection to create a new generation [10]. To
create a member of the next generation, two members of the
previous generation are selected based on fitness value, and
the information is combined to make a member of the new
generation [11]. Mutation ensues regularly to ensure fixation
on a particular solution does not occur [12]. This process is
repeated until the population size is reached.

III. PROPOSED ALGORITHM

Efficiency is crucial for a temporary network of UAVs for
search and rescuers to communicate, so both cost effectiveness
and connectivity were maximized. We used tools including
Friis Transmission Equation, geometry, trigonometry, a GA,
as well as a new approach to information sharing to produce
one cohesive algorithm, solving the problem of designing an
optimal layout for UAVs to create a temporary network.

The input, provided by the user, to the proposed algorithm
is a map of clusters of users defined as an ordered triple
(x, y, weight) where x and y represents the location of a
grouping of users on the ground, and weight is weight
associated with that cluster of users - this can be the number
of users or another priority level measure to determine the
severity with which the location must be provided coverage.
Parameters about the network connectivity of the UAV are also
taken. As output, the algorithm returns a list of ordered triples
representing the location of UAVs, (x, y, z), where this list
covers the maximum number of users with the lease number
of UAVs. This is a least-cost solution.

A. Height & Coverage Radius Calculations

A variant of Friis Transmission Equation [6] listed in equa-
tion (1) as well as the geometric and trigonometric equation
denoted in equation (2) are used to perform the height and
coverage calculations. The calculations performed are similar
to that in [5]. The equations are expressed in a Python function
and can be used with default data or data input by the user.

h =
λ

4π × 10
Pr−(Pt+Dt+Dr)

20

(1)

r = h× tan(θ) (2)

The values for h and r are calculated using equations (1)
and (2) and vary based on the input data.



Input : P , µ, coverage radius
Output: α
α ← []
for ρ ∈ P do

χ ← []
for UAV ∈ ρ do

for user cluster ∈ µ do
d ← EuclideanDistance(UAV,η)
if d ≤ coverage radius ∧ user clusterZ∈
χ then

for num users ∈ user cluster do
α ← ρ

end
end

end
end

end
Algorithm 1: Fitness Function

TABLE I: Glossary for Algorithms 1 & 2

Symbol Description

α
The weighted population, with members of higher fitness
added more times, and members with 0 fitness omitted

ρ A proposed map, a member of the population
P The population global variable

χ
The cluster exclusion list to avoid redundancies. A list of
network user clusters that have already been provided coverage.

µ The map density list - the list of all user clusters
N The number of UAVs currently in use
ν The mutation rate

B. Genetic Algorithm

The GA is written as described in the background section:
by conducting the necessary setup, and looping until a solution
is found, using fitness, natural selection, and mutation. The
setup fills the population with reasonable but random guesses
as to what the answer could be. The following sections
describe the specifications of the proposed algorithm.

1) Fitness Function: The fitness function ranks each pro-
posed solution based on the bandwidth requirements the
proposed network would cover. In addition to this, it ensures
that no UAV has an unsupportable bandwidth demand. The
maximum bandwidth supported per UAVs can be adjusted by
way of a parameter, which is set to 300 Mbps by default
because it is a common maximum bandwidth of WiFi routers.
This number can depend on a series of factors, such as
available bandwidth and signal strength. This is described
further in Algorithm 1 and Table I.

2) Draw Function: Natural selection, mutation, and cre-
ation of the next generation occur in the draw function. Until
the new population is full, information from two high-fitness
solutions are combined, mutation occurs if appropriate, and the
new offspring is added to the new population. This process is
further described in Algorithm 2 and Table I.

3) Control Loop: The above GA, without the iterative
aspect of the solution, cannot support multiple UAVs because it
does not account for multiple variables. To solve this problem,

Input : P , N , ν
Output: The new generation, stored in P
P ← []
mutation check ← 0
for i ← 0 to |P | do

ρ ← []
for m ← 0 to N do

r1, r2 ← random integer [0, |α|)
if mutation check = 1

ν then
change a value in the proposed map to a
random integer [0, |α|)

else
end
ρ ← (α[r1][m][0], α[r2][m][1])

end
mutation check++
P ← ρ

end
Algorithm 2: Draw Function

Fig. 2: Control loop - how fitness, draw, and iteration find an
optimal solution

an iterative approach is used. The algorithm runs with one
UAV in the swarm, and if a solution is not found within a
reasonable amount of time, the algorithm repeats with two
UAVs. This process will repeat, adding an additional UAV
every time, until a solution is found. “A reasonable amount of
time” is defined as when the fitness of the model plateaus or,
more technically, when a certain number of generations with
the same best fitness score is reached. This number is defined
by Equation 3:

limit =

⌊
N × |µ|

3

⌋
(3)

where N is the number of UAVs currently being tested and
|µ| is the number of clusters of users in the proposed problem.

Equation 3 was derived by concluding that the calculation
limit should be a function of both the number of UAV in the
solution and the number of user clusters, as they are the factors
that determine the complexity of a proposed solution. The
denominator of three was chosen by experimentation discussed
further in Section IV-A-4. The process of using the iterative
GA is illustrated in the flowchart in Fig. 2.



C. Information Inheritance

The algorithm as proposed is inefficient due to computa-
tional intensity and information wastefulness. If the calculation
of an ideal coverage map is not possible with the given number
of UAVs, the algorithm still computes the best layout for the
UAVs available, by default. This fact is utilized by passing
the information about optimal UAV layout forward in every
iteration of the GA after adding a new UAV. The best possible
layout is passed on by partially filling the population data
structure. It cannot fill the entire population; however, because
then the algorithm risks of losing variation. Equation 4 defines
the number of members in the new population that will possess
the optimal info found previously, and the verification for
selection equation 4 can be found in Section IV-A-3.

inheritance =

⌊
|P |
2

⌋
(4)

where |P | is the population size for the GA.
The fact that the proposed algorithm uses data learned

from past intermediate conclusions highlights this innovative
approach compared to what has been done before. This con-
cept, similar to transfer learning in that it shares and utilizes
applicable information past what was originally intended [13],
makes the proposed solution far more efficient than it is
without the inheritance of information.

Before the inheritance can be added to the new population,
another randomly placed UAV must be added to account for
the necessary increase in the number of UAVs. The remainder
of the population is to be filled with reasonable, random
guesses as to an optimal solution.

D. Computational Complexity

The efficiency of the algorithm is derived to be:

O(G× |P | ×N2 × |µ|)

where G is the number of generations for which the proposed
algorithm must run.

Given all of this information, the proposed system now
produces a visualization similar to that depicted in Fig. 3. This
display shows network user clusters as green dots representing
a low density of network users, yellow dots representing a
moderate density of network users, and red dots representing
a high density of network users. The UAVs are depicted as
blue dots with lighter blue circles surrounding that signify the
provided coverage area. Such a diagram allows the user to
more easily understand the numerical information outputted.

IV. EVALUATION

Algorithm parameters, along with the fitness function and
natural selection method were chosen based on experimenta-
tion to maximize performance. K-means clustering was used to
compare efficiency and solution usability against the proposed
algorithm.

Fig. 3: Example of a map of network users to be covered by
a temporary network with a possible solution of placement of
UAVs to provide connectivity.

We assumed each UAV was equipped with a base sta-
tion interface in addition to a backbone network using non-
overlapping channels. The experiments were run on an Ubuntu
machine with an Intel Core i5 processor, and the tests were run
in such a way to only use one core of the quad-core processor
as to achieve consistency between experimental runs.

A. Parameter Selection

There are four variables independent of the input data that
affect the performance of the algorithm: population size, mu-
tation rate, inheritance between GA iterations, and calculation
limit.

Testing was done to find the best value for these parameters
and provide the best performance by the algorithm. A map
that presented above-average difficulties for the algorithm was
used for this optimization. The population size was varied by
increments of 100 between 300 and 700, and the mutation
rate was varied between 0.005, 0.01, 0.02, 0.05, and 0.1. The
inheritance and calculation limit are defined in equations (3)
and (4), respectively, and the constants in the denominator of
the equations were varied from one to four, and 0.5 was also
tested.

For the four experiments, the following configurations
were assumed: population size = 500, mutation rate = 0.01,
inheritance between runs denominator coefficient = 2, and
calculation limit denominator constant = 3, and the variables
were manipulated thereafter.

The default parameter values were determined by previous
informal experimentation. In each configuration, the experi-
ment was run three times and the results were averaged. Two
data points were collected from each trial: the number of
UAVs used and the time elapsed while the algorithm was
running. The number of UAVs was expected to be seven
because the proposed algorithm, as well as k-means clustering,
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Fig. 4: Population Size, Mutation Rate, and Inheritance Experimental Data

never returned a value less than seven. Anything greater than
seven would indicate that the algorithm did not find an optimal
solution. Fig. 4 shows the results from these experiments.

1) Population Size Experimental Data: The population size
of 400 was chosen from the data because it was the population
size with the lowest average runtime, with the exception of
300, which did not yield an optimal solution in one of three
trials.

2) Mutation Rate Experimental Data: The mutation rate of
0.01 was chosen from the data because it was the rate with the
lowest average runtime, and it also found an optimal solution
three out of three times.

3) Inheritance Experimental Data: The value with the least
average runtime, 250, was chosen as optimal because testing
returned an optimal solution for all three trials for two different
inheritance values. With an experimental population size of
500, the optimal inheritance of 250 corresponds with equation
(4), specifically having a denominator of two.

4) Calculation Limit Experimental Data: Equation (3) is
a function of the number of UAVs and the number of net-
work user clusters because these two factors determine the
complexity of the solution and computation necessary to find
the solution. As either or both of these variables increase, it is
more difficult for the algorithm to compute a viable answer, so
more time is allotted. Of particular interest is the constant in
the denominator. Three was found to be the optimal solution
because, though no value of the constant found an optimal
solution three out of three times, the constant of three found
an optimal solution two out of three times with the lowest
average runtime within this class. Experimental data in Table

TABLE II: Calculation Limit Experimental Data

Constant Avg. Number of UAVs Avg. Runtime (seconds)
4 7.67 22.833
3 7.33 26.853
2 7.33 40.189
1 7.67 86.334
0.5 7.67 167.65

II is provided as evidence.

B. Fitness Function & Natural Selection

To ensure the best possible performance, the proposed algo-
rithm was executed with three different fitness functions and
two different forms of natural selection. The best performing
result was chosen in both cases.

The fitness functions quantify the validity of solutions. The
tested fitness functions include the following: using the sum
of the bandwidth provided to each user cluster, using the sum
of the distances of all users from its closest UAV, and using
the sum of the distances of all users from the coverage range
of its closest UAV. All of the above fitness functions take into
account weighting according to the density of the user cluster.

Using the bandwidth requirements as the fitness function
was chosen over the other two options because it outperformed
both. The average runtime and number of UAVs used was
lower, while the bandwidth coverage was higher, all of which
are the desired situations. The experimental data for the
information previously listed is included in Fig. 5.

Natural selection is the process by which two parent pro-
posed solutions create one child in the following generation.
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Fig. 7. Optimal Solution Verification with K-Means Clustering

The natural selection methods tested were: combining the
x-coordinates from one parent and the y-coordinates from
another and averaging the x-coordinates and y-coordinates
from each parent. The experimental data for the information
previously listed is included in Fig. 5.

Combining an x-coordinate from one parent and the y-
coordinate of another was used rather than averaging because
it outperformed the averaging method in every category.

C. K-Means Clustering Comparison

We verified the proposed algorithm by comparing the
performance of the proposed algorithm with the results of
k-means clustering. The experimentation was conducted by
varying the number of clusters of network users between one
and 14, and run each for 10 trials. Each of these configurations
was run with both the proposed system and k-means clustering.
Runtime and solution validity were recorded, compared, and
charted. A random number generator was used to create
locations of network user clusters on the map.

The performance of the proposed algorithm was compared
to that of k-means clustering algorithm in two ways: runtime
and success in finding a solution.

The experimental data are included in Fig. 6 and Fig. 7.
Observations from analysis of this data are: The iterative GA
does not execute as quickly as k-means clustering. The pro-
posed algorithm and k-means clustering find solutions equally
well with simple problems. As problem complexity increases,
the system finds an optimal solution more consistently.

V. CONCLUSIONS AND FUTURE WORK

We presented an algorithm to find an optimal layout for
UAVs in a swarm, given a density map of network users
attempting to search an area. The proposed system uses

calculations, a GA, and information transfer to provide an
efficient way to generate an optimal solution.

The proposed algorithm was evaluated against variations
of itself and k-means clustering algorithm to ensure that it
presents ideal solutions. The results of the evaluation yielded
that, while the proposed algorithm runs more slowly, it also
more consistently yields an optimal solution when presented
with a complex map of users.

We aim to expand upon this work by allowing re-positioning
of UAVs, given a new layout of network users, and using
other machine learning architectures. An algorithm that can
support a 3-dimensional version of the problem for varying
UAV heights could be attempted.A graphical user interface
should be added for better ease-of-use.
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