
Implementation of 3D Obstacle Compliant Mobility Models
for UAV Networks in ns-3

Paulo Alexandre Regis, Suman Bhunia and Shamik Sengupta
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, NV, USA 89557

{pregis, sbhunia}@nevada.unr.edu, ssengupta@unr.edu

ABSTRACT
UAV networks are envisioned to play a crucial role in the
future generations of wireless networks. The mechanical de-
grees of freedom in the movement of UAVs provides various
advantages for tactical and civilian applications. Due to the
high cost of failures in system-based tests, initial analysis
and refinement of designs and algorithms for UAV applica-
tions are performed through rigorous simulations. Current
trend of UAV specific simulators is mainly biased towards
the mechanical properties of flying. For network-centric sim-
ulations, the intended measurements on the performance of
protocols in mobile scenarios are conventionally captured
from general-purpose network simulators, which are not na-
tively equipped with comprehensive models for 3D move-
ments of UAVs. To facilitate such simulations for UAV sys-
tems, this paper presents different mobility models for em-
ulation of the movement of a UAV. Detailed description of
three mobility models (random walk, random direction, and
Gauss-Markov) are presented, and their associated move-
ment patterns are characterized. This characterization is
further extended by considering the effect of large obstacles
on movement patterns of nodes following the three models.
The mobility models are prepared as open-source add-ons
for ns-3 network simulator.

CCS Concepts
•Networks → Network simulations;

Keywords
UAV, 3D, mobility model, obstacle, ad hoc network, ns-3

1. INTRODUCTION
With the advancement in the unmanned aerial vehicles

(UAV) technologies, three-dimensional mobile networks are
gaining popularity as 3D mesh networks. In addition to
movement in a horizontal plane as in conventional mobile ad
hoc networks (MANET), UAVs enable nodes to move in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915384

Figure 1: An example of a UAV 3D mesh network
in a urban environment with obstacles.

vertical direction in 3D as well. The autonomous movement
of UAVs in all directions makes it suitable for a wide range
of operations, such as border surveillance, disaster moni-
toring, firefighter networks, relay for ground vehicles, tac-
tical networks, imagery and sensing in rough terrain areas,
and so forth [7]. Infrastructure networks are conventionally
used to establish links with UAVs. But as the spatial diver-
sity increases, the deployed infrastructure is not adequate
to always associate UAVs with fixed access points. As a re-
sult, multi-hop mesh networks are gaining popularity. Data
can be relayed over multiple UAVs to reach the destination
without direct communication, either due to the link being
blocked by a large obstacle, or the end nodes being out of
communication range.

Testing with UAVs is a very costly, time-consuming event
which requires a lot of manpower, since failure in communi-
cation or any other mechanical malfunction may cause fatal
accidents. Also, in a real test environment, there are many
parameters involved making the comparison of two different
algorithms very difficult to perform. For example, the sig-
nal propagation characteristics change throughout the day,
or even with the local humidity. In addition to all these
factors, flying UAVs in outdoor spaces is prohibited due to
the risk of accidents with civilians. However, since 3D mesh
network is gaining its importance in scenarios such as first
responders in disaster situations or firefighter networks, the

required network protocols must be tested intensively before
deployment. Simulations are used widely to model the net-
works that can emulate the behavior of UAVs. Simulation
can reproduce the exact same environment when comparing
two different protocols. Another huge problem arises when
testing the scalability of protocols, i.e. the reaction of a
protocol when a larger number of nodes is present in the
network. After performing rigorous simulations, a protocol
or a model is tested with real hardware. To obtain realistic
performance, some networks with mobility should be tested
in an environment with large obstacles, the deployment of
which can be financially infeasible. Federal Aviation Admin-
istration restricts flying and testing with UAVs to mostly
rural areas such as in the state of Nevada [1]. Since testing
UAV networks in urban areas is not possible, simulation of
UAV networks should be done in a reliable network simula-
tor that provides seamless integrity of mobile nodes (MNs)
with a wide range of upper layer protocols, and also provides
the capability of 3D mobility with obstacles.

An example of 3D UAV mesh can be seen in Figure 1.
Different classes of UAVs are depicted at different layers.
One hop links between two neighbors fluctuate due to mul-
tipath signal propagation through reflection at large objects.
The upper layer network protocols are affected by the mo-
bility of MNs as well as the corresponding environment and
terrain [15]. For example, in a city with multistoried build-
ings or in an irregular terrain, the link between MNs may
break when a building is between them. Since the appli-
cation scenarios are not limited, UAV mobility is desired
to be integrated with simulator where the application and
other protocols are implemented. The movements of MNs
are created using standard mobility models. These models
are now incorporated into the networks simulator to describe
the migration of MNs. The mobility of an MN can be rep-
resented in a simulator in two ways: traces and synthetic
models. Traces are used to provide real-life recorded data as
a time-series position information. Traces are useful to sim-
ulate accurate systems, but in multiple MN scenarios with
long time simulation it is space consuming. Synthetic mod-
els are widely used in simulators to mimic the movement
of MNs movement in MANET for performance evaluation.
Mobility models characterize how MNs change their velocity
and direction over time. A wide range of mobility models
are presented in literature such as random walk, random
waypoint, random direction, Gauss-Markov, column formu-
lation, and nomadic community. A detailed description of
the mobility models commonly found in network simulators
can be found in [9] where a comprehensive study on the
mathematical properties of many models is detailed.

This paper introduces three extended mobility models to
allow obstacles in the environment. The models were devel-
oped for ns-3 [2] using the existing implementations when
possible. We show preliminary network performance results,
and also provide free access to the source code1. The main
contributions of the paper are:

• Description of three-dimensional mobility models

• Algorithms for how the models behave with obstacle
avoidance

• Open-source implementations of the models in ns-3

1http://www.cse.unr.edu/˜regis/ns-3

The remainder of the paper is organized as follows: Sec-
tion 2 provides an overview of the existing systems and their
weaknesses. Sections 3, 4, and 5 discribe the implementa-
tion of the new models and features. A brief demonstration
and performance comparison of these models is presented in
Section 6. Finally Section 7 concludes the paper.

2. MOBILITY MODELS AND
SIMULATORS

Mobility model is a set of rules that governs how a mobile
node moves. It rules how the velocity, acceleration, and loca-
tion of a node change over time. These mobility models are
necessary for simulation purposes when investigating new
communications protocols and techniques. Currently many
mobility models have been proposed, but their movements
are inspired by specific applications and scenarios.

For example, the Manhattan Mobility model [17] uses a
grid-like topology of paths in which a node is constrained to
move. This model aims to imitate the mobility of vehicles
in a urban city environment, and is particularly useful in
simulating vehicular ad hoc networks (VANETs). However,
the movements of UAVs are not limited by the street paths
of a city. If a node has the ability to fly with high enough
altitude, its movements may not be physically limited at
all. In these cases, more suitable mobility models should
be used to simulate the trajectory. Here is where random
models come into the picture, to simulate the movements of
a node without the knowledge of its mission or task. The
Random Walk mobility model defines a sequence of random
steps in which a node traverses a certain area. This model
establishes how long and in which direction the node should
move before changing its direction once again. The problem
with this model is that the node density in the simulation is
more concentrated in the center of the scenario and less near
the boundaries. The Random Direction mobility model is a
little different from the random walk, because it forces the
node to travel until it reaches the border before changing
direction, not limiting the trajectory by a certain amount of
time. Another branch of the random models are the tempo-
ral dependency mobility models. A popular example is the
Gauss-Markov model, in which the direction and speed of a
node depends on its previous direction, thus limiting these
parameters within a certain range [9].

Authors in [12] proposed a new MANET mobility model
called Realistic Mobility Model, in which the node veloc-
ities and directions are based on probability distributions
that imitate real user mobility behavior. The results create
trajectories that resemble real mobility traces. The authors
in [11] presented a new VANET mobility model. The move-
ments are limited to the streets in a city, and the speed of
a node changes based on its neighboring nodes, similar to a
real situation in the streets. In [13] two different mobility
models for common applications of fixed wings aircrafts are
proposed. The first is a simple random model with depen-
dency on the last action taken by the aircraft: turn right,
turn left or straight ahead. The second is a pheromone repel
model, where the probability of taking an action depends on
the other aircraft’s movement as well. The models however
were created to simulate cooperative reconnaissance applica-
tions. [8] proposed a mobility model for UAVs based on the
most common movement patterns executed by commercial-
ized products such as the paparazzi. The node selects one

of the predefined patterns based on the probability of a pat-
tern being chosen. Despite the complexity and resemblance
of the models to the real world, there is a lack of proposed
models for three-dimensional scenarios, and even less when
it comes to obstacles. In an effort to fill this gap, this paper
presents two mobility models that are both obstacle and 3D
compliant, imitating the movements of modern UAVs.

Simulation plays an important role when creating new
networking techniques and protocols. Before building the
hardware and software that implements a new feature, the
simulations help to decide the feasibility of the new tech-
nology; if it does not perform well, it most likely will not
perform well in the real world. The mobility of nodes is
an important aspect of a network. It directly influences the
topology of the network, the links formation, and link fail-
ures. Therefore, it is critical to build reliable simulation
models to assist the development of more advanced tech-
nologies. A network simulator consists of a series of dif-
ferent models that imitate certain behaviors and protocols,
glued together to analyze the performance of the system.
There are some network simulators available for use that
implement these mobility models. OPNET [5] is a commer-
cial platform specialized in telecommunication transmission
products for access networks. OMNeT++ [3] is a simulation
framework that relies on different modules to provide func-
tionalities rather than having an extensive core library. Its
modules are developed independent of each other, following
their own development schedule. ns-3 [2] is a discrete event
network simulator, created to overcome the weaknesses of its
ancestor ns-2. It is designed to facilitate the creation and
integration of new models into the core of the simulator.
The project is maintained by a community of researchers
affiliated with reliable educational institutions, and main li-
braries receive constant scheduled updates. It offers a means
to integrate third-party tools, such as Simulation of Urban
MObility (SUMO) [6]. Since the primary purpose of this
simulator is to serve the educational and research commu-
nities, its modules and source codes are kept under open-
source license. Due to its easy integration and support from
the community, ns-3 was chosen as the development plat-
form for the work presented in this paper. ns-3 assumes
the Cartesian coordinate system represented by the tuple
(x, y, z), while the mobility models use the spherical coordi-
nate system composed by (r, θ, φ). In this paper the radius
r can be referred to as v when representing speed. Figure 2
shows the coordinate systems.

There are many different applications for a UAV network:
surveillance, border control, first response in emergency sit-
uations, and so on. The movement patterns of each mission
can be very different from the other. In the same network for
example, different nodes may perform various tasks, but still
serve as relay nodes in the communication network. Cur-
rent simulators lack the ability to imitate the movements
enabled by the new UAV technologies. UAVs can, for ex-
ample, change rapidly its direction in both two and three
dimensions. They can also share the space in civilian en-
vironments with obstacles like buildings and houses. This
paper aims to fill this gap by providing new mobility models
that allow the simulation of obstacles, and implementing it
in a reliable network simulator to be used by the research
and educational communities.

The set of libraries contained in the core of ns-3 platform
provide the means to simulate not only the common Internet

Figure 2: Visualization of coordinates in both carte-
sian and spherical systems.

Figure 3: ns-3 block diagram.

but also other networking protocols. The mobility models
relevant to this work already implemented and integrated
into the ns-3 core libraries are:

• Random Walk (2D)

• Random Direction (2D)

• Gauss-Markov

ns-3 also implements different propagation loss models
that accounts for the effect in transmission when buildings
are present in the environment. The buildings module pro-
vides different physical characteristics of the construction.
Commercial buildings, for example, affect differently than
residential ones based on their common building materials.
This model can be easily reused to construct obstacle com-
pliant mobility models.

An overview of the building blocks and how the simula-
tor works is shown in Figure 3. The core block is where
the simulator implements classes with functionalities to fa-
cilitate the development of the actual models, like smart-
pointers, tracing, logging, and event scheduler. The network

Figure 4: Simplified block diagram of collision avoid-
ance.

block provides abstract base classes for common objects such
as packets. These modules are independent of specific net-
works, and comprise the core that may be used by the upper
modules to implement more sophisticated features in a net-
work, not exclusively Internet related. Modules depend only
on the modules beneath them. The mobility module, for
example, only uses components implemented by the core,
while propagation modules depend on the mobility model
beneath. The focus of this work is on the mobility module;
inside this block resides all the other mobility models im-
plemented in the simulator. Currently the mobility models
available to the community do not consider obstacles, they
simple assume the node moves in a straight line for a certain
period of time.

The flowchart in Figure 4 illustrates where the contribu-
tions in the mobility models reside. The adaptations verify
if the node collides with the obstacles and adjust the at-
tributes accordingly. Previously the models simply moved
from one point to another until the end of the current cycle,
denoted by time t in the figure. The new models presented
in this paper can be easily used in conjunction with other
models to simulate a UAV network. A simple example is the
use of SUMO to emulate the movements of ground vehicles
while utilizing the 3D models to imitate UAVs, all in the
same network. Street maps and building information can
be obtained from open sources, such as OpenStreetMap [4],
and used with SUMO to generate traces for VANETs [10].

3. RANDOM WALK 3D
Originally the Random Walk model was created to imitate

the behavior of particles in physics, but it was later used
to simulate movements of nodes in mobile networks. The
original Random Walk model implemented in ns-3 defines
the movements of a node by the random variables θ, that
changes the direction in which the node moves, and speed
v ∈ [Vmin, Vmax] contained in a predefined speed interval.
This model has two modes: time mode and distance mode.

The first one explicitly decides for how long a node will
keep its current speed and direction before choosing new
values. The later also decides the time before new values are
chosen, but based on the current speed of the node and the
predefined distance value: time = distance/speed. If the
mobile node reaches the boundary of the simulation before
the resetting process is executed, the node simply bounces
back by changing its direction in the corresponding axis and
continues moving for the remaining time. For example, if the
x-axis is the boundary limit (equivalent to y = 0), then the
direction in y of the velocity vector is inverted by multiplying
it with −1. Similarly, if y-axis is the limit (x = 0) the x
component of the velocity is inverted.

To enable this model to function in a three-dimensional
world, a new random variable is introduced, the aforemen-
tioned φ ∈ [0, π]. In addition to the speed and direction, now
the node also selects a new pitch at every cycle. Instead of
having lines as limits, now the model assumes planes. If the
node reaches the limit xy − plane for example, the z com-
ponent of the velocity vector is inverted to bounce the node
back into the scenario S.

Realistic scenarios such as urban environments are not
simply empty places where nodes move freely. These sce-
narios actually introduce certain constraints to the mobil-
ity. Even when they move in a 2d plane that is lower than
a skyscraper, obstacles must be considered. The implemen-
tation of the 3D mobility model in ns-3 provides the feature
to simulate movements in the presence of obstacles. The ob-
stacles are assumed to be boxes and axis aligned, meaning
their faces are parallel to the axis planes. The effect caused
is similar to the bouncing velocity vector: if the node collides
with an obstacle it changes the corresponding component of
the velocity, depending which side of the object was hit.

In each cycle of the Random Walk model the node chooses
new speed, direction, and pitch. These parameters basically
define the velocity vector of the node. Then it calculates the
next position based on the time it is supposed to move with
those parameters. If during this period any obstacle is en-
countered, the orthogonal component of the velocity vector
is inverted as mentioned. After the inversion it continues
to move with the new values for the remaining time of the
cycle, after which a new iteration takes place.

Algorithm 1 shows the pseudo-code of the random walk
3D with obstacles. The implementation required new meth-
ods to be added in original classes of the source-code: namely
the base classes ns3::Box and ns3::Rectangle. These mod-
ifications are used in all new mobility models. The new
method IsInside(position) simply verifies if a position is in-
side the object. A method called WillCollide(position,velocity)
is introduced to the ns3::Box class, it verifies if the trajec-
tory of a node will intersect with the box and also returns the
intersection point. The new ns3::RandomWalk3dMobilityModel
class is similar to the original 2d model, except by the new
angle variable and the AddObstacle(obstacle) method. The
Rebound() function simply multiplies some of the velocity
vector components (x,y,z) by −1, depending on which sur-
face of the object collision occurred.

4. RANDOM DIRECTION 3D
In [16] this model was first proposed with the objective

of eliminating the concentrated node density problem that
occurs in the Random Waypoint Model. In this model the
nodes randomly select a point inside the limited area and

Algorithm 1: Random Walk 3D

Input: Boundary (S), set of obstacles (O), default
distance (default distance) or default time,
and Speed limits [Vmin, Vmax]

Output: List of Time and Position pairs
1 repeat
2 if mode = time then
3 default distance← default time ∗ v;

4 θ ← U(0, 2π];
5 φ← U [0, π];
6 v ← U [Vmin, Vmax];
7 distance← default distance;
8 collides← false;
9 for Oi ∈ O do

10 if WillCollide(x, y, z, θ, φ,Oi) then
11 if ∆d > DistToObstacle(x, y, z, θ, φ,Oi)

then
12 ∆d← DistToObstacle(x, y, z, θ, φ,Oi);
13 collides← True;

14 if collides then
15 Rebound(∆d);

16 x← x+ sin(θ)cos(φ)∆d;
17 y ← y + sin(θ)sin(φ)∆d;
18 z ← z + sin(φ)∆d;

19 until simulation ends;

move there with a certain speed. Since the probability of
choosing a point closer to the boundaries is lower than in
the middle, the nodes in the scenario eventually end up con-
centrating in the center. The Random Direction model mit-
igates this problem by forcing the node to travel until it
reaches the boundary of the delimited area.

In the Random Direction model, three variables govern
the trajectory of a mobile node: pause P , direction θ, and
speed v. Similar to the Random Walk model, these at-
tributes are constrained in their limits. First the node chooses
a speed and direction in which it will move. Then it contin-
ues moving until it reaches the boundary, standing by that
position for P amount of time before reseting the parame-
ters and beginning the cycle once again. Intuitively, the node
will only move again if the new direction points towards the
middle of the limited area, otherwise it will remain in the
paused state.

The movements in Z-axis are allowed by the introduction
of the pitch φ in the system. In the main loop of the algo-
rithm the model selects the values for the random variables
φ, θ, and v. Then it calculates the intersection of the new
trajectory path of the node with each obstacle inside the
scenario, and the scenario boundaries itself. The next posi-
tion where the node will randomize the values again is the
intersection with the smallest distance to travel. If an ob-
ject is not in the path of the node, the intersection distance
returns infinity. After the node reaches the destination, it
pauses for a random amount of time, constrained within the
interval P ∈ [Pmin, Pmax].

Algorithm 2 shows the pseudo-code of the random direc-
tion 3D. The implementation utilizes the same new methods
included in base classes ns3::Box and ns3::Rectangle in the
source-code. The class ns3::RandomWalk3dMobilityModel
also adds a new angle to allow the movement in z-axis. To

keep consistent, the same AddObstacle(obstacle) method was
implemented.

Algorithm 2: Random Direction 3D

Input: Boundary (S), set of obstacles (O), Pause time
limits (Pmin, Pmax) and Speed limits
[Vmin, Vmax]

Output: List of Time and Position pairs
1 repeat
2 Pause(U [Pmin, Pmax]);
3 θ ← U(0, 2π];
4 φ← U [0, π];
5 v ← U [Vmin, Vmax];
6 ∆d← DistanceToBoundary(x, y, z, θ, φ);
7 for Oi ∈ O do
8 if WillCollide(x, y, z, θ, φ,Oi) then
9 if ∆d > DistToObstacle(x, y, z, θ, φ,Oi)

then
10 ∆d← DistToObstacle(x, y, z, θ, φ,Oi);

11 ∆t← ∆d/v;
12 x← x+ sin(θ)cos(φ)v∆t;
13 y ← y + sin(θ)sin(φ)v∆t;
14 z ← z + sin(φ)v∆t;

15 until simulation ends;

5. GAUSS-MARKOV
The movements of an object in real world may be lim-

ited and constrained by the laws of physics. Hence, the
change in velocity and direction may depend on the previ-
ous values of these attributes. This correlation between the
speed/direction in different iteration time slots is not consid-
ered when Random Models are used. In random approaches,
the nodes’ movements and speed may vary abruptly from
one instant to another. But when considering real objects
like cars, helicopters, and airplanes, even though some may
be able to change direction faster than others, these move-
ments are not as quick as the random models imply. The
Gauss-Markov mobility model, on the other hand, adds this
temporal dependency characteristic when the mobile node
is moving around the scenario, enabling the limitations of
real world movements to be emulated.

This model assumes the velocity of a mobile node is cor-
related over time. The changes in velocity are modeled
as a Gauss-Markov stochastic process. The new value is
constrained within a limited range, with a mean and stan-
dard deviation. The model also has a tunning parameter
α ∈ [0, 1], known as the memory level. This parameter dic-
tates the importance of old values when calculating the new
ones. This tunning parameter gives the ability to imitate the
behavior of other models. For example, if α is low, the veloc-
ity is determined by random variables and not the previous
values, making the behavior closer to the ones of random
models.

The Gauss-Markov model also assumes a bounding box
to limit the movements of the mobile node. The velocity
and directions of the node are changed after a predefined
amount of time. During this time interval the node moves
with fixed speed and direction. When it finishes moving for
the interval, new values are chosen based on the previous

ones and the system defined parameters. The system pa-
rameters define, for example, the deviation the new speed
will have from the previous one. If the node moves towards
the limits of the simulation, the direction is shifted by 180
degrees (πrad), forcing the node to stay within the bound-
aries. More details of the original model can be found in [14].

The implementation of obstacles in this model follow the
same principle as when the node gets closer to the bounding
limits. If the mobile node is moving towards an obstacle,
its direction and pitch are shifted, forcing it to bounce back
inside the simulation limits. The trajectory appears to be
smoother than the random models, giving the simulations a
more realistic behavior of a mobile node’s movement. Since
the 3D Gauss-Markov model is already implemented in ns-3,
the only modifications made were to allow the addition of
obstacles with AddObstacle(obstacle) and the collision veri-
fication, which is basically the same as the one to verify if
the node is out of bounds, and adjust the new directions
accordingly.

6. DEMONSTRATION AND RESULTS
To illustrate the behavior of the enhanced models, a sam-

ple trajectory for each of the described methods is shown
in Figure 5. In Figures 5a and 5b the Random Walk mod-
els are configured in different modes: time and distance
respectively. Figure 5c shows an example of the Random
Direction model, while the trajectory in Figure 5d is defined
by the Gauss-Markov model. Only one obstacle is placed
in this illustration to facilitate the visualization of the sam-
pled trajectory. The object is centered in (50, 50) and has
dimensions of 100m width and length, and 200m height.

The simulated scenario has dimensions of 300 × 300 ×
200(m). The speed of the node is set to an average of 25m/s,
and the simulation runs for 200s. In the distance mode of
the Random Walk, the node travels for 200m (equivalent
to time mode with 200/25 = 8s interval) before changing
direction, while in the time mode it travels for 10s before
resetting.

Table 1: Obstacle dimensions.
Parameter (meters) Obstacle 1 Obstacle 2
Center coordinates (50,50) (150,150)
Width 100 100
Length 100 100
Height 100 200

To provide some insights on the behavior of an ad hoc
network, we executed preliminary simulations comparing
the performance in two cases: with and without obstacles.
When simulating with obstacles, two objects are placed in
the simulated scenario. Both obstacles have the character-
istics of solid stone blocks, and the detailed position and
dimensions are depicted in Table 1. We traced the packet
delivery ratio of control packets (CPDR) of the Optimized
Link State Routing (OLSR) protocol. The general parame-
ters for the simulations are as follows.

By varying the number of nodes (5 to 50), it is possible
to see the degradation in the performance when obstacles
are considered. For example, the Gauss-Markov model has
CPDR of 80.9636% and 83.9625% when simulating 50 nodes
with and without obstacles, respectively. The same trend
can be observed for the other models as well, and the per-
formance is also influenced by the mobility model utilized.

Table 2: Simulation parameters.
Parameter Value
No. of nodes 20
Simulation time 200 s
Traffic generator OnOff Application
Transport protocol UDP
Routing protocol OLSR
WiFi standard IEEE 802.11b
Datarate 1 Mbps
Speed 5 to 25 m/s (25 default)
Propagation loss model Okumura-Hata

From the graph in Figure 6 we see that Gauss-Markov model
results in a deteriorated performance compared to the other
random models.

Figure 7 illustrates the performance of the network. The
traffic was generated by half of the nodes, the other half acts
as the receiver (i.e. there are 10 information flows with dis-
tinct sources and destinations). We compare the results in
both cases, with and without obstacles. We can see that the
number of reflections increases in a linear trend according
to the speed (when there is no obstacle, there is no reflec-
tion), as it would be expected. A counter-intuitive result
is the hop count, which is in general lower when there are
obstacles in the scenario. This happens because the nodes
are more restricted in their movements, forcing them to stay
closer to each other. Hence, if there is no obstacle, they have
more room to move, and the probability of augmenting the
distance is higher. Following the same logic, if the number of
hops increases, the end-to-end delay and jitter also increase
if there is no obstacle.

7. CONCLUSION AND FUTURE WORK
In this paper we implement the three different mobility

models in a reliable network simulator framework to emulate
a three-dimensional world. One requirement for the devel-
opment of the models is to make them obstacle compliant,
to meet the requirement when simulating realistic environ-
ments such as urban areas with buildings or mountains. The
models are implemented in the network simulator ns-3, due
to its open-source nature, and the focus in research and ed-
ucational communities. The models were demonstrated in
a simple scenario, resulting in the expected degradation of
performance when the obstacles are present in the simula-
tion.

In the future, more complex algorithms for obstacle avoid-
ance can be implemented to help simulate in case the path
of the node is known, like in a particular mission known to
the system developer. Such algorithms already exist and
are constantly being studied by the robotics research com-
munity. Integrating these two remains a challenge to be ex-
plored. This work provides the means to anyone interested
in quickly deploy simulations of UAV networks, without the
need of external tools to obtain the movements of the nodes
in the network.

8. ACKNOWLEDGMENTS
This research was supported by the National Science Foun-

dation, Partnership for Innovation Program, Grant No. 1430328
and CAPES Brazil 13184-13-0.

(a) Random Walk (Time) (b) Random Walk (Distance)

(c) Random Direction (d) Gauss-Markov

Figure 5: Trajectory with one obstacle.

(a) With obstacles (b) Without obstacles

Figure 6: Control packets delivery ratio vs number of nodes.

(a) With obstacles (b) Without obstacles

Figure 7: Network performance parameters.

9. REFERENCES
[1] Federal Aviation Administration approved UAS test

sites. https://www.faa.gov/uas/legislative programs/
test sites.

[2] ns-3. https://www.nsnam.org.

[3] OMNeT++. https://omnetpp.org.

[4] Open Street Map (OSM). https://www.openstreetmap.
org.

[5] Opnet. http://www.riverbed.com.

[6] Sumo. http://sumo.dlr.de.

[7] I. Bekmezci, O. K. Sahingoz, and Ş. Temel. Flying ad-
hoc networks (fanets): A survey. Ad Hoc Networks,
11(3):1254–1270, 2013.

[8] O. Bouachir, A. Abrassart, F. Garcia, and N. Larrieu.
A mobility model for uav ad hoc network. 2014 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS 2014), pages 383–388. IEEE, 2014.

[9] T. Camp, J. Boleng, and V. Davies. A survey of mobility
models for ad hoc network research. Wireless communi-
cations and mobile computing, 2(5):483–502, 2002.

[10] S. E. Carpenter and M. L. Sichitiu. An obstacle model
implementation for evaluating radio shadowing with ns-
3. In Proceedings of the 2015 Workshop on ns-3, WNS3
’15, pages 17–24, New York, NY, USA, 2015. ACM.

[11] D. S. Gaikwad and M. Zaveri. A novel mobility model
for realistic behavior in vehicular ad hoc network. IEEE
11th International Conference on Computer and Infor-
mation Technology (CIT 2011), pages 597–602. IEEE,
2011.

[12] A. E. Kamal and J. N. Al-Karaki. A new realistic
mobility model for mobile ad hoc networks. IEEE In-
ternational Conference on Communications (ICC 2007),
pages 3370–3375. IEEE, 2007.

[13] E. Kuiper and S. Nadjm-Tehrani. Mobility models
for uav group reconnaissance applications. Interna-
tional Conference on Wireless and Mobile Communica-
tions (ICWMC 2006), pages 33–33, July 2006.

[14] B. Liang and Z. Haas. Predictive distance-based mo-
bility management for pcs networks. In INFOCOM
’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1377–1384, March 1999.

[15] D. B. J. D. A. Maltz and J. Broch. DSR: The dynamic
source routing protocol for multi-hop wireless ad hoc net-
works. Computer Science Department Carnegie Mellon
University Pittsburgh, PA, pages 15213–3891, 2001.

[16] E. Royer, P. Melliar-Smith, and L. Moser. An analy-
sis of the optimum node density for ad hoc mobile net-
works. IEEE International Conference on Communica-
tions (ICC 2001), volume 3, pages 857–861, 2001.

[17] E. SMG. Universal mobile telecommunications system
(umts); selection procedures for the choice of radio trans-
mission technologies of the umts. ETSI Document TR,
101:112, 1997.

