
Deep-learning assisted Cross-Layer Routing in
Multi-hop Wireless Network

Paulo Alexandre Regis∗, Suman Bhunia†, Amar Nath Patra‡, and Shamik Sengupta§
∗ Department of Computer Science, Southeastern Louisiana University–Hammond, Louisiana

Email: pregis@southeastern.edu
† Department of Computer Science and Software Engineering, Miami University–Oxford, Ohio

Email: bhunias@miamioh.edu
‡ School of Computing and Information Sciences, Radford University–Radford, Virginia

Email: apatra@radford.edu
§ Department of Computer Science and Engineering, University of Nevada–Reno, Nevada

Email: ssengupta@unr.edu

Abstract—Wireless ad hoc networks rely on exchanging infor-
mation among the nodes to find a feasible route between source
and destination. Routing protocols require periodically flooding
the entire system with the updated state of the network. Routing
protocols define the rules and semantics of how this information
is spread throughout the network and can be classified into
proactive and reactive protocols, both of which eventually sends
out control packets to the network. However, with the increase
of the scale of the network, the amount of packets exchanged
uses resources that could be otherwise used for application
messages. In this paper, we explore the use of machine learning
techniques to restrict the flooding radius of control packets. We
define the problem objective as a regression problem and use
neural networks to model it. The model can be used in networks
that share similar attributes, suggesting that transfer learning
can be used to re-purpose the initial model. The results show
that using machine learning reduces the amount of resources
used to maintain the network state up to date, which could
be subsequently used to improve the overall performance of
the networked system. We anticipate machine learning to be
the starting point for more sophisticated models of cross-layer
routing mechanisms.

Index Terms—internet of things, ad hoc network, machine
learning

I. INTRODUCTION

The continuous advance in wireless ad hoc networks enables
a variety of new application possibilities. Unmanned Aerial
Vehicle networks can perform autonomous tasks such as
monitoring and surveillance of areas of interest without the
need to deploy human resources [1]. First responders may also
benefit of such application, where UAVs establish a temporary
backbone network where infrastructure is not available, such as
in areas affected by natural disasters [2]. The dynamic aspect
of such networks coupled with the versatility of UAVs can
facilitate applications that before would have been impossible.

However, these networks also face complex challenges. Due
to the mobility aspect of the nodes comprising the system,
the topology of the network cannot be fixed. Communication
paths in wireless ad hoc networks must react and adapt
due to the frequent changes in topology of the network.
This task is commonly achieved by the use of decentralized

protocols where there is no single entity that manages the
network routing. Decentralized protocols rely on the constant
exchange of information among the participating nodes in
order to maintain an accurate view of the state of the network.
However, the frequent control messages and the time needed
to compute the new routes can disturb the service that the
network provides. In other words, the resources that could
have been used to pass actual information (sensor data, voice,
image) is used to maintain the system itself. Moreover, the
amount of control packets being exchanged takes up resources
that could be used for transmitting application messages as the
scale of the network increases in size.

By itself, the field of machine learning has expanded
dramatically in recent years. From support vector machines,
random forests, to neural networks, the subject is in active de-
velopment with new theoretical models as well as applications.
Machine learning can reduce the complexity of a system since
it can be considered a black box. This is achievable due to the
models being trained in accurate and curated data. Although
machine learning in networking applications is not a novel
application per se, there is still huge potential to its usage
[3]. In this paper, we explore the use of machine learning
techniques to restrict the flooding radius of control packets.

We perform a preliminary study on machine learning as-
sisted routing in wireless networks. We define our objective
as a regression problem and use neural networks to model it.
We found that the model can be used in networks that share
similar attributes, suggesting that transfer learning can be used
to re-purpose the initial model. Our results demonstrate that
using machine learning reduces the amount of resources used
to maintain the network state up to date, which subsequently
can be allocated to actual data traffic, improving the overall
performance of the networked system. We anticipate machine
learning to be the starting point for more sophisticated models
of cross-layer routing methods. For example, complex network
systems could leverage this technique as well, such as in multi-
radio multi-channel heterogeneous networks, to decide with
radio interface and channel to use. Furthermore, cross-layer
optimization is a major area of study in networking, and a

well-defined machine learning model can be relevant for the
development of such area. The contributions of these paper
can be summarized as follows:

• Preliminary study of machine learning-assisted routing in
wireless ad hoc networks.

• Neural network model for cross-layer routing protocol.
• Analysis of the impact of local neighborhood radius.
The remainder of this paper is organized as follows. Section

II provides a literature review related to the field. Section III
describes the system model and assumptions. Then, Section
IV illustrates the proposed system. Section V discusses the
system system performance. Finally, Section VI concludes the
paper and provides future directions.

II. BACKGROUND

The versatility of mobile network architectures has caught
the attention of investors and researchers. The complexity of
such systems make the task of monitoring and managing the
network components and resources a challenging task [3], [4],
[5]. Machine learning solutions have resonated these issues,
from anomaly detection and intrusion prevention to medium
access and channel selection [6], [7], as well as networked
devices to support the application of machine learning [8], [9],
[10], [11]. Machine learning has been successfully applied to
solve complex problems otherwise thought to be impossible
for a computer to perform. Some of the leading applications
of deep learning are natural language processing [12] and
computer vision [13], and, more recently, as an artificially
intelligent player of the Go board game, defeating top human
experts thought to be unbeatable by a machine a few years
ago [14]. Researchers are further investigating the applicability
of deep learning in networking problems, acknowledging its
importance in the field [15].

Due to the vast amount of data generated by mobile network
devices, coupled with the variety of types of data, deep
learning can be an efficient tool in the next generation of
mobile networks (5G). It has the potential to distill relationship
in highly dimensional data at each layer of the neural network,
which are extremely difficult for traditional machine learning
methods [16]. However, the performance of deep learning
models is directly affected by the amount and quality of the
data, which given the increasingly more heterogeneous forms
of data, makes it a valuable choice [17], [18], [19]. In addition,
the advances in specialized machine learning hardware further
enables deep learning training f and inference operations on
edge and even IoT devices [10], [11]. However, current deep
learning solutions to networking problems are spread through
a variety of research areas, and cross-layer optimizations
involving deep learning is an open research area.

One aspect of networking in which deep learning has been
applied is in routing in mobile networks. In [20], [21], authors
used a deep belief network to decide the next hop in routing
decisions, achieving 95% accuracy compared to the Open
Shortest Path First protocol. However, their system requires
complete knowledge of the network state and its use is limited
by only wired networks where the topology is more stable.

The work in [22] makes use of Hopfield neural networks to
improve the performance of and survivability of mobile ad
hoc networks. However, they system works on top of the
AODV routing protocol, thus, cannot be used to optimize
other protocols, and also requires control packets flooding. In
[23], authors use neural network to classify the node degree,
given information from the routing nodes. The results are then
used for route generation using the Viterbi algorithm. Authors
in [24] modeled the network as a graph, and designed the
custom Graph-Query neural network to address distributed
routing problem. Although it tackles the distributed routing
problem, it still requires message flooding between nodes.
In [25], authors combined the concept of software-defined
networks with neural networks to tackle the routing problem in
knowledge-defined networks. They used a deep deterministic
policy gradient algorithm based on reinforcement learning
that takes traffic conditions as input and introduce Quality-
of-Service into the reward function.

III. SYSTEM MODEL

In our network model, we assume that lower layers of
the network stack have access to information from the upper
layers. In other words, when deciding the next-hop neighbor
to send a packet, the node has access to the type of application
data being sent. For our purposes, we assume that the nodes
are running a video streaming application. Common video
compression algorithms generate different types of picture
frames; some contain more information and are, therefore,
larger, while others contain less information and are smaller in
byte size. We reproduce this behavior through a network trace
file, commonly utilized in network simulations [26]. We also
adopt as edge weight (link cost) the total number of data flows
going through the destination node of the link in a directed
graph. In this study, we also assumed nodes were static when
generating the data because, at each transmission, the samples
collected reflect a snapshot of the network at that instant,
regardless of the movement of the nodes. Each node in the
network starts with a predefined amount of energy, which the
simulation decreases at each step by the amount of energy
used to transmit the packet (smaller packets need less energy
than larger ones).

A. Neighborhood

One of the goals of this work is to limit the amount of
control messages that need to be disseminated in the network.
Thus, we constrain the field-of-view of each node to a fixed
number of hops away. In Figure 1 we can easily visualize it. By
fixing the number of hops that a node can obtain information
from, we also limit the flooding of the network with control
messages. It is important to note that a node can only be in
one of the neighborhood sets, for instance it cannot be both in
the 1-hop neighborhood as well as in the 2-hop neighborhood.
Otherwise, samples would be counting the state of a node more
than once.

1-hop

2-hops

3-hops

Fig. 1. Neighborhood radius.

B. Data description

We define a few generic features that can expand depending
on the neighborhood radius. We also use application layer
information in this cross-layer approach, namely the type of
video frame being transmitted. The features used in this study
are as follows.

• frame type: common video streaming applications
codecs use different types of picture frames in order to
reduce the amount of bytes to transmit. In our case, we
use frame types of I P and B.

• frame size: each type of frame has different average byte
size. I-frames are usually larger than P-frames, which in
turn contains more information than I-frames. However,
frames of the same type do not necessarily have the same
size, thus, we select it as a feature as well as the frame
type.

• size h-hop neighborhood = Sh: the total number of
neighbors in the h-hop neighborhood.

• average current charge (h-hop): for each neighborhood
(1 to h) calculate the current charge of the power supply
per node:

∑Sh
1 cchi
Sh

, where cchi is the remaining energy
fraction of node i in the hth-hop neighborhood.

• average energy fraction (h-hop): for each neighborhood
(1 to h) calculate the average remaining energy fraction
per node:

∑Sh
1 efh

i

Sh
, where efhi is the remaining energy

fraction of node i in the hth-hop neighborhood.
The features are purposely designed to be generic enough
to accommodate any number of nodes to be present in each
neighborhood. Thus, making this solution adaptable to any
network topology, an asset when considering the volatile
topology change that may occur in mobile ad hoc networks.
The number of features increases linearly with the radius of the
neighborhood. The attributes value for each node are: initial
energy (150J), up current when transmitting (1.7A), down
current when idle (0.8A).

1) Training data: We obtain the ground truth data from a
simple grid network topology, as illustrated by Figure 2, with
7 nodes per side (7x7 grid). This will give an approximate
similar number of edge nodes as well as inner ones. The

Fig. 2. Grid topology for training data collection.

ground truth values are calculated with complete knowledge of
the graph, using Dijkstra to compute the route for each packet,
and updating the weights after each route computation. We
collected a total of 163474 training samples by varying the
number of traffic flows in the network (1 to 5).

2) Testing data: We generated two distinct testing datasets,
both of them randomly generated using a larger scale graph
with 1000 nodes. First, we replicate the same node degree
distribution as the training dataset, the frequency count of each
degree is listed in Table I. We generated 10 random graphs,
resulting in 9025384 samples from a network with similar
node degree distribution.

TABLE I
NODE DEGREE DISTRIBUTION.

Degree Distribution (%)
2 8.2%
3 41.0%
4 82.0%

The second test dataset was generated using the Erds-Rnyi
graph model (also known as binomial: Gn,p), where n is the
number of nodes and p is the probability of edge creation. This
type of graph does not yield the same degree distribution since
nodes are not limited to 4 neighbors. We generated 5128780
samples from 10 randomly generated graphs.

IV. DEEP LEARNING ASSISTED ROUTING

Our proposed system for a generic routing mechanism
leverages from machine learning models used in regression
problems, instead of using it as a classifier. The input data
of the ML model is an aggregated set of values from all of
the neighborhood set, allowing the input data to grow more
complex as the neighborhood radius increases, but not with
the number of neighbors in each neighborhood. The output of
the model is then used as a multiplier, which will become the
index of a sorted list of the 1-hop neighborhood. An overview
of the system can be seen in Figure 3, where |N | = S1 (the
size of the neighborhood). The result of the multiplication is
then rounded to the nearest integer, which is the index used
to find the next-hop neighbor to send the packet.

ML

regressor
input

features ..
.

1

0

x |N| ~~ index

Fig. 3. Role of regression in the system.

In our study, we used a sequential neural network architec-
ture with two densely connected layers containing 64 nodes
each and the rectified linear unit (ReLU) activation function,
and finally, the last layer outputs the index weight ([0, 1]). The
model was implemented, trained, and tested using TensorFlow
and Keras [27].

V. RESULTS AND DISCUSSION

To evaluate the proposed system we compare two distinct
machine learning approaches: deep learning and support vec-
tor regression. The neural network that comprises the deep
learning model is composed of two densely connected layers,
each with 64 nodes, and a final single-node layer that outputs
the weight. The network is trained over 100 epochs using
tensorflow [27]. In Figure 4 we can see the mean squared
error (used as the loss function), and the mean absolute error,
throughout the training phase. Only the first 30 epochs are
shown for better visualization. We compare the neural network
to a support vector regression model with radial basis function
as the kernel function, ε value of 0.1, and tolerance of 0.001,
implemented using scikit-learn [28]. The target feature of the
system, for both ML models, is the index weight of the sorted
list of the 1-hop neighborhood set, according to the remaining
energy left.

0

100

200

300

400

m
ea

n
sq

ua
re

 e
rro

r

0 5 10 15 20 25 30
Epoch

0.5

1.0

1.5

m
ea

n
ab

so
lu

te
 e

rro
r

1-hop 2-hop 3-hop

Fig. 4. Training phase metrics.

We compare both solutions using two distinct datasets as
previously described: one with similar node degree distribution
as the training dataset, and another with completely random
degree distribution. In Table II we compare the performance
of the models in the test data with similar distribution. Both
the SVR and DL models performed relatively the same, with a
slightly better outcome from the DL (Deep Learning) model.
However, the SVR models require a much longer time to
perform the prediction operations, thus, the deep learning
approach is more adequate for use in production.

Table III on the other hand lists the performance of the ML
models using the binomial random graph model. We can see
that for the 3-hop neighborhood case, the DL model produced
a much larger error than the SVR (Support Vector Regression)
model. This can indicate that during the training phase the
model encountered a local optimal solution and was not able
to escape. However, the same DL model slightly outperformed
the SVR when the radius was 1 and 2 hops. Overall, DL
achieved a better metrics than SVR.

Given that both machine learning models were trained on a
small dataset limited to 49 nodes in a single topology while
tested on a variety of different topologies, the proposed scheme
could be potentially improved by updating the model with new
data. With new hardware dedicated and optimized for deep
learning operations, the model would not necessarily require
re-training from scratch.

TABLE II
COMPARISON WITH SIMILAR DEGREE DISTRIBUTION.

Neighborhood
radius ML model MSE MAE

1-hop DL 0.0717 0.2265
SVR 0.0805 0.2415

2-hops DL 0.0706 0.2240
SVR 0.0760 0.2379

3-hops DL 0.0583 0.2023
SVR 0.0772 0.2416

TABLE III
COMPARISON WITH RANDOM DEGREE DISTRIBUTION.

Neighborhood
radius ML model MSE MAE

1-hop DL 0.1368 0.3322
SVR 0.1382 0.3372

2-hops DL 0.1368 0.3302
SVR 0.1380 0.3401

3-hops DL 4.6221 2.0064
SVR 0.1387 0.3417

A. Limitations

Currently, the deep learning model performs relatively well
when predicting the index multiplier weight. On the other
hand, this approach might not yield the best results when con-
sidering the ground truth for the next-hop neighbor. However,
there is a need to measure its effects applied to a networked
system in order to identify potential benefits, of gain insights
on where it can be further improved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we performed an exploratory analysis of
machine learning routing models in wireless ad hoc networks
with cross-layer architecture in mind. We trained a machine
learning model using deep learning neural network in order to
assist the routing of packets in a wireless ad hoc network. The
model applied regression to determine the next-hop neighbor
to which forward packets to. The model can also be gen-
eralized to any network topology. Preliminary results show

that our generic approach can be used in such networks. By
limiting the amount of control packets flooding the network it
can potentially enable large scale systems to be deployed, since
control packets are limited to a bounded region surrounding
each node.

Deep learning assisted networking is a relatively new re-
search area, especially in the routing layer of the network
stack. There are several different situation we envision that
machine learning can assist in networking tasks. In the future,
we want to investigate the need to retrain the routing model
in mobile networks, since the mobility can severely affect the
performance of such systems. Another research opportunity
lies on the security aspect of this approach with many unan-
swered questions. This application of deep learning is still in
its infancy and is worth investigating.

REFERENCES

[1] B. Galkin, J. Kibilda, and L. A. DaSilva, “Coverage analysis for low-
altitude uav networks in urban environments,” in GLOBECOM 2017-
2017 IEEE Global Communications Conference, pp. 1–6, IEEE, 2017.

[2] P. A. Regis, A. N. Patra, and S. Sengupta, “Unmanned aerial vehicles
positioning scheme for first-responders in a dynamic area of interest,” in
2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–5,
IEEE, 2018.

[3] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications Surveys Tutori-
als, pp. 1–1, 2019.

[4] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang,
“Big data-driven optimization for mobile networks toward 5g,” IEEE
Network, vol. 30, pp. 44–51, 1 2016.

[5] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo, “Ma-
chine learning paradigms for next-generation wireless networks,” IEEE
Wireless Communications, vol. 24, pp. 98–105, 4 2017.

[6] D. D. Nguyen, H. X. Nguyen, and L. B. White, “Reinforcement learning
with network-assisted feedback for heterogeneous rat selection,” IEEE
Transactions on Wireless Communications, vol. 16, pp. 6062–6076, 9
2017.

[7] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of machine learning classifiers for mobile malware detection,” Soft
Computing, vol. 20, pp. 343–357, 1 2016.

[8] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching LAN speeds,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), (Boston, MA), pp. 629–
647, USENIX Association, 2017.

[9] W. Xiao, J. Xue, Y. Miao, Z. Li, C. Chen, M. Wu, W. Li, and L. Zhou,
“Tux2: Distributed graph computation for machine learning,” in 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), (Boston, MA), pp. 669–682, USENIX Association, 2017.

[10] “Edge-tpu.” https://cloud.google.com/edge-tpu.
[11] “Coral.” https://coral.withgoogle.com.
[12] R. Socher, Y. Bengio, and C. D. Manning, “Deep learning for nlp (with-

out magic),” in Tutorial Abstracts of ACL 2012, pp. 5–5, Association
for Computational Linguistics, 2012.

[13] C. Zhang, P. Zhou, C. Li, and L. Liu, “A convolutional neural network
for leaves recognition using data augmentation,” in 2015 IEEE Interna-
tional Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure
Computing; Pervasive Intelligence and Computing, pp. 2143–2150,
IEEE, 2015.

[14] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[15] H. Zhu, Y. Zhang, M. Li, A. Ashok, and K. Ota, “Exploring deep
learning for efficient and reliable mobile sensing,” IEEE Network,
vol. 32, pp. 6–7, 7 2018.

[16] M. A. Alsheikh, D. Niyato, S. Lin, H. Tan, and Z. Han, “Mobile big
data analytics using deep learning and apache spark,” IEEE Network,
vol. 30, pp. 22–29, 5 2016.

[17] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Network,
vol. 32, pp. 92–99, 3 2018.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[20] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “Routing or computing? the paradigm shift towards intel-
ligent computer network packet transmission based on deep learning,”
IEEE Transactions on Computers, vol. 66, pp. 1946–1960, 11 2017.

[21] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “A tensor based deep learning technique for intelligent
packet routing,” in GLOBECOM 2017 - 2017 IEEE Global Communi-
cations Conference, pp. 1–6, 12 2017.

[22] H. Yang, Z. Li, and Z. Liu, “Neural networks for manet aodv: an
optimization approach,” Cluster Computing, vol. 20, pp. 3369–3377,
12 2017.

[23] Y. Lee, “Classification of node degree based on deep learning and
routing method applied for virtual route assignment,” Ad Hoc Networks,
vol. 58, pp. 70 – 85, 2017. Hybrid Wireless Ad Hoc Networks.

[24] F. Geyer and G. Carle, “Learning and generating distributed routing
protocols using graph-based deep learning,” in Proceedings of the 2018
Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, Big-DAMA ’18, (New York, NY, USA),
pp. 40–45, ACM, 2018.

[25] T. A. Q. Pham, Y. Hadjadj-Aoul, and A. Outtagarts, “Deep reinforcement
learning based qos-aware routing in knowledge-defined networking,” in
Quality, Reliability, Security and Robustness in Heterogeneous Systems
(T. Q. Duong, N.-S. Vo, and V. C. Phan, eds.), (Cham), pp. 14–26,
Springer International Publishing, 2019.

[26] F. H. Fitzek and M. Reisslein, “Mpeg-4 and h. 263 video traces for
network performance evaluation,” IEEE network, vol. 15, no. 6, pp. 40–
54, 2001.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), pp. 265–
283, 2016.

[28] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122, 2013.

