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Abstract 

The rate of adoption of online learning has been rising over the years. This rate has recently 

spiked due to the outbreak of the COVID-19 pandemic. This has resulted in a need for 

conducting exams online. However, online exams have the disadvantage of being costly to 

invigilate because of the high labour requirement of the current way of online invigilation, 

which involves human invigilators monitoring candidates using video streamed from the 

candidates’ webcams. This work develops an automated online invigilation aid that uses 

Convolutional Neural Networks to analyze candidates’ direction of visual attention (the 

direction one’s sight is focused) to detect and report when a candidate might be cheating. The 

developed system is expected to reduce the effort and labour required to invigilate online exams 

by assisting human invigilators to detect cheating and, therefore, reduce the cost of online 

invigilation and online exams. 
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1 Introduction 

1.1 Background 

Over the years, the adoption of online learning has been rising around the world due to its 

conveniences (Allen and Seaman, 2007). For example, in the United States, the number of 

students in higher education taking at least one online course grew from 9.6% in 2002 to 29.7% 

in 2015 (Woldeab et al., 2017). Recently, the COVID-19 pandemic made online learning a 

necessity due to the government-mandated closure of schools in most countries in the world. 

Further, even before COVID-19, there have been certain people who have not had easy or any 

access to the traditional form of learning. Some of these people include those living in poverty, 

those living in remote areas, and those living with disabilities. Online learning is regarded by 

some as a suitable means for providing better access to education to these people (Khan and 

Williams, 2006). 

Assessment is an integral part of learning (McDowell and Sambell, 2014) – whether online or 

traditional. Learning depends on the feedback obtained from assessments (Berry, 2008). 

Assessment is, however, faced with the major problem of cheating. In a survey conducted 

among university students, 73% of 1,330 participants self-reported to have cheated in the past 

(Freiburger et al., 2017). Another study, though with a small sample of 30 students, found that 

67% of the students had cheated in a test or exam (Balbuena and Lamela, 2015). Even a survey 

conducted in 1998 had 64% of 1,793 students admitting to having cheated (Mccabe et al., 

2001). 

To curb this problem, learning institutions use exam invigilation. This involves having a person 

monitor candidates taking an exam to make sure there is no cheating. This technique has proven 

its effectiveness in both traditional and online exams (Kerkvliet and Sigmund, 1999; Prince et 

al., 2009). 

Invigilation in online exams (or online invigilation) is still a new and relatively untrusted area. 

However, the growth of and increased necessity for online learning is causing an increased 

need for online examinations and, consequently, an increased need for effective and efficient 

online invigilation. 

Currently, the most prevalent form of online invigilation is human invigilation. This is where 

a human invigilator monitors candidates from a live video stream or stored recording taken 
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from the candidates’ webcams. There are many commercial services available that offer this 

service. Some prominent ones are ProctorU and Kryterion. 

The shortcoming of this form of invigilation is that it is significantly more costly than human 

invigilation in a traditional exam setting (Chuang et al., 2015, 2017). It requires more 

manpower, time, and money. This is probably owing to the higher optimal invigilator-to-

candidate ratio in online invigilation, i.e., effective online invigilation requires a higher number 

of invigilators than physical invigilation for the same number of candidates. One invigilation 

software provider, for example, uses a 1 to 4-10 invigilator-to-candidate ratio (Software Secure, 

2016) which is significantly higher than it is in physical invigilation. 

This work contributes an automated invigilation aid that uses convolutional neural networks 

(CNN), to detect and report potential cases of cheating by analysing the direction of candidates’ 

visual attention from images taken from their webcams. 

It is expected that the automated invigilation aid will reduce the effort required from human 

invigilators in invigilating online exams, thus lowering the optimal invigilator-to-candidate 

ratio. This should reduce labour cost and, in some cases, time consumption, while also 

increasing the scalability of online invigilation. 

1.2 Problem Statement 

The current method of online invigilation – human invigilation – requires a lot of manpower to 

be effective. Going by Software Securer’s invigilator-to-candidate ratio of about 1 to 10, an 

exam session of 500 candidates will require 50 invigilators. This is significantly higher than 

what is expected in physical invigilation for an exam room of 500 candidates. 

Because of its high labour requirement, it is financially costly. Also, where recordings of 

candidates are stored and examined later, it becomes very time-consuming. 

1.3 Aim 

To develop an online exams invigilators’ aid that automatically detects and reports, in real-

time, possible cases of cheating by analysing each candidate’s direction of visual attention from 

images taken from their webcam as they do an exam. 

1.4 Objectives 

I. To investigate the current state and challenges faced in online invigilation. 
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II. To identify indicators of cheating that can be captured by a webcam. 

III. To identify and review CNN architectures that can learn to detect the identified indicators 

of cheating. 

IV. To train and test a CNN cheating detection model based on the most suitable architecture 

identified in the preceding objective. 

V. To design a basic online invigilation application that uses the trained cheating detection 

model to detect and report possible cases of cheating. 

VI. To develop and test the online invigilation application. 

1.5 Research Questions 

I. What is the current state of, and the challenges faced in online invigilation? 

II. Which indicators of cheating can be captured by a webcam? 

III. Which CNN architectures can best learn to detect these indicators of cheating? 

IV. How can one train and test a CNN model to detect the indicators of cheating? 

V. How can one design a basic online invigilation application that uses the trained CNN 

model to detect and report possible cases of cheating? 

VI. How can one develop and test the online invigilation application? 

1.6 Scope of the Study 

First, this work focused on detecting cheating by analysing a candidate’s direction of visual 

attention from images taken from a candidate’s webcam. Other inputs, such as audio and typing 

patterns, were not considered. 

Second, the kind of exams referred to in this work are strictly those which are fully presented 

and taken on a laptop or desktop. Additionally, it refers to exams where reference material such 

as notebooks, textbooks and mobile phones are prohibited. 

Third, the kind of cheating that this work focused on was the kind that involves the use of 

cheating material that is external to the device used to take an exam, for example, cheat-sheets 

and notebooks. Cheating done using the device used to take the exam, for example, browsing, 

was not considered as systems already exist that effectively prevent this kind of cheating. 

Lastly, the study focused on detecting limited cheating tactics, specifically, where a candidate 

reads something to the left or right of their exam device, or beneath their desk. 
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1.7 Justification 

A prime cause of the reluctance of learning institutions to adopt online learning is the lower 

trust and credibility in online exams than in traditional exams. Solutions for effective, efficient, 

and scalable online invigilation may significantly improve the confidence in, and credibility of 

online exams. That would result in greater adoption of online learning among learning 

institutions which will have the following beneficial effects. 

First, greater adoption of online learning by learning institutions will create a more robust 

education system. It will be more robust such that the closure of schools for reasons such as 

the recent COVID-19 pandemic will not hinder learning. The lack of physical access to school 

facilities will be a non-issue as online learning will provide an adequate fallback. 

Secondly, the groups of people like the poor, the disabled and those living in remote areas will 

have better and more convenient access to education, therefore lowering the educational 

inequality in society. 
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2 Literature Review 

2.1 Introduction 

This chapter reviews the literature on the following topics. First, section 2.2 reviews the 

literature on the current state of online invigilation and the challenges it is facing. Section 2.3 

then reviews the literature on indicators of cheating that are detectable using webcam images. 

Section 2.4 reviews literature on relevant CNN architectures. Section 2.5 and section 2.6 

analyze work related to automated online invigilation and the gap in these works. 

Lastly, a conceptual framework of the proposed system is provided in section 2.7. 

2.2 The Current State of Online Invigilation and Challenges faced 

Human invigilation is the most prevalent form of online invigilation as mentioned by Asep and 

Bandung (2019), and Atoum et al. (2017). It involves a human invigilator monitoring 

candidates using video taken from the candidates’ webcams. The invigilation is done live or 

by reviewing saved video recordings. 

There are many commercial online human invigilation systems. Some of these are ProctorU, 

Kryterion, Examity and Ulearn. 

A major challenge faced in the invigilation of online exams is that it is constrained by the field 

of view of the camera used to observe candidates. Typical laptop webcams have a small field 

of view. They can, usually, only capture the head and shoulders of a user. Therefore, 

invigilators have a limited view of a candidate’s environment (Chuang et al., 2017). They 

cannot, for instance, see whether there is a ‘cheat sheet’ on a candidate’s desk or a phone 

beneath their desk. Therefore, to detect that a candidate is cheating, invigilators solely rely on 

the candidates’ head movement, eye movement and other such features that can be captured by 

a webcam. 

Because of this limitation, invigilators are required to pay more attention to each candidate than 

is needed in physical invigilation. Therefore, as the number of candidates an invigilator is 

required to invigilate increases, his effectiveness reduces at a higher rate than in physical 

invigilation. For this reason, the optimal candidate-to-invigilator ratio for online exams is 

usually much lower than in traditional exams. Consequently, invigilation of online exams 

requires more labour, cost and, possibly, time. 
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2.3 Indicators of Cheating 

This section contains a review of the literature on features that have been found to indicate or 

identify cheating and how they can be measured. 

2.3.1 Early Studies on the Identification of Cheating 

Most early work on the indicators of cheating considered a variety of factors which Crown and 

Spiller (1998) grouped into two categories – individual and situational factors. Individual 

factors were candidates’ personality features such as age, gender, religion, grade and 

personality. Whereas situational factors were contextual features of candidates’ academic 

institutions such as the academic institution’s honour code, value counselling, surveillance, and 

sanctions or threat of punishment. 

However, as stated by Chuang et al. (2017), these factors are best used to determine the 

likelihood of cheating in a population. Though they may be used for estimating the probability 

of the occurrence of cheating, they cannot, by themselves be used to detect cheating as it is 

taking place. For this reason, these factors were not considered in this work. 

2.3.2 Visual Focus of Attention/Direction of Visual Attention 

Chuang et al. (2017) describe the visual focus of attention (VFOA) as, “the particular location 

in one’s visual field where a person focuses in the attentive mode.” It is determined by a 

person’s eye gaze, i.e., the direction the eyes point to, but can also be estimated using head 

pose (Ba and Odobez, 2009; Smith et al., 2008). 

Chuang et al. (2017) were able to statistically show that a candidate’s VFOA can significantly 

detect possible cheating incidents. Their rationale for using VFOA as an indicator of cheating 

is as follows. During an online exam, candidates’ visual attention, in normal circumstances, is 

focused on their screen. For them to cheat, for example, by reading from a cheat-sheet, their 

visual attention will deviate from their screen. Therefore, when such a deviation is detected, it 

is possible (but not guaranteed) that the candidate is cheating. 

This idea is corroborated by an experienced online exam invigilator who, in a news article, 

said, “When the eyes start veering off to the side, that’s clearly a red flag.” (Steve Kolowich, 

2013). 

This is the main indicator of possible cheating that was used in this work. 
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2.4 Review of Relevant CNN Architectures 

Deep learning models have the benefit of requiring very little feature engineering on data. They 

do not require features to be handcrafted nor even to be ‘told’ which features they should learn 

on. Instead, these models learn the features from raw data themselves. It is, therefore, 

unnecessary to handcraft features for, say, VFOA or head pose data then train the model on 

those specific features. It suffices to train a deep learning model on well-labelled data. For this 

reason, this study only considered deep learning and, specifically, Convolutional Neural 

Network architectures for the task of detecting cheating. 

CNN are one of the best machine learning algorithms for computer vision tasks (Khan et al., 

2020). They have achieved greater levels of accuracy than traditional machine learning 

algorithms in fields such as image classification, image segmentation and object detection 

(Khan et al., 2020; Mahony et al., 2020). 

However, there are several variations of CNN architectures; all with varying properties such as 

speed, accuracy, and input types, which affect where and how their derived models should be 

deployed. 

This section reviews some of the CNN architectures that may be suitable for detecting possible 

cases of cheating using images from a webcam. 

2.4.1 Single-frame 2D CNN 

The typical single-frame 2D CNN has been used successfully in tasks such as eye gaze 

detection (Meng and Zhao, 2017), body pose estimation (Toshev and Szegedy, 2014) and other 

tasks somewhat related to detecting cheating. They have shown relatively high levels of 

accuracy and speed. 

Another benefit of this architecture is that, because of its popularity, there are several open-

source tools and libraries available that provide things such as out-of-the-box input pipelines, 

data pre-processing tools, and pre-trained state-of-the-art models. 

This architecture’s main drawback with regard to detecting cheating is that it completely 

ignores temporal data (Carreira and Zisserman, 2018). It, therefore, cannot fully interpret 

actions because actions have a temporal dimension. This is a drawback because cheating is an 

action and can therefore be better (but not exclusively) be understood by a model that can 

understand actions. 
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2.4.2 CNN + LSTM 

This architecture, popularized by Donahue et al. (2016), adds a recurrent layer (usually LSTM) 

on top of a CNN. The CNN forms representations on an image (in the spatial domain), then the 

recurrent layer, using a sequence of output from the CNN segment, forms representations in 

the time domain. 

Donahue et al. (2016) found that this architecture afforded a slightly higher accuracy of 68.20% 

over the typical 2D CNN architecture which achieved 67.37% accuracy on the UCF101 human 

action dataset (Soomro et al., 2012). 

In another work, Carreira and Zisserman (2018) were able to achieve an accuracy of 91.0% on 

the UCF101 dataset using this architecture. 

This architecture can capture temporal data because of the added recurrent layer. It can 

therefore understand actions to some extent. Also, concerning its CNN segment, it shares some 

of the benefits of 2D CNNs mentioned in the preceding sub-section. 

However, the addition of the recurrent layer adds parameters, which makes it more 

computationally expensive and slower. Secondly, this architecture requires more data to train. 

This is because for it to understand actions, it needs to be trained on action data. And, for action 

data, a sample is a sequence of 𝑇 images (where 𝑇 has been observed to be, usually, above 7 

(Carreira and Zisserman, 2018; Donahue et al., 2016)). Therefore, what would be 𝑋 samples 

for a typical 2D CNN, would be X/T samples for this architecture. 

2.4.3 3D CNN 

The 3D CNN, introduced by Tran et al. (2015), extends the 2D CNN by adding a temporal 

dimension to the CNN’s filters to make them 3-dimensional. This enables it to work on both 

spatial and temporal dimensions. Like the CNN+LSTM architecture, this architecture uses a 

sequence of images as a sample. 

Because of the added dimension, this architecture usually has significantly more parameters 

compared to its 2D counterpart. This makes it prone to overfitting and largely limits the 

benefits, in terms of accuracy, it can derive from increasing depth. It also leads to high 

computational cost and, thus, low speeds (Carreira and Zisserman, 2018). 

Also, like the CNN+LSTM architecture, since this architecture also takes a sequence of images 

as a single sample, it requires more data to train on than the typical 2D CNN. 
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2.5 Related Work 

This section reviews related systems. The reviews are, however, limited to visual monitoring 

of candidates’ activities during an exam, per the scope of this work. 

2.5.1 Automated Online Exam Proctor 

The Automated Online Exam Proctor (Atoum et al., 2017) is a fully automated online exam 

invigilation system. With regard to visual monitoring, this system uses two cameras – a 

webcam (figure 2-1, right) and another camera, dubbed wearcam, fixed on spectacles (figure 

2-1, left). Using the input from these two cameras, the system performs the following 

invigilation tasks. 

First, it performs text detection to determine whether a candidate might be cheating using a 

book. Secondly, it performs gaze estimation to determine the approximate direction where a 

candidate is looking. And lastly, it performs phone detection to determine whether a candidate 

may be using a phone or a similar device. 

 

Figure 2-1: Automated Online Exams Proctor camera setup (Atoum et al., 2017) 
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2.5.2 The Exam Proctor Robot 

The Exam Proctor Robot (Rosen and Carr, 2013) is a small, inexpensive gadget (Figure 2-2). 

It contains a camera that can turn in both altitude and azimuth, thus providing a 360-degree 

coverage of a candidate's environment. It is also fitted with an array of acoustic sensors which 

provide 3-dimensional directional data of acoustic events, probably, to inform the system on 

where it should point the camera. 

This system does not, however, automate the detection of cheating. It only provides visual 

access to a candidate's environment. 

2.5.3 Massive Open Online Proctor 

The Massive Open Online Proctor (Li et al., 2015) is a proposed solution for online invigilation 

at the massive scale of Massive Open Online Courses (MOOCs). 

With regard to visual monitoring of the candidates’ behaviour, this system uses two cameras 

and a gaze tracker as input devices (figure 2-3). The cameras (circled in red) capture video of 

a candidate and his environment, and their input is used to perform action recognition. The 

Figure 2-2: The Exam Proctor Robot (Rosen and Carr, 2013) 
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gaze tracker (circled in green), on the other hand, captures eye gaze data which is analysed and 

classified as ‘cheating’ or ‘non-cheating’. 

2.6 Gaps in Existing Systems 

All the mentioned systems take a similar approach to tackle the problem of a limited view of 

candidates in online invigilation. They all attempt to increase this view so that invigilators have 

a more extensive view of candidates' environments. 

However, this approach requires these systems to use additional input devices besides the 

ubiquitous laptop webcam, for example, the additional cameras. This introduces problems such 

as increased cost and complexity, and reduced accessibility for some students. 

An automated invigilation system that uses only the input devices that come with a device (e.g., 

a laptop webcam and microphone), without requiring students to acquire external and 

additional devices, would make online invigilation accessible to a larger demographic of 

students. 

Figure 2-3: MOOP setup (Li et al., 2015) 
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2.7 Conceptual Framework 

The following is a conceptual framework of the proposed system. 

Figure 2-4: Conceptual framework 
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3 Research Methodology 

3.1 Introduction 

This section discusses the system development methodology used to develop the online 

invigilation application and the CNN model for detecting possible cases of cheating. 

It should be noted that a distinction is made between the development methodologies for the 

online invigilation application and the CNN model. 

3.2 System Development Methodology for the Online Invigilation Application 

The online invigilation platform was developed using the Lean Software Development (LSD) 

methodology. It is an Agile methodology that is guided by seven principles; these are - 

eliminate waste, amplify learning, decide as late as possible, deliver as fast as possible, 

empower the team, build integrity in and see the whole. It was chosen due to its emphasis on 

the elimination of waste (i.e., anything that does not add value, in this case, towards fulfilling 

the research objectives) and fast delivery. These were important to speed up the development 

process and shorten the feedback loop. 

On top of the LSD methodology, the Agile Software Development Life Cycle steps (figure 3-

1) was used. These steps are discussed in the following subsection. 

Figure 3-1: Agile Software Development Life Cycle 
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3.2.1 General Planning 

This step involved the establishment of the basic requirements for the online invigilation 

platform. 

It also involved an assessment of the project’s feasibility by estimating the time and resources 

required to fulfil the requirements and the complexity involved. 

3.2.2 Iteration Planning 

This step started each iteration. It involved choosing a requirement among those established in 

the previous step (usually, the most important one) and planning on it more comprehensively, 

such as by breaking it up into finer elements and scheduling. The chosen requirement would 

be the task carried out throughout an iteration. 

3.2.3 Design 

At this step, conceptual designs for an iteration’s requirement were developed using software 

architecture diagrams or mock-ups for user interface elements. Also, the tools, for example, 

libraries and frameworks, for implementing the iteration’s requirement were identified at this 

step. 

3.2.4 Development 

This step involved the actualization of the designs developed in the previous step by 

programming and using the tools identified in the previous step. 

3.2.5 Testing 

At this step, the developed software was assessed to determine whether it fulfilled the 

iteration’s requirement. 

Also, the code added to the system was assessed to ensure it was of good quality and to avoid 

the accumulation of technical debt. 

3.2.6 Deployment/Delivery 

At this step, the developed and tested software or feature was integrated into the rest of the 

system and deployed onto a platform from which it could be interacted with and reviewed. 

3.2.7 Review and Feedback 

This step marked the end of an iteration. It would involve an assessment of the progress towards 

the fulfilment of all the project’s requirements. Also, an assessment of the iteration’s success 
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would be done, factoring in the reviews of external parties like the project’s supervisor when 

it was given. The assessment performed at this stage would determine whether to start a new 

iteration. 

3.3 Development Methodology of the CNN Model 

The CNN model for detecting possible cases of cheating was developed using the following 

methodology. 

The steps involved are as follows. 

3.3.1 Data Collection 

This step involved searching for available secondary data of good quality and collecting 

primary data. 

3.3.2 Data Annotation 

Here the collected data, which would be in video form, would be broken down into 

frames/images. Then each frame would be annotated as either regular or irregular. A regular 

frame was one that showed no cheating, whereas an irregular frame was one that captured a 

candidate cheating. 

Data 

Collection 

Data Annotation 

Model 

evaluation 

Model 

Building and 

Tuning 

Model 

Training 

Figure 3-2: CNN Model development steps 
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3.3.3 Model Building and Tuning 

This step involved the assembly or tuning of a Convolutional Neural Network model. 

3.3.4 Model Training 

Here, the built or tuned model would be trained on a portion of the prepared dataset. 

3.3.5 Model Evaluation 

At this step, the trained model would be tested using the remaining portion of prepared data. 

The test results would then be compared to previous results. 

After this step, the process would restart from the model building or tuning step until 

satisfactory test results were obtained. 

3.4 System Development Tools and Technologies 

3.4.1 React 

React is a JavaScript framework for building user interfaces. It enables one to write 

maintainable and reusable user interface code easily and quickly. It also allows for easy 

integration with external tools. For these reasons, it was found to be a suitable choice for 

developing the online invigilation system's user interface. 

3.4.2 Laravel 

Laravel is a web application development framework that also provides tools and structures for 

building backend systems. It provides many out-of-the-box features and tools and is easy to 

use. Laravel was used to develop the system's backend; to perform things such as authentication 

and coordination of real-time communication between users' devices. 

3.4.3 WebRTC 

WebRTC is an open framework that allows real-time, peer-to-peer communication of data, 

including video, in a browser. It was used to develop the video streaming functionality that 

would allow invigilators to view candidates' live, as they take an exam. 

3.4.4 Pusher 

Pusher is a service that provides an Application Programming Interface (API) and the necessary 

infrastructure for sending real-time messages between devices. It was primarily used in 

establishing WebRTC connections. 
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3.4.5 TensorFlow, Tensorflow.js and Keras 

TensorFlow is an open-source machine learning platform that provides a plethora of tools and 

features that make it easy and fast to train, test and deploy machine learning models. 

Tensorflow.js is a JavaScript variant of TensorFlow. It allows deployment of models in a 

browser. It was used to deploy the CNN cheating detection model. 

Keras is a deep learning API running on top of TensorFlow that provides abstractions for deep 

learning models and tools for manipulating these models. It also provides an array of state-of-

the-art pretrained models without cost. It was used in the construction of the CNN cheating 

detection model. 

3.5 System Deliverables 

3.5.1 CNN Cheating Detection Model 

The CNN cheating detection model was the main contribution of this work. By analysing 

candidates' images, it detects whether a candidate might be cheating. It was required to be fast 

so that it could analyse images in real-time. It also had to be highly accurate to reduce false 

positives and, more importantly, false negatives. 

3.5.2 Candidate's Module 

The candidate's module captures and streams a candidate's video to an invigilator's device, thus 

allowing invigilators to monitor candidates live. It also uses the CNN model to detect and report 

when a candidate may be cheating. 

3.5.3 Invigilator's Module 

The invigilator's module receives the video stream from the candidate's module and displays it 

to the invigilator. It also receives alerts from the candidate's module when the CNN model has 

detected a possible cheating case. 
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4 System Analysis and Design 

4.1 Introduction 

This chapter contains the system requirements and the system analysis and design diagrams of 

the online invigilation system. 

4.2 System Requirements Analysis 

The main requirements of the online invigilation system are the following. 

4.2.1 Functional Requirements 

4.2.1.1 Detecting and Reporting Possible Cases of Cheating 

The system can detect possible cases of cheating that are within the scope mentioned in section 

1.7 of this document. This is done using the developed CNN model and image data taken from 

candidates’ webcams. 

Further, whenever the system detects a possible incident of cheating, it alerts the invigilator in 

real-time. 

4.2.1.2 Streaming Candidates’ Video to Invigilators 

The online invigilation system can stream candidates’ video to invigilators’ devices, for 

candidates and invigilators in the same exam session. This enables invigilators to view 

candidates live as they are taking an exam. This is achieved by using the WebRTC framework 

to establish peer-to-peer connections between the candidates and invigilators and then using 

those connections to stream video taken from the candidates’ webcams to the invigilator’s 

module. 

4.2.2 Non-functional Requirements 

4.2.2.1 Realtime 

The system works in real-time. First, the CNN model analyses candidates’ images in real-time. 

Second, invigilators can monitor candidates in real-time from their webcam video. And lastly, 

the system reports detected possible cases of cheating in real-time. This allows invigilators to 

act accordingly as soon as it is detected that a candidate may be cheating. 

4.3 System Analysis and Design Diagrams 

The following are the system analysis and design diagrams that were used. 
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4.3.1 Use Case Diagram 

The use case diagram shows the actions invigilators and candidates can perform on the online 

invigilation system. An invigilator can sign in, start an exam session, join the exam session, 

monitor candidates as they take an exam and receive alerts of possible cheating events, which 

are automatically detected by the system. A candidate can sign in and join an exam session. 

4.3.2 Sequence Diagram 

The sequence diagram below shows the sequence of interactions that can happen between the 

various modules and subsystems of the online invigilation system. 

First, an invigilator must create an exam session, after which they will get a unique code for 

the exam session. Using the code, the invigilator himself and candidates can join the exam 

session. When a candidate joins an exam session, the invigilator’s module is alerted. Once 

alerted, it initiates the establishment of a peer connection with the candidate’s module, from 

which it will get a candidate’s video stream. After this, while the exam is still in session, the 

candidate’s module will be continually capturing images of the candidate and using the CNN 

cheating detection model to analyse them for possible cases of cheating. If such a case is 

detected, then the candidate’s module will send an alert to the invigilator’s module. 

Figure 4-1: Use case diagram 
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Figure 4-2: Sequence Diagram 

4.3.3 Database Schema 

The system did not extensively use a database. The only uses of a database were to store 

invigilators’ and candidates’ credentials, and exam sessions’ data. The following is a database 

schema representing the database structure of the online invigilation system. 

 

Figure 4-3: Database Schema 
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5 System Implementation and Testing 

5.1 Introduction 

This section describes the implementation and testing details of the CNN cheating detection 

model and the online invigilation application. 

5.2 Implementation Environment 

5.2.1 Hardware Specifications 

The development of the CNN cheating detection model was done on T4 and P100 GPUs, about 

12 GB of RAM and about 145 GB of disk space, as provided by Google’s Colab Pro. 

The online invigilation application was developed and run on a device with a dual-core 2.0 

GHz CPU, about 8 GB of RAM and about 512 GB of disk space. 

5.2.2 Software Specifications 

As mentioned before, the CNN model was developed on Google’s Colab Pro application using 

TensorFlow and Keras. TensorFlow.js was used in deploying the model. 

The online invigilation application was developed on a device running Ubuntu 18.04 OS and 

was run and tested on Google’s Chrome browser. 

5.3 CNN Cheating Detection Model Implementation and Testing 

5.3.1 Dataset Preparation and Description 

This section describes the process followed in obtaining and annotating the data used to train 

and test the CNN model. It also describes the data itself. 

5.3.1.1 Data Collection 

Because of scarcity and inaccessibility of good quality secondary data, primary data was 

collected. A simple web application was developed and used in the collection process (see 

Appendix). Participants took a mock exam on the application using laptops with a webcam. To 

encourage cheating, the participants were asked to open a link to a website with the exam 

answers on their phones. Also, the questions were made intentionally difficult. 

Throughout the mock exam, the participants' video was being recorded and stored by the 

application. 
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14 participants participated in the data collection process, providing 19 videos. However, 5 of 

the videos were excluded because they did not meet the required standard of quality for reasons 

such as insufficient illumination or participants’ failure to follow the given instructions. The 

14 videos that met the quality requirements were split into two sets – the training and test set. 

The training set contained 9 videos while the test set contained 5. Of the 5 videos that 

constituted the test set, 3 were of participants whose videos were not also in the training set. 

5.3.1.2 Data Annotation 

The videos were broken down into frames/images with an appropriate frame rate. Then, using 

the Supervisely annotation software, each frame was labelled as either regular (no sign of 

cheating) or irregular (signs of cheating present). Signs of cheating were when a participant's 

direction of visual attention was off their laptop’s screen or keyboard and (probably) on their 

phone, to the left or right of their laptop or under their desk (figure 5-1, right). 

 

Figure 5-1: Left: A frame annotated as regular since the participant’s direction of visual attention is on their screen. Right: A 
frame annotated as irregular since the participant’s direction of visual attention is off their screen and to the left of their 
laptop. 

When this step was completed, the training set had 2890 and 2048 frames annotated as regular 

and irregular, respectively. The test set had 604 and 845 frames annotated as regular and 

irregular, respectively. The resulting complete dataset was dubbed the online exam cheating 

(OEC) dataset. 

Several images were excluded from the OEC dataset for being near-duplicates of others or for 

poor image quality, among other things. 
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5.3.2 Model Training 

5.3.2.1 Pre-Processing 

All frames underwent the following pre-processing operations. First, they were resized to 150 

by 150 pixel dimensions. Second, their pixel range was normalized to between 0 and 1. And 

lastly, because of the small size of the training dataset, data augmentation was used extensively 

to minimize overfitting. The data augmentation operations that were carried out were random 

horizontal flipping, zooming, translation, brightness variation, contrast variation and saturation 

variation. 

The three pre-processing operations – resizing, normalization and data augmentation – were 

made a part of the cheating detection model to improve the model’s portability and to reduce 

the complexity of deployment. However, the data augmentation operation was set to be active 

only during training. 

5.3.2.2 Model Architecture 

The CNN cheating detection model was built with a pretrained model as its base model so that 

it would benefit from transfer learning (Zhuang et al., 2020). Transfer learning was crucial due 

to the small size of the OEC dataset. The chosen pretrained model was a MobileNetV2 (Sandler 

et al., 2019) because of its high speed performance and relatively low memory and storage 

requirements. 

A global average pooling layer was placed on top of the base model to downsample the base 

model’s output. This approach was chosen instead of the more classic approach of using 

densely connected layers because, unlike the latter, it does not introduce new parameters, which 

may reduce the speed of the model and cause overfitting. 

The model’s last layer was a densely connected layer with one neuron, which used the sigmoid 

activation function to output the probability that a frame belonged to either the regular or 

irregular classes. 

The complete CNN cheating detection model architecture is shown in figure 5-2. 



24 
 

 

Figure 5-2: CNN cheating detection model 

5.3.2.3 Training Process 

The training of the model followed the following process. First, the pretrained base model 

(MobileNetV2) was frozen to prevent its weights from changing and thus maintain the 

information it contained. Then the cheating detection model was trained until it converged - so 

that it would learn to classify frames using the features extracted by the base model. 

After this, the model was fine-tuned. Fine-tuning involved unfreezing the base model then re-

training the entire model on the same dataset but with a very small learning rate. This was done 

to adapt the pretrained base model to the new dataset. 

5.3.3 Results and Discussion 

The CNN cheating detection model, when evaluated on the mentioned test set, yielded an 

accuracy of 79.92%, a precision of 74.79% and a recall of 89.01%. 

Other significant metrics that were looked at were the model’s parameter count and storage 

size. The parameter count was significant because it is a determinant of a model’s speed, which 

was itself important in this work since the model was meant to be run in real-time and therefore 

had to be fast. Storage size was significant because of the approach taken for deploying the 

model as is discussed in section 5.3.4. 

Table 1 shows the metrics of the cheating detection model when various top-grade pretrained 

models were used as its base model. MobileNetV2 yielded a relatively decent accuracy and 
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had the least parameter count and storage size. The best performing model, ResNet50V2, had 

10 times the parameter count and storage size of MobileNetV2. 

Base model Accuracy No. of Parameters Size (in MBs)1 

MobileNetV2 79.92 2,257,984    8.63 

MobileNet 80.54 3,229,889 11.66 

Xception 75.98 20,863,529 74.08 

ResNet50V2 86.13 23,564,800 83.93 

ResNet101V2 82.682 42,628,609 450.75 

InceptionV3 74.19 21,804,833 77.71 

Table 1: Comparison of top-grade pretrained models on the cheating dataset. 1Size was measured as the storage space of the 
files produced when the models were serialized. 2The accuracy for ResNet101V2, unlike the others, was a mean of three 
accuracy results due to their high disparity. 

Figure 5-3 shows an example of the cheating detection model’s output. The probability that a 

participant is cheating increases when their head and eyes are turned to the left or right of their 

device, or under their desk. It is lowest when their head and eyes are facing their device. 

 

Figure 5-3: Example of model prediction output. The closer to 0.0 the prediction is, the more likely the participant is cheating. 

5.3.4 Model Deployment 

For deployment, the trained and tested model was serialized using TensorFlow. Then, using 

TensorFlow.js tools, the serialized model was converted to a TensorFlow.js-compatible format. 

After that, the serialized model was placed in an online server, where it would be fetched by a 

browser and deserialized using TensorFlow.js into a working model. 

0.9892 0.9556 0.0069 0.9874 0.0881 

0.7410 0.0343 
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5.4 Online Invigilation Web Application Implementation and Testing 

5.4.1 Implementation 

5.4.1.1 Candidate’s Module 

The candidate’s module allows candidates to join an exam session. To do so, a candidate 

requires an exam session’s unique code which is generated when an invigilator creates an exam 

session. 

After a candidate joins an exam session, in the background, this module uses Pusher’s real-

time messaging functionality to establish WebRTC peer connections with newly joining 

invigilators’ devices. The module then uses established WebRTC peer connections to stream 

candidates’ video to invigilators’ devices for live monitoring. 

The candidate’s module is also responsible for loading and running the CNN cheating detection 

model. This involves fetching the serialized model and weight files from an online server, 

deserializing the files to form a working cheating detection model and providing the model 

with input, i.e., a candidate’s images. These functions are carried out using TensorFlow.js. 

Lastly, the module reports the CNN model’s output to present invigilator’s devices using the 

established WebRTC peer connections. 

5.4.1.2 Invigilator’s Module 

The invigilator’s module allows invigilators to create exam sessions or join on-going exam 

sessions. When an invigilator creates an exam session, he gets back a unique code for the new 

exam session, which candidates and other invigilators must use to join the exam session. 

After joining an exam session, this module, like the candidate’s module, uses Pusher’s real-

time functionality to establish WebRTC peer connections with newly joining candidate’s 

devices. Further, this module uses established peer connections to retrieve candidates’ live 

video streams and display them to an invigilator in an organized manner as shown in figure 5-

4. 
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Figure 5-4: Invigilator's module 'exam-room' page, where invigilator can view monitor candidates live. 

When a possible case of cheating is reported from the candidate’s module, this module receives 

the report and displays an alert to an invigilator in a noticeable way (figure 5-5). Further, it 

arranges candidate’s video streams so that the video streams of candidates with the highest 

reports of cheating appear at the top. 

 

Figure 5-5: Invigilator's module displaying report of possible incidents of cheating 
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5.4.2 Testing 

The implemented application was tested to verify that it meets its requirements. Black box 

testing was used. Tests were run manually. 

5.4.2.1 Candidate’s Module Test Cases 

Test Case Description Input Result Test 

Verdict 

Providing 

invalid exam 

session code 

When an invalid 

exam session code 

is provided, the 

system should 

display an error 

message to the user 

saying the code is 

invalid. 

Invalid exam 

session code 

The system displays 

an error message to 

inform the user that 

the provided exam 

session code is 

invalid 

Passed 

Providing valid 

exam session 

code 

When a user 

provides a valid 

exam session code, 

they should be 

redirected to the 

exam session to 

which the code 

belongs. 

Valid exam 

session code 

The user is 

redirected to the 

appropriate exam 

session 

Passed 

Candidate’s 

video streamed 

to invigilators 

When candidates 

join an exam 

session, the video 

from their webcams 

should be streamed 

to present 

invigilator’s 

devices. 

Manually 

joining an exam 

session having 

an invigilator 

present 

The video from the 

candidate’s webcam 

is streamed to an 

invigilator’s device 

Passed 

Reports 

detected cases 

of cheating to an 

invigilator 

When a candidate 

performs cheating 

activities that are 

within the specified 

Image input of 

candidate 

performing 

cheating 

Reports are sent to 

invigilator’s devices 

Passed 
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scope, a report 

should be sent to an 

invigilator’s device.  

activities taken 

from his 

webcam. 

 

5.4.2.2 Invigilator’s Module Test Cases 

Test Case Description Input Result Verdict 

Creating an 

exam session 

When an invigilator 

creates an exam 

session, the system 

should return the 

unique code for the 

new exam session. 

Manually create 

an exam session 

from the user 

interface 

The code for the 

exam session is 

displayed to the 

invigilator. 

Passed 

Providing 

invalid exam 

session code 

When an invalid 

exam session code is 

provided, the system 

should display an 

error message to the 

user saying the code 

is invalid. 

Invalid exam 

session code 

The system displays 

an error message to 

inform the user that 

the provided exam 

session code is 

invalid 

Passed 

Providing valid 

exam session 

code 

When a user 

provides a valid 

exam session code, 

they should be 

redirected to the 

appropriate exam 

session page. 

Valid exam 

session code 

The user is 

redirected to the 

appropriate exam 

session 

Passed 

Receives and 

displays 

candidates’ 

video streams 

When both 

invigilators and 

candidates are 

present in an exam 

session, the 

candidates’ live 

video should be 

Manually having 

both a candidate 

and an 

invigilator 

joining an exam 

session at the 

same time. 

Candidate’s video is 

played on the 

invigilator’s device 

Passed 
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played on the 

invigilators’ devices. 

Alerts are 

produced when 

cheating is 

detected 

When cheating is 

detected, an alert 

should be emitted, 

showing the specific 

candidate who may 

be cheating.  

Image input of 

candidate 

performing 

cheating 

activities. 

Alerts are produced, 

showing the 

candidate who may 

be cheating 

Passed 

 



31 
 

6 Conclusion, Recommendations, and Future Works 

6.1 Conclusion 

This work sought to reduce the effort required in the invigilation of online exams by developing 

an automated invigilator’s aid. To the extent of this work’s scope, as specified in this document, 

the researcher is of the view that this has been achieved. The developed system is able to 

automate the detection of possible cheating incidents as indicated by candidates’ direction of 

visual attention and to report such cases. However, it is also true that the developed system is 

not a comprehensive solution. There are many features that may be added to the system to 

enhance its effectiveness, efficiency and readiness for use in the wild. 

6.2 Recommendations 

It is recommended that more extensive data collection should be carried out so that a bigger 

and more diverse dataset is obtained for training and testing the cheating detection model. 

Further, if possible, the data should be collected in an environment and using a procedure that, 

as closely as possible, resemble an actual exam. This will ensure that the data reflects the real 

world as much as possible. 

It is also recommended that, if a bigger and more diverse dataset is available, more indicators 

of cheating should be considered. Also, the cheating detection model should be developed to 

classify, separately, each cheating activity, so that invigilators will additionally be alerted on 

what specific activity a purportedly cheating candidate may be performing. 

6.3 Future Works 

Future research should attempt to develop cheating detection models that can interpret video 

data and not just image data. The CNN + LSTM model and 3D CNN architectures mentioned 

in sections 2.4.2 and 2.4.3 are valid candidates for this. This will make the invigilation system 

more efficient, especially by reducing false positives. However, these models should be 

developed in view of their lower speeds and higher data requirements as compared to the model 

architecture used in this work. 

  



32 
 

7 References 

Allen, I.E., Seaman, J., 2007. Online Nation: Five Years of Growth in Online Learning 31. 

Asep, H.S.G., Bandung, Y., 2019. A Design of Continuous User Verification for Online Exam 
Proctoring on M-Learning, in: 2019 International Conference on Electrical Engineering 
and Informatics (ICEEI). Presented at the 2019 International Conference on Electrical 
Engineering and Informatics (ICEEI), pp. 284–289. 
https://doi.org/10.1109/ICEEI47359.2019.8988786 

Atoum, Y., Chen, L., Liu, A.X., Hsu, S.D.H., Liu, X., 2017. Automated Online Exam 
Proctoring. IEEE Trans. Multimed. 19, 1609–1624. 

Ba, S.O., Odobez, J., 2009. Recognizing Visual Focus of Attention From Head Pose in Natural 
Meetings. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39, 16–33. 

Balbuena, S.E., Lamela, R.A., 2015. Prevalence, Motives, and Views of Academic Dishonesty 
in Higher Education, Online Submission. 

Berry, R., 2008. Introduction, in: Assessment for Learning. Hong Kong University Press, pp. 
1–4. 

Carreira, J., Zisserman, A., 2018. Quo Vadis, Action Recognition? A New Model and the 
Kinetics Dataset. 

Chuang, C., Femiani, J., Craig, S., 2015. The Role of Certainty and Time Delay in Students’ 
Cheating Decisions during Online Testing. 

Chuang, C.Y., Craig, S.D., Femiani, J., 2017. Detecting probable cheating during online 
assessments based on time delay and head pose. High. Educ. Res. Dev. 36, 1123–1137. 
https://doi.org/10.1080/07294360.2017.1303456 

Crown, D.F., Spiller, M.S., 1998. Learning from the Literature on Collegiate Cheating: A 
Review of Empirical Research. J. Bus. Ethics 17, 683–700. 
https://doi.org/10.1023/A:1017903001888 

Donahue, J., Hendricks, L.A., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K., 
Darrell, T., 2016. Long-term Recurrent Convolutional Networks for Visual 
Recognition and Description. 

Freiburger, T.L., Romain, D.M., Randol, B.M., Marcum, C.D., 2017. Cheating Behaviors 
among Undergraduate College Students: Results from a Factorial Survey. J. Crim. 
Justice Educ. 28, 222–247. https://doi.org/10.1080/10511253.2016.1203010 

Kerkvliet, J., Sigmund, C.L., 1999. Can We Control Cheating in the Classroom? J. Econ. Educ. 
30, 331–343. https://doi.org/10.2307/1182947 

Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S., 2020. A Survey of the Recent Architectures 
of Deep Convolutional Neural Networks. Artif. Intell. Rev. 
https://doi.org/10.1007/s10462-020-09825-6 

Khan, H., Williams, J., 2006. Poverty Alleviation Through Access to Education: Can E-
Learning Deliver? SSRN Electron. J. https://doi.org/10.2139/ssrn.1606102 



33 
 

Li, X., Chang, K., Yuan, Y., Hauptmann, A., 2015. Massive Open Online Proctor: Protecting 
the Credibility of MOOCs Certificates, in: Proceedings of the 18th ACM Conference 
on Computer Supported Cooperative Work & Social Computing, CSCW ’15. 
Association for Computing Machinery, New York, NY, USA, pp. 1129–1137. 
https://doi.org/10.1145/2675133.2675245 

Mahony, N.O., Campbell, S., Carvalho, A., Harapanahalli, S., Velasco-Hernandez, G., 
Krpalkova, L., Riordan, D., Walsh, J., 2020. Deep Learning vs. Traditional Computer 
Vision. ArXiv191013796 Cs 943. https://doi.org/10.1007/978-3-030-17795-9 

Mccabe, D., Trevino, L., Butterfield, K., 2001. Cheating in Academic Institutions: A Decade 
of Research. Ethics Behav. - ETHICS BEHAV 11. 
https://doi.org/10.1207/S15327019EB1103_2 

McDowell, L., Sambell, K., 2014. Assessment for Learning Environments: A Student-Centred 
Perspective, in: Advances and Innovations in University Assessment and Feedback. 
Edinburgh University Press, pp. 56–72. 

Meng, C., Zhao, X., 2017. Webcam-Based Eye Movement Analysis Using CNN. IEEE Access 
5, 19581–19587. https://doi.org/10.1109/ACCESS.2017.2754299 

Prince, D.J., Fulton, R.A., Garsombke, T.W., 2009. Comparisons Of Proctored Versus Non-
Proctored Testing Strategies In Graduate Distance Education Curriculum. J. Coll. 
Teach. Learn. TLC 6. https://doi.org/10.19030/tlc.v6i7.1125 

Rosen, W.A., Carr, M.E., 2013. An autonomous articulating desktop robot for proctoring 
remote online examinations, in: 2013 IEEE Frontiers in Education Conference (FIE). 
pp. 1935–1939. https://doi.org/10.1109/FIE.2013.6685172 

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2019. MobileNetV2: Inverted 
Residuals and Linear Bottlenecks. ArXiv180104381 Cs. 

Smith, K., Ba, S., Odobez, J.-M., Gatica-Perez, D., 2008. Tracking the Visual Focus of 
Attention for a Varying Number of Wandering People. IEEE Trans. Pattern Anal. 
Mach. Intell. 30, 1212–29. https://doi.org/10.1109/TPAMI.2007.70773 

Software Secure, 2016. Eyes on Integrity A Comparative Look at Online Proctoring Models. 

Soomro, K., Zamir, A.R., Shah, M., 2012. UCF101: A Dataset of 101 Human Actions Classes 
From Videos in The Wild. 

Steve Kolowich, 2013. Behind the Webcam’s Watchful Eye, Online Proctoring Takes Hold 
[WWW Document]. Chron. High. Educ. URL 
https://www.chronicle.com/article/behind-the-webcams-watchful-eye-online-
proctoring-takes-hold/ (accessed 2.1.21). 

Toshev, A., Szegedy, C., 2014. DeepPose: Human Pose Estimation via Deep Neural Networks, 
in: 2014 IEEE Conference on Computer Vision and Pattern Recognition. Presented at 
the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
IEEE, Columbus, OH, USA, pp. 1653–1660. https://doi.org/10.1109/CVPR.2014.214 

Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M., 2015. Learning Spatiotemporal 
Features with 3D Convolutional Networks. ArXiv14120767 Cs. 



34 
 

Woldeab, D., Lindsay, T., Brothen, T., 2017. Under the Watchful Eye of Online Proctoring, 
in: Innovative Learning and Teaching: Experiments Across the Disciplines. 

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q., 2020. A 
Comprehensive Survey on Transfer Learning. ArXiv191102685 Cs Stat. 

 



35 
 

Appendix: Screenshots of the Data Collection Site 

 

Figure 0-1: Data collection site intro page 
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Figure 0-2: Data collection site test page 

 

Figure 0-3: Data collection site test page with cheat-sheet link shown. 
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