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Abstract

Self-supervised pre-training has been shown to improve the performance of vision
models on downstream tasks, especially where labelled data is scarce. It is therefore
particularly relevant in the earth observation and satellite imagery domain where,
though there are massive satellite imagery datasets, there are few and small labelled
datasets. We use context autoencoder (CAE), a masked image modelling self-
supervised pretraining scheme, on satellite imagery. Our experiments show that
CAE performs comparably to masked autoencoder (our baseline) on both the image
reconstruction pretext task and land-use classification downstream tasks, while
achieving slightly better performance on a flood mapping segmentation tasks. The
code is available at https://github.com/johnGachihi/satellite-cae.

1 Introduction

Pre-training has become increasingly important in building generalist models that can transfer
knowledge to various downstream tasks. These pre-trained models, however, not only generalise well
but also achieve higher accuracy on downstream tasks, especially where labelled data is scarce.

In the field of Earth observation and satellite imagery, there is a scarcity of large labelled satellite
image datasets at the scale of ImageNet. Therefore, tasks based on satellite imagery stand to benefit
from pre-trained models. Fortunately, there are massive open unlabelled satellite image datasets.
This, along with self-supervised pre-training strategies for vision tasks, has enabled the development
of pre-trained models which have been shown to improve performance in earth observation tasks
such as flood mapping and land-use classification [1, 2].

Masked Autoencoders (MAE) are effective self-supervised learners for developing pre-trained models
[3]. They learn by reconstructing images from a few random patches, which encourages understanding
local patterns in an image as well as its global context. Jakubik et al. [1] and Cong et al. [2] use MAE
on satellite image data and show superior performance in downstream earth observation tasks over
models trained from scratch.

The context autoencoder (CAE), an extension on MAE, has been shown to perform better on
downstream tasks compared to other self-supervised pre-training strategies, including MAE [4]. CAE
adds a ‘regressor’ component between its encoder and decoder, which encourages the responsibility
of representation learning to be on the encoder alone [4].

Despite superior performance over MAE on various downstream tasks outside the satellite imagery
domain, CAE has not been used on satellite image data and tasks. Therefore, we compare the
effectiveness of MAE and CAE pre-training strategies on satellite imagery by comparing their
transfer performance on two downstream tasks - flood mapping and land-use classification.

The data used for pre-training and evaluation on the downstream tasks are images of the earth captured
from the Sentinel-2 satellite platforms. The images contain reflectance values for 13 spectral bands
including near-infrared, shortwave-infrared, red, green and blue.
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2 Literature Review

2.1 Self-Supervised Pre-training

Pre-training is a process where a model is first trained on a large dataset to learn generalisable
semantic features before being applied to a specific downstream task. Pre-training gives a model
a head start by positioning it in a parameter space that biases it toward finding good minima on
downstream tasks [5]. Importantly, in cases where the downstream task’s training set is small and
deep models tend to overfit, pre-training leads to minima with more generalisable performance [5].

Self-supervised pre-training is a variant of pretraining in which a pretext task defines a method to
extract target labels directly from the data and a false task for which the model should be optimised.
Notably, self-supervised pretraining does not require labelled data and is therefore appropriate in
cases like ours where there is little labelled data but massive unlabelled datasets.

Many self-supervised pre-training strategies for computer vision have been proposed. These include
deep clustering methods [6, 7] which involve learning representations as part of an EM clustering
algorithm, spatial context prediction [8] involving the prediction, for example, of the spatial position
of an image patch given another patch of the same image, transform-based methods that involve the
prediction of applied transformations [9] or the original image given the transformed ones [10, 11],
and the recently popular contrastive methods [12, 13] involving learning representations that maximise
the similarity between augmented versions of the same image and disimilarity between different
images. He et. al [13] show that MoCo, a variant of the contrastive methods, outperformed all prior
self-supervised methods evaluated on fine-tuning accuracy on ImageNet-1K after pre-training on
ImageNet-1M.

Of more relevance to our work are masked image modelling methods.

2.2 Masked Image Modelling

Masked Image modelling (MIM) methods, motivated by BERT [14] in masked language modelling,
learn representations from images distorted by masking. Recent MIM methods are based on Trans-
formers. Dosovitskiy et al. [15], in the ViT paper, and Bao et al. [16] with BEiT, explore masked patch
prediction for self-supervised pre-training. BEiT outperforms previous self-supervised pre-training
methods, including MoCo [16], evaluated on fine-tuning accuracy on ImageNet-1K.

2.3 Masked Autoencoder

The masked autoencoder [3] a recent variation of MIM, is a ViT-based autoencoder that reconstructs
the original image given a masked version. First, as in standard ViT [15], an image is split into
regular non-overlapping patches. Then a set of patches is randomly sampled (without replacement)
following a uniform distribution, and the remaining patches are masked. The ratio of masked patches
is high (e.g. 75%). The patches are embedded as in standard ViT with the addition of a positional
embedding. The visible patch embeddings are processed by the MAE encoder’s Transformer blocks.
Then the visible patch embeddings outputted by the encoder along with the masked patch embeddings
are passed through the MAE decoder Transformer blocks to predict the pixel values of the masked
patches.

He et al. [3] show that MAE’s performance is much better than MoCo and slightly better than BEiT
on various downstream tasks, including semantic segmentation and classification.

2.4 Masked Autoencoders on Satellite Images

Several self-supervised pretraining strategies have been used on satellite imagery in prior work (e.g.
[17, 18, 19].) We focus on MAE, making the assumption that since it outperforms the others on the
ImageNet datasets it will outperform them on satellite imagery datasets too.

MAE has been used for satellite imagery in various ways. For example, Li et al. [20] build a
foundation model for Synthetic Aperture Radar (SAR) automatic target recognition by using MAE
on SAR data, Tseng et al. [21] build a lightweight foundation model pre-trained on optical, SAR,
NDVI, climate reanalysis, land cover and topography time series data, and Reed et al. [22] add to
standard MAE positional encodings and decoder to encourage scale-invariant representations.
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SatMAE [23], our baseline, uses MAE on multispectral Sentinel-2 satellite imagery with the optional
addition of a temporal dimension (i.e., a sequence of images). Compared to other pre-training
strategies and models, SatMAE performs significantly better on downstream classification tasks
and competitively on downstream segmentation tasks. In the classification task on fMoW-Sentinel,
SatMAE achieves a top-5 accuracy of 85.17% where the second-best performing pretraining strategy
(MoCo-v3 [24]) achieves 76.35%.

We select SatMAE as a baseline due to the accessibility of its pre-training dataset, which facilitates
reproducibility.

2.5 Context Autoencoders

Like MAE, Context Autoencoders learn by reconstructing masked images using an encoder that
takes in visible patches and outputs their representation, and a decoder that outputs the reconstructed
masked patches. However, CAE adds a “regressor" between the encoder and decoder. This regressor
takes the encoder’s output as input and uses it to predict the representations of the masked patches.
These predictions are then fed as input to the decoder, which uses them to reconstruct the masked
patches. The additional component in CAE— prediction of the masked patches’ representations
within the representation space of the encoder output, rather than reconstruction directly from the
encoder output as in MAE—encourages higher semantic understanding and also higher quality
representations from the encoder by encouraging the responsibility of representation learning to be
solely on the encoder.

Chen et al. [4] show CAE performs better than MAE on a variety of downstream tasks. For example,
in segmentation on the ADE20K dataset, CAE achieves a mIoU of 54.7% while MAE achieves
53.6%. In classification on the Clipart dataset, CAE achieves an accuracy of 81. 84%, whereas MAE
achieves 80.63%. We therefore seek to use CAE in the context of earth observation and compare its
performance to MAE on segmentation tasks, specifically flood mapping and land-use classification.

3 Dataset

3.1 Dataset for Pretraining and Land Use Classification

The fMoW Sentinel dataset was adopted for pre-training as in SatMAE. This dataset comprises
Sentinel-2 images with all 13 spectral bands and has 712,874 training images, 84,939 validation
images and 84,966 test images. The dataset for pretraining was uniformly sampled across various
geolocations from the full FMOW dataset, resulting in a subset of 380,606 images. This subset was
used to pretrain both the MAE and CAE models, ensuring diverse geographic representation in the
training data and validation was done on 84,967 images. The fMoW dataset comprises 62 scene
categories/classes, including airport, crop field, golf course, and zoo.

For land use classification, we utilized a subset consisting of 59,401 images for training, 15,678
images for validation and 84,967 images as the test-set, ensuring a robust evaluation of model
performance.

3.2 Datasets for Flood Mapping Downstream Task

The Sen1Floods11 dataset [25] was employed for the downstream flood mapping segmentation task.
This dataset includes image chips from Sentinel-1 and Sentinel-2, along with binary pixel-level flood
maps spanning 11 flood events across 14 biomes, 357 ecoregions, and 6 continents. For this study,
we utilized 252 images for training, 89 images for validation, and 90 images for testing.

4 Evaluation metrics

To evaluate the performance of our pretrained models (MAE and CAE), we use the Mean Squared
Error (MSE) during pretraining and accuracy or IoU (Intersection over Union) for downstream tasks.
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4.1 Pre-training

Mean Squared Error(MSE): Employed to measure the average squared difference between the
predicted pixel values and the ground truth. We used it in reconstruction tasks to evaluate how
accurately the model recreates the input image from its latent representations. For reconstruction
quality:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

where N : Total number of patches, yi: Ground truth value of patch i, ŷi: Predicted value of patch i

4.2 Fine-tuning

Accuracy measures the proportion of correct predictions among all predictions made by the model.
This metric was used to evaluate the model’s performance on land-use classification task:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP indicates correctly predicted flooded areas, TN non-flooded areas, FP false alarms, and
FN missed flooded areas.

Intersection over Union (IoU), also known as the Jaccard index, is our metric for evaluating flood
segmentation task performance. IoU is widely used in computer vision tasks like segmentation, object
detection, and tracking because of its ability to directly quantify the overlap between predicted and
ground truth regions

IoU =
Area of Intersection

Area of Union

where:
Area of Intersection: Pixels that are labeled as flooded in both the predicted mask and ground truth.
Area of Union: Total pixels labeled as flooded in either the predicted mask or the ground truth
(includes true positives, false positives, and false negatives).

5 Baseline Model

5.1 Architecture

The framework adopted the SatMAE framework which is based on MAE to pre-train multi-spectral
satellite imagery [26]. The approach shows improved performances for self-supervised learning by
up to 7% in comparison to the current state of art for existing benchmark datasets. Additionally, there
was 14% improvement for downstream remote sensing tasks such as land cover classification using
transfer learning. Unlike the MAE which usually processses RGB images, the SatMAE can process
images with multiple spectral bands like satellite images [3]. For instance the Sentinel-2 images has
13 bands with varying spatial resolutions and wavelengths.

To fully capture the information from each of the spectral bands, we used group channels which are
created by organizing the spectral bands into subsets. Each subset is processed to create a sequence
of embedded tokens. The subset tokens are then concatenated to create a final set of tokens for the
group channels which are used for spectral encoding. Compared to MAE, SatMAE does positional
encoding on each group channel by concatenating the spectral encoding information to the xk,i, yk,i
positions to obtain the final dimensional data which is then masked. The masking strategies used
for this experiment are consistent masking and independent masking. In consistent masking, each
image is masked separately with the regions masked being consistent across all the images while for
independent masking the regions masked differ across every image. The Figure 1 shows the MAE
layout as adopted in SatMAE.
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Figure 1: Masked Autoencoder (MAE) architecture. [26]

Adopting ViT transformer, 75% of the image is masked randomly following a uniform distribution.
The encoder maps the visible patches to their corresponding latent representations. The inputs to the
decoder are the latent representations of the visible patches and the mask tokens which are used for
the image reconstruction. The architecture of the decoder is flexible and independent to the encoder
as it’s only pretrained to do reconstruction. They are smallers in size in comparison to the encoder to
reduce pretraining time on reconstruction.

5.2 Loss Function

The loss function used for the baseline (MAE) is the mean squared error (MSE). This measures the
reconstruction accuracy by computing the squared difference between the ground truth image I and
the decoder’s reconstructed output Î , focusing only on the masked patches:

MSE =
1

N

∑
i∈M

(Ii − Îi)
2 (1)

where:

• I represents the original input image,

• Î is the reconstructed image produced by the decoder,
• M denotes the set of masked patches,
• N is the total number of pixels within the masked patches, and
• i indexes the pixels in the masked patches.

Unlike traditional approaches that evaluate loss across the entire image, the MSE here is computed
exclusively on the masked regions (i ∈ M ). The calculation operates on a per-pixel basis rather than
per-patch, allowing for finer-grained reconstruction evaluation. Furthermore, the normalization factor
N ensures that the loss is appropriately scaled, regardless of the number or size of masked patches.

5.3 Baseline Implementation

Following the setup detailed in the SatMAE paper, we implemented the MAE-based baseline model
for pretraining on multi-spectral Sentinel-2 imagery, specifically utilizing the FMOW-Sentinel dataset.
Our implementation does not necessarily use the original data size and splits for training, validation,
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and testing as detailed in dataset section, but it has followed the same pretraining pipeline, including
a masking ratio of 75% and reconstruction of masked patches using MSE loss.

Our baseline achieved an accuracy of 76.86% on the FMOW-Sentinel classification task after 30
epochs of fine-tuning, which is much less than the results reported in the original SatMAE paper. This
discrepancy reflects the inherent challenges of reproducing results due to variations in computational
resources which enforced the adaptation of smaller dataset size in pretraining and other computational
resources dependent parameters.

6 Proposed Model

6.1 Architecture

The proposed model for our task is the context autoencoder (CAE). The CAE works in two parts
namely; learning the encoder and completing pretraining tasks [4]. Similar to the MAE, the CAE
takes in a masked image which is fed to an encoder and images are reconstructed using a decoder.
However, the main difference is that the CAE has an addition of a regressor which predicts the
masked patches which makes the architecture an encoder-regressor-decoder as shown in Figure 2.

The encoder maps the visible part of the satellite images Xv to the latent representation Zv. We
adopt the vision transformer (ViT) for the encoder, similar to what was used in the original research
[4]. The ViT initially embeds the visible parts of the image by linear projection as patch embeddings
and then adds positional embeddings Pv. These combined embeddings are sent into a sequence of
transformer blocks which are based on self-attention to generate Zv .

The regressor predicts latent representations Zm for masked patches using visible patch repre-
sentations Zv from the encoder, conditioned on masked patch positions. The decoder is formed
from transformer blocks based on cross-attention, with learned mask tokens Qm serving as initial
queries for the masked patches. The keys and values are derived from Zv and previous mask queries.
Positional embeddings of masked patches help compute cross-attention weights, while Zv remains
unchanged throughout.

The decoder maps the latent representations Zm of masked patches to predicted masked patches
Ym. Like the encoder, it consists of transformer blocks based on self-attention, followed by a linear
layer for target prediction. The decoder uses only the latent representations of masked patches (from
the latent contextual regressor) and the positional embeddings of these patches, without directly
incorporating information from the visible patches.

Figure 2: Context autoencoder (CAE) architecture [4]
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6.2 Loss Function

The loss function employed for the CAE is the same as that defined for the MAE in Equation 1.
Evaluates reconstruction accuracy by calculating the square difference between the ground truth
image I and the reconstructed output Î , considering only masked patches.

6.3 Pre-training

The pre-training process utilized the Functional Map of the World (FMoW) dataset, consisting of
380,606 Sentinel-2 13-band images uniformly sampled across geolocations from the original dataset
used in [4]. While the original CAE was designed for RGB images, we adapted it to accommodate
the additional spectral channels present in satellite imagery.

A ViT-Base backbone with a patch size of P = 16 was used, resizing all images to 224× 224 pixels.
The model was trained for 100 epochs with a masking ratio of 0.75, aligning with what was used in
the original CAE method. The pre-training objective was to reconstruct the masked patches, with the
loss calculated exclusively on these regions using the mean squared error (MSE). The outcomes of
pre-training are discussed in the results section.

6.4 Fine-tuning

The fine-tuning process involved two downstream tasks: flood mapping and land-use classification.

For land-use classification, we used the FMoW-Sentinel dataset, described in the dataset section. The
model had a top-5% accuracy of 73.283% for, higher than 73.121% for MAE and 56.101% when
trained from scratch (without fine-tuning).

The loss function employed for land-use classification was the cross-entropy loss. The formula for
the cross-entropy loss adopted from PyTorch [27]:

CrossEntropyLoss = − 1

N

N∑
i=1

log

(
exp(xi)∑C
j=1 exp(xj)

)

where:

• xi is the raw output (logits) for class i.

• yi is the true class index.

• N is the number of samples in the batch.

• C is the total number of classes (62 classes in the dataset).

For flood mapping, we used the Sen1Floods11 dataset, which includes Sentinel-2 13-band images
paired with corresponding flood map labels. To address the class imbalance between ’flood’ and
’no-flood’ regions, we employed the weighted cross-entropy loss. The formula for this loss function
is:

CrossEntropyLoss = − 1

N

N∑
i=1

wyi
log

(
exp(xi)∑C
j=1 exp(xj)

)

where:

• C is the total number of classes, where C = {’flood’, ’no-flood’}.

• wyi is the class-specific weight, with w values set to w = [0.7, 0.3].

By assigning higher weights to the less frequent class (’flood’), this approach ensures that these
regions have a larger impact on the loss calculation, effectively mitigating class imbalances during
model training.
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7 Results

7.1 Pre-training

Fig. 3 shows the train loss graph by epoch for both CAE and MAE, and Table 1 shows the reconstruc-
tion loss (also the metric) of two schemes on the test set. We see that the reconstruction performances
are almost equal.

Figure 3: CAE and MAE train loss by epoch

Table 1: Reconstruction error on test set

Model Mean square error

CAE 1.0452
MAE 1.0426

Fig. 4 shows examples of reconstruction for both CAE and MAE.

(a) CAE reconstruction example

(b) MAE reconstruction example

Figure 4: Reconstruction examples for both CAE and MAE. We show the original image (left), the
masked image (middle) and the reconstructed image (right).
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7.2 Fine-Tuning

7.2.1 Land-Use Classification on fMoW-Sentinel

Fig. 5 shows the validation accuracy and loss graphs. We see that, whereas CAE and MAE have
similar performance, the from-scratch case performance is much worse. In Fig. 5a we see that
both CAE and MAE have a higher start, a higher slope, and converge at a higher accuracy than the
from-scratch model, showing that all the benefits of pre-training are achieved.

(a) Top-5 validation accuracy (b) Validation loss (cross-entropy)

Figure 5: Validation accuracy and loss

Table 2 shows the top-1 and top-5 accuracy for the three cases on the test set. We see that CAE and
MAE have similar performance, with MAE outperforming CAE on top-1 accuracy by 0.05%.

Table 2: Top-1 and top-5 accuracy on the test set
Model Top-1 Accuracy Top-5 Accuracy

CAE 46.168 73.283
MAE 46.210 73.121
from-scratch 28.504 56.101

Fig. 6 shows the train loss graph for CAE, MAE and the from-scratch case.

Figure 6: Train loss for classification on fMoW-Sentinel
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7.2.2 Segmentation on Sen1Floods11

Table 3 shows the performance of CAE, MAE and the from-scratch cases on the Sen1Floods11 test
set. For each case, we saved the model at each epoch during training and selected the one with the
best performance on the validation set. We see that CAE outperforms MAE by 0.82%. We also see
that at 50 epochs, the from-scratch case outperforms MAE.

Table 3: mIoU on the Sen1Floods11 test set
Model 35 epochs 50 epochs

CAE 77.68 77.68
MAE 76.86 76.86
From scratch 76.7 77.64

Figure 7: Validation mIoU on Sen1Floods11

Fig. 8 shows the train graphs for fine-tuning on Sen1Floods11.

(a) Train accuracy (b) Test loss

Figure 8: Train accuracy and cross-entropy loss on Sen1Floods11
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8 Discussion

Our experiments provide some insight into how CAE compares with MAE for satellite imagery
tasks. The pretext task results show similar reconstruction capabilities between CAE (MSE: 1.0452)
and MAE (MSE: 1.0426). This comparable performance is noteworthy. If the author’s claims are
true—that CAE’s encoder, unlike MAE’s, is solely responsible for representation learning—then
CAE’s encoder should be more powerful than MAE’s on downstream tasks.

In both downstream tasks, the architectures exhibited similar performance. CAE achieved marginally
lower accuracy in classification (46.168% vs 46.210%) and marginally higher mIoU in segmentation
(77.68% vs 76.86%). However, these modest improvements must be weighed against CAE’s higher
computational cost (for pre-training) introduced by its regressor.

Some factors that may have influenced our results are that (1) we did not implement CAE’s alignment
mechanism, and (2) we used MAE’s masking strategy on CAE rather than CAE’s native approach.
These factors, driven by time and resource constraints, probably put CAE at a disadvantage in our
experiments and should be implemented in future.

Lastly, ablations, especially on the downstream tasks, were limited by time and resources. Therefore,
the results presented should be viewed as preliminary rather than definitive.

9 Future Work

A significant limitation of our project was the constraints on resources and time, which restricted
the scope of our experiments. For future work, pretraining the two models for more epochs and
thoroughly evaluating their performance could provide more robust evidence to support the claim that
CAE outperforms MAE in multispectral satellite imagery tasks. Additionally, future efforts could
include implementing the alignment task in CAE, as proposed by [4]. This task aims to enhance
the performance of the encoder model, particularly for multispectral satellite imagery tasks, and
could further improve the effectiveness of CAE in this domain. Furthermore, we conducted only
a limited number of downstream tasks, focusing on land-use classification and flood segmentation.
Expanding the application of the pretrained models to additional satellite imagery downstream tasks
represents another promising direction for future work. Finally, pretraining the MAE and CAE
models on domain-specific data is anticipated to produce superior and more comprehensive results for
segmentation tasks compared to training models from scratch. This advantage arises from the ability
of pretrained models to adapt more effectively to the unique characteristics of the data, including
differences in input image resolution, thereby enhancing overall performance. .

10 Conclusion

The objective of this project was to compare the performance of CAE and MAE on satellite imagery
tasks. Our experiments show that CAE and MAE exhibit comparable performance when pretrained
for 100 epochs. Both models employed two pretraining subtasks: generating representations using
the encoder and reconstructing images using the decoder. As noted in future work, extending the
training to more epochs is expected to improve the performance of both models for pretraining
and downstream tasks. Additionally, the results demonstrate that pretrained models consistently
outperform models trained from scratch, emphasizing the benefits of pretraining. These advantages
include better initial performance (higher start), faster improvement during training (higher slope),
and superior final performance (higher asymptote). .

Notes

1Scovia Achan reviewed the CAE literature and contributed to its design and implementation. Maurine
Wanjiku configured and fine-tuned the baseline model (MAE). John Waithaka set up and ran the baseline model’s
pretraining experiments. M. Cynthia A. evaluated the CAE’s performance on classification and segmentation
tasks
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