
CHOOSING THE RIGHT
DEVELOPMENT BOARD
The zeitgeist of 1976 may well have been Punk Rock, but in
March of that year a small electronics company called Intel
released a single-board computer product called the SBC
80/10 that integrated all the support components required
by the 8080 microprocessor; including 1kbyte RAM, 4kbytes
user-programmable ROM and 48 lines of parallel digital I/O
with line drivers, plus a bus connector for expansion onto a
single board. There was a Software Development Kit hosted
on an Intel Intellec MDS 800 microcomputer development
system, which also supported the ‘ICE-80’ in-circuit emulator
for debugging.

What Intel were providing was both the first OEM single-
board computer (SBC) and a development board with
software development kit (SDK) all rolled into one. Which goes
to show that the development-kit zeitgeist has been around
longer than you may have expected: since the beginning of
the microcomputer revolution!

Why Use A Development Board?
So why have development kits been around for so long? Why
would you use one? To answer these questions, we need to
take a step back and define what we mean by a development
board.

When we talk about a development board, we mean a PCB
built around a target device, usually a microcontroller for
our purposes, designed to give a user easy access to the
myriad features the device may incorporate. These boards
will almost always include additional memory, Bluetooth/
WiFi, input-output headers and ports for I2C, SPI, cameras,
etc., LEDs, switches and a programming device connected to
USB; allowing the board to be powered and firmware to be
downloaded and debugged from a development PC.

Variations on the theme are evaluation boards, which tend to
be simpler boards (incorporating fewer extras and sometimes
just a peripheral device) and demo boards, which are usually
set up to highlight specific capabilities using a demonstration
application. There’s actually no hard distinction between
these board types, or indeed, a dev board and an SBC, though
the latter will tend to sport a microprocessor and memory
capable of running a full-blown operating system.

Why do manufacturers make these boards? It’s no secret:
chip makers want to sell silicon. As much as they can. To
get you to choose their silicon over anyone else’s for what
(hopefully) will be the next big thing, they want to make the
decision to choose them as frictionless as possible.

The aim of the development board is to flatten the learning
curve for deploying an application on the target device by as
much as humanly possible; allowing the user to go from zero
to hero in a matter of hours rather than weeks.

https://en.wikipedia.org/wiki/Punk_rock
http://www.dvq.com/docs/brochures/intel_sbc_80_10.pdf
http://www.dvq.com/docs/brochures/intel_sbc_80_10.pdf
https://www.computinghistory.org.uk/det/21821/Intel-Intellec-MDS-800-Development-System/
https://timeline.intel.com/1975/the-ice-80

Advantages
Modern dev kits give developers a host of advantages
unavailable to their engineering forebears, not least of
which is the ability to rapidly put together a proof-of-concept
prototype for a minimum viable product (MVP) without ever
touching a breadboard, let alone a soldering iron.

This is because most boards have an array of on-board
peripherals and at least one (and usually multiple)
standardised ecosystem expansion connectors that allow
users to simply plug-in their choice(s) from a bewildering
array of sensors, actuators and other analogue or digital
peripheral devices. These are well-designed and fully-tested
functional modules that use the likes of MikroElektronika™
mikroBUS connectors or Digilent Pmod™, SparkFun® Qwiic®
and SeeedGrove® system connectors for expansion.

Don’t have enough expansion connectors? If you’re using
a popular dev board, you can probably get a ‘shield’ board
that will connect onto the GPIO header and provide extra
expansion slots through GPIO lines.

Rapid prototyping has multiple benefits in itself. The most
obvious is a reduced time to market for promising ventures.
The flip-side is the ability to fail quickly: any projects that turn
out to have been ‘a good idea at the time’ but are really on a
hiding to nothing, can be retired early with a minimal loss of
investment in time and resources.

This is also an early opportunity to evaluate candidate
microcontrollers and peripherals for their suitability in
the intended application. For example, a sensor may turn
out to have much lower resolution in the down-and-dirty
of real life than the datasheet might suggest. Maybe the
processor is struggling to meet the demands of the MVP,
offering no ability to scale the capabilities of the application?
Alternatively, the processor may be way over spec, meaning
you could save 50₡ per device by using its little brother – that
will add up over a million units. All of these kinds of discovery
allow course corrections to be made early, at minimal cost.

Hardware
It’s unlikely that a user will incorporate a development board
into their final application: they are generally too bulky,
power-hungry and insecure with all those extraneous bells
and whistles that aren’t being used. After all, the point of the
board is to give a user access to as many of the target device’s
features as possible. But that doesn’t stop the development
board from still being useful to the final application.

In the pursuit of making things easy for the user, chip makers
will generally publish all aspects of the board design, from
schematics and part lists, to gerber files for the layout. This
can make many aspects of the final design ‘cut and paste’
from the original dev board design. Even if the user intends
to incorporate different supporting components (like DRAM
or flash) from those found on the development board, being
able to compare against an existing design can speed up
the design cycle. It may also spare the user some wire mods
on their first PCB spin, by highlighting a design foible for
an unfamiliar component that isn’t obvious from the part
documentation.

Software
The reality for many applications is that, aside from
the seductive casing, the main differentiator between
competitors is not the hardware (which often has near-
identical capabilities) but the firmware deployed on the
microcontroller. Whether it’s the richness of the features
or their novelty that separate a product from the also-rans,
the speed and ease of deployment depends heavily on
the software development kit (SDK) for the device and, by
extension, the dev board.

While it’s still possible for a hardcore old-schooler to build
cross-compiled projects, using makefiles, from the Linux
command line, most chip manufacturers have invested
heavily in visually appealing integrated development
environments (IDEs). Some are based on existing extensible
IDE’s with wide acceptance, like Eclipse; where others are
ambitious projects, unique and exclusive to the particular
manufacturer.

Many of the larger manufacturers are also supported by third
party development software suppliers like Kiel, Segger, IAR
Systems and Softlog Systems. From a user perspective, using
an Eclipse based IDE or third-party toolset has the advantage
of transferability: when you move from one device to another,
you won’t have to learn a new programming environment
as all the tools are right where you expect to find them.
This saves a lot of time as you get to grips with the different
register set and memory map on your new device.

Whether the application is going to run on bare metal, an
RTOS or embedded Linux, trialling a dev board’s SDK is an
early opportunity to decide if the libraries, drivers, APIs,
debugger and any hardware abstraction layers are a fit for
what you are trying to accomplish. If nothing else, you can
decide whether you like them or not – and let’s be real: you’re
going to be using these tools for some time, so it’s a good
idea to actually like using them.

https://eclipseide.org/
https://www.keil.com/
https://www.segger.com/
https://www.iar.com/
https://www.iar.com/
https://softlog.com/

ST Micro STEVAL-MKI235KA
First up is an evaluation kit from ST Micro, who are well
known in the industry for the quality of their Discovery
and Nucleo development Kits for their ARM based
microcontrollers. However, we’re going to look at the STEVAL-
MKI235KA Accelerometer Sensor Evaluation Kit.

Renesas Electronics RZ/Five Evaluation Kit
Our final example is the RZ/Five Evaluation Kit, which is at the
higher end of both cost and complexity. This kit consists of a
carrier board designed to break out the connections from a
SMARC v2.1 module board.

Infineon CYBT-243053-EVAL

This is an eval kit parred down to the components needed
to highlight the functionality of a sensor device. In this case,
the sensor is the LIS2DUXS12 which is a MEMS 3-axis linear
accelerometer. But the device also includes an ultra-low
power ASIC that provides an always-on antialiasing filter, a
finite state machine (FSM) and machine learning core (MLC)
with adaptive self-configuration (ASC), and an analogue hub
/ Qvar sensing channel. This kit especially highlights Qvar
sensing and gives the user a lot of scope to experiment with
the technology.

To break-out all this functionality, the eval board is laid
out to fit a standard DIL24 socket, like the one found on
its intended host, the STEVAL-MKI109V3 which is a MEMS
Adapter Motherboard compatible with all ST Micro MEMS eval
modules.

The motherboard is based around an ST Micro STM32F401VE
ARM Cortex-M4 microcontroller with DSP and FPU, allowing a
user to put any of the available sensors through their paces.
You could also use a X-NUCLEO-IKS01A3 expansion board, if
you already have a STM32 Nucleo board.

This is all supported by the X-CUBE-MEMS1 expansion
software package for ST’s STM32Cube software development
tools and includes drivers that recognize the sensors and can
collect temperature, humidity, pressure, and motion data.

Examples
The scope of development kits available is truly mind boggling but to illustrate a little of what we have been discussing,
it seems reasonable to shine a light on a trio of examples.

Moving up a little in terms
of eval board complexity, we
have the CYBT-243053-EVAL
board which is an Arduino
Uno sized module (complete
with Arduino-compatible
headers that can be used
with a compatible shield)
that showcases the AIROC™
CYBT-243053-02 system on
a chip (SoC).

SMARC modules are small form factor, low power computer
Modules. In this case the module supports a Renesas RZ/Five
(64-bit RISC-V CPU running at 1.0 GHz) with 1GB DDR4 main
memory, 64GB eMMC Memory, 16MB QSPI NOR FLASH and
a microSD connector. The module has an edge connector
that fits to the carrier board where a number of standard
connectors can break out the signals. These include Gigabit
Ethernet (x2), USB2.0, USC-C (power), PMOD (x2), audio in/out
and more. This is all supported by the RZ/Five Board Support
Package to get the software development up an running.

The carrier board can also be used to evaluate Renesas ARM
based SMARC modules.

This SoC is a Bluetooth® 5.0 module which has support for
Basic Rate (BR), Enhanced Data Rate (EDR @ 2/3 Mbps) and
extended SCO (synchronous connection orientated) links.
There is an Integrated onboard crystal oscillator and Arm®
Cortex®-M4 core with 256-KB on-chip Flash and 176-KB on-
chip RAM to run the royalty-free Bluetooth® 5.0 stack. All the
usual I/O is supported: 22 GPIOs plus I2C, SPI, I2S, UART, and
PCM interfaces. It also includes a Bluetooth® SIG qualified,
integrated PCB trace antenna.

The eval board provides an instant way to connect the
AIROC™ CYBT-243053-02 to a development PC and the
AIROC™ Bluetooth® SDK within ModusToolbox™ Software
which has a lot of example code to get you up to speed in
record time.

https://za.rs-online.com/web/c/?searchTerm=discovery+board
https://za.rs-online.com/web/p/sensor-development-tools/2657044?gb=s
https://za.rs-online.com/web/p/sensor-development-tools/2657044?gb=s
https://za.rs-online.com/web/p/processor-development-tools/2520398?gb=s
https://sget.org/standards/smarc/
https://za.rs-online.com/web/p/microcontroller-development-tools/1939792?gb=s
https://za.rs-online.com/web/p/communication-wireless-development-tools/2601008?gb=s
https://za.rs-online.com/web/p/bluetooth-modules/2601019?gb=s
https://docs.rs-online.com/fa53/A700000009184433.pdf
https://www.renesas.com/eu/en/software-tool/rzfive-board-support-package-v10-update1-510-cip
https://www.renesas.com/eu/en/software-tool/rzfive-board-support-package-v10-update1-510-cip

Conclusion
Development boards offer the shortest path to application success that any chip maker can provide. In many ways though,
when comparing similar target devices, the choice between manufacturers is going to be subjective for the user. Having used
similar devices before is often the biggest influence. Then there is the subjectivity of whose development tools ‘feel’ best to you.

The great thing is that dev boards give you the opportunity to easily try various options for their functional fit and ‘feel’ – often
at very low cost – before making that grand commitment to a product and software tool chain.

https://za.rs-online.com/web/content/m/electronics

