Continuous Delivery for Android
Applications

Introduction

Prerequisites

Requirements
Code

IDE

Project

Repository
Github

SSH
DD

Concepts
Tools

Example
Writing an Unit Test
Mockito
Adding Functionality
Continuous Integration
Tools
CircleCl
CircleCl setup
YML File
Ul Automation
Tools
Android Espresso
CircleCl Automation

Deployment
Tools

Hockeyapp

Setup hockeyapp account

Downloading the app

Versioning

Connecting with CircleCl
Conclusion

Notes

Introduction

| hear that phrase around the office place almost every day. Sometimes it seems it's more of
fashion statement than an actual description. And yet many companies claim that they do
continuous delivery, but what exactly is that?

Even at Sky, where | currently work, we struggle to perfect it to the level in which we would
be all satisfied.

Sky has dozens of different teams, APls, platforms, products and business propositions.
Managing efficient development is such an overpopulated space will always be an difficult
task.

That’'s why we need to automate as much as possible so we can concentrate on these
differences to get out the best from each developer in our teams.

In this article | will try to simulate issues we face on daily basis, but on a much smaller scale.

| will try to tackle this from bottom up by using 2 tools which | always find useful. storytelling
and code writing, the rest is just my poor attempt to be an article writer and mostly to fill the
gaps in between.

Those who get bored quickly might just download the sources, but you will still need to do
some work outside of the code itself to make it all happen:
https://github.com/beherithrone/calculator-cd-android

I'll start with an fictional company called “Skies” whose owners have an ambitious plan to
build the most amazing apps ever. They manage to hire first developer called “Hero”.

Prerequisites

Company wants to build amazing Calculator app initially
Company has zero infrastructure
Company has some money to spend, but would like to spend little and then scale it
up if necessary when it comes to tools
e Company wants to invest in building development teams

Requirements

e App should be “deployable” at any state
e Every commit to master should be deployable to stakeholder without manual step
e Initial setup should be as cheap as possible (= free)

At the end of this epic journey you should have good understanding of not only Continuous
Deployment, but also why and how to get there.

https://github.com/beherithrone/calculator-cd-android

“Once upon a time there was a developer called Hero who had to face 6
challenges in order to please his demanding manager and reach the holy
grail of Continuous Delivery. At first he had to write some code”

Code

Code is of course at the heart of any software development so we want to make sure the
environment to write is as optimized as possible.

IDE

There are several choices including Android Studio, Eclipse, Intellij and so on.

| use Android Studio
http://developer.android.com/tools/studio specifically 1.4 RC1 simply because it does what it
says on the tin.

Project

Ok, let’s set ourselves up with a simple project. We’'ll start with a blank activity project from
Android templates:

Android Studio => File => New Project => Next.. => Blank Activity => Finish

After the completed setup our project structure should look similar to this:

http://developer.android.com/tools/studio

DR « 4 Blfapp~|P 8 % 0L M L85 & ? Q
" calculator-cd-android EZapp) Blsrc} ; 1 uk.__ 57 sky » [paveljacko | [51 calculatcr:_ C MainActivity
ﬂ | Project -| (5 T - 3 I £ MainActivity java x Im
% ¥ [calculator-cd-android (~/Documents/DEVELD 1 package uk.sky.paveljacko.calculator; %
8 » [.gradle 2 . 8
® » [.idea 3 <import ... | =
| 9 |2
g b }g | public class MainActivity extends AppCompatActivity { g
2 12 @verride -
= 13 af protected void onCreate(Bundle savedInstanceState) { &
- 14 super,onCreate({savedInstanceState); 5
i 15 setContentView(R. layout.activity_main); &
e 16 } A
] 17 }
El 3 18
= uk.sky.paveljacko.calculator
hd| ¥ [Cares
~1drawable
¥ [Zlayout
* activity_main.xml
> mipmap-hdpi
[3 mipmap-mdpi
| 2 mipmap-xhdpi
> mipmap-xxhdpi
> mipmap-xxxhdpi
| 2 values
> values-wB20dp
:S'.'% AndroidManifest.xmi
> Ltest
| .gitignore
Il app.iml
@ build.gradle
E proguard-rules.pro
» [Cbuild
> gradle
gitignore
* build.gradle
& 71 calculator-cd-android.iml
'§ =l circle.yml
E deploy.sh
Al |yl gradle.properties
gradlew
gradlew.bat | =
I S : &
= .||l0cal.propert|es >
§ J README.md E‘
z =" settings.gradle =
2 |» gl External Libraries §.
| &
- [&] Terminal §| O: Messaées & B: Android Moni:o;' » TGDG 1 Event Log [¥] Gradle Console .
Q Gradle build finished in 1s 487ms (5 minutes ago) | 10:52 |LFs |UTF-8% Context: <no context> | v 8

We'll build a very simple Ul. Calculator

replace content of activity_main.xml with layout below:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmins:android="http://schemas.android.com/apk/res/android"
xmins:app="http://schemas.android.com/apk/res-auto"
xmins:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"
app:layout_behavior="@string/appbar_scrolling_view_behavior'
tools:context=".MainActivity"
tools:showIn="@layout/activity_main">

<TextView
android:id="@+id/txt_result"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:gravity="right"
android:text="0"
android:textSize="35sp" />

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="horizontal">

<Button
android:id="@-+id/btn_7"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="7" />

<Button
android:id="@-+id/btn_8"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="8" />

<Button
android:id="@+id/btn_9"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="9" />

<Button
android:id="@+id/btn_divide"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="/" />

</LinearLayout>
<LinearLayout

android:layout_width="match_parent"
android:layout_height="match_parent"

android:layout_weight="1"
android:orientation="horizontal">

<Button
android:id="@+id/btn_4"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="4" />

<Button
android:id="@-+id/btn_5"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="5" />

<Button
android:id="@-+id/btn_6"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="6" />

<Button
android:id="@-+id/btn_multiply"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="X" />

</LinearLayout>

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="horizontal">

<Button
android:id="@-+id/btn_1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="1" />

<Button
android:id="@-+id/btn_2"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="2" />

<Button
android:id="@-+id/btn_3"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="3" />

<Button
android:id="@-+id/btn_minus"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="-" />
</LinearLayout>

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="horizontal">

<Button
android:id="@+id/btn_0"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="0" />

<Button
android:id="@+id/btn_comma"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="." />

<Button
android:id="@+id/btn_equals"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="=" />

<Button
android:id="@-+id/btn_plus"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="+" />
</LinearLayout>

<Button
android:id="@-+id/btn_clear"
android:layout_width="match_parent"

android:layout_height="match_parent"
android:layout_weight="1"
android:text="Clear" />

</LinearLayout>

This is fairly ugly, but it's good enough for our purposes.
If you run the example it should look similar to this:

Calculator
0
7 8 9 /
4 5 6 X
1 2 3 -
0 = +
CLEAR

The calculator does nothing right now. It's time to add some code.

Replace code in MainActivity.class with code below:

package uk.sky.paveljacko.calculator;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget. Toolbar;

import android.view.View;
import android.widget. TextView;

public class MainActivity extends AppCompatActivity {

String result = "";

Float value = 0.0f;

Operator lastOperator;

TextView textView;

private boolean needsClear = true;

ButtonHolder[] numbers = new ButtonHolder([] {
new ButtonHolder(R.id.btn_0, 0),
new ButtonHolder(R.id.btn_1, 1),
new ButtonHolder(R.id.btn_2, 2),
new ButtonHolder(R.id.btn_3, 3),
new ButtonHolder(R.id.btn_4, 4),
new ButtonHolder(R.id.btn_5, 5),
new ButtonHolder(R.id.btn_6, 6),
new ButtonHolder(R.id.btn_7, 7),
new ButtonHolder(R.id.btn_8, 8),
new ButtonHolder(R.id.btn_9, 9)

h

ButtonHolder[] operators = new ButtonHolder[] {
new ButtonHolder(R.id.btn_divide, Operator.Divide),
new ButtonHolder(R.id.btn_minus, Operator.Minus),
new ButtonHolder(R.id.btn_multiply, Operator.Multiply),
new ButtonHolder(R.id.btn_equals, Operator.Equals),
new ButtonHolder(R.id.btn_plus, Operator.Plus)

h

ButtonHolder[] actions = new ButtonHolder[] {
new ButtonHolder(R.id.btn_divide, Operator.Clear),
new ButtonHolder(R.id.btn_minus, Operator.Comma),
new ButtonHolder(R.id.btn_clear, Operator.Clear)

h

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity main);
Toolbar toolbar = (Toolbar) findViewByld(R.id.toolbar);
setSupportActionBar(toolbar);

textView = (TextView) findViewByld(R.id.txt_result);

for(final ButtonHolder buttonHolder : numbers) {
findViewByld(buttonHolder.id).setOnClickListener(new View.OnClickListener() {
@0Override
public void onClick(View v) {
addNumber(buttonHolder.value);

}

s

for(final ButtonHolder buttonHolder : operators) {
findViewByld(buttonHolder.id).setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
addOperation(buttonHolder.operator);
}
%
}

for(final ButtonHolder buttonHolder : actions) {
findViewByld(buttonHolder.id).setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
doAction(buttonHolder.operator);

}
s
}
}

private void addNumber(int number) {
if(needsClear) {
result ="";
needsClear = false;
}

result += number;
updateResultText(result);

}

private void doAction(Operator operator) {
switch (operator) {

case Comma:
result +=".";
break;

case Clear:
result ="0";
needsClear = true;
value = 0.0f;
lastOperator = null;
updateResultText(result);

break;

private void addOperation(Operator operator) {
needsClear = true;
calculate();
lastOperator = operator;
updateResultText(value.toString());

private void calculate() {
if(lastOperator == null) {
value = Float.parseFloat(result);
return;

switch (lastOperator) {

case Plus:
value += Float.parseFloat(result);
break;

case Minus:
value -= Float.parseFloat(result);
break;

case Multiply:
value *= Float.parseFloat(result);
break;

case Divide:
value /= Float.parseFloat(result);
break;

private void updateResultText(String value) {
textView.setText(value);

}

private class ButtonHolder {
public int id;
public Operator operator;
public int value;
public ButtonHolder(int id, Operator operator) {

this.id = id;
this.operator = operator;
}
public ButtonHolder(int id, int value) {
this.id = id;
this.value = value;
}
}
private enum Operator {
Plus,
Minus,
Divide,
Multiply,
Equals,
Comma,
Clear

Build it and run it.
Great, we have a running and fully functional Calculator app!

“Hero succeeded in his first quest and now he can expand his Hero

team with good developers, but they cannot worK together efficiently”

Code

Repository

These days, building any larger scale project without some sort of versioning system is as
suicidal as eating a bunch of naga chilli hot wings day before your most important interview.
You will regret it, the question is just when. It will most likely be when your interviewer asks
“Do you have any questions?”

We have a couple of options: Git, Svn, CVS or Mercurial

| don’t remember the last time | used SVN or Mercurial so I'll stick with git and Github hosting
specifically.

Github

Github - it’s not just a code repository. It also acts as a ticket management tool as well. At
Sky, we recently migrated from Enterprise JIRA to github issues on some project and
feedback has been positive so far.

| assume every developer has an github account these days. It’'s the nerdy equivalent of
Facebook, just without the annoying videos of cute babies pooping around.

If you haven'’t already:
Walk out of your cave => Github => Sign up => Verify your email
Now, let’s create a new placeholder for our project:
Github => Repositories => New => calculator-cd-android => Create repository

At Sky we use the naming convention [name-subname-platform], but you can choose a
different one.
I'll call this project calculator-cd-android - how inventive is that!

0 This repository Search Pull requests Issues
androidautomationdev / calculator-cd-android

continuous deployment setup for android — Edit
D 1 commit ¥ 1 branch > Oreleases

Branch: master ~ | calculator-cd-android / +

Initial commit
2 androidautomationdev authored 13 days ago
B .gitignore Initial commit

[E) README.md Initial commit

README.md

calculator-cd-android

continuous deployment setup for android

© 2015 GitHub, Inc. Terms Privacy Security Contact Help

Gist A +- E

@ Unwatch v 1 “ Star 0 ¥ Fork ©

<> Code
&% 1 contributor
© Issues o
1) Pull requests 0
EE Wiki
latest commit 2feal72cef B

13 days ago
4~ Pulse

13 days ago
lili Graphs
1} Settings

SSH clone URL
gitegithub.com:ai [

You can clone with HTTPS, SSH,
or Subversion. @

] Clone in Desktop

&> Download ZIP

Status APl Training Shop Blog About Pricing

SSH

Now it’s time to clone your repo and for that you will need to set-up your SSH keys.

While you could use HTTP authentication to get what you need from the repo, we’ll need
SSH keys in later steps, so we better to do our homework right away (that is if you haven’t

done it already)

To setup a SSH keys just follow:

Github => Settings => SSH Keys => Add SSH Key

github has very simple and useful guide to do that:
https://help.github.com/articles/generating-ssh-keys/

Once done, you can finally clone your repo.

Note: make sure you copy SSH url not HTTPS!

As we already have our project set up locally the only thing left for you to do is to glue your
local code to the remote repo and upload the changes.

You can do it via command line by executing this in your root project folder:

$ git init

$ gitadd .

$ git commit -m "Initial commit"

$ git remote add REMOTE_SSH_REPOSITORY
$ git push origin master

NOTE: if you get git command not found you need to install git client:
https://qit-scm.com/downloads

Now you’re ready to go and everybody can contribute to your master branch!
All your team members can collaborate on one master branch.

$ git clone REMOTE_SSH_REPOSITORY

“They managed to collaborate together but soon after, the bugs arrived

and started to tearing their quest to pieces”

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/
https://git-scm.com/downloads
https://git-scm.com/downloads

TDD

In order to make sure | do not break existing functionality | need some mechanism to prevent
me and others from making silly and often costly mistakes.

Concepts

Anybody who is at least roughly familiar with TDD knows this good old rule:
1. write an unit test
2. make it fail
3. add functionality
4. make it pass
Well, in reality that is not always how it happens and the example above demonstrates this.

So we’ll add unit tests retrospectively to existing functionality, but we are going to use proper
TDD to rewrite it slightly.

Tools

There are plenty of tools around to help you with your TDD initiative:
Robolectric, Mockito, JUnit, Cucumber, Mock\WebServer, AssertJ

For purpose of this exercise I'll use JUnit and Mockito.
Example
If you run a test on your current app:
$./gradlew test
you’ll get :

$ BUILD SUCCESSFUL

$ Total time: 23.218 secs

Don’t be fooled as this just indicates that no tests failed which is correct as they do not exist
yet!

Let’s try write some code TDD style. Actually we are going to refactor current code to match
our TDD needs.
First make sure you select correct test artifact in Android Studio.

This will make sure you compile your Unit Tests with your code.

Now, what do we want to unit test? Well let's go back to your MainActivity.java

All logic is currently embedded there and we can see some calculations happening as well
as some Ul manipulations.

What if we want to create another mini widget which would do math calculations as well?

This would require us to duplicate same code, so let’s extract some piece of functionality into
a separate class. Welcome to the world of decoupling.

Writing an Unit Test

Create a new class called CalculatorEngine.java
and a new test class called CalculatorEngineTest.java

Your setup should look like this:

DHO #2 XHH QR ¢ Hi(Rae- /> B 0L 0 ¢ R s

- calculator-cd-android < | app | src [test » [*7 java ok 0 sky o 0 paveljacko) calculator 2
g | B Project | © | - I
:;:_.' [2 calculator-cd-android (~/Documents /DEVELOPMENT /Personal/CD-Android /calculator-cd-androi
G| » El.gradle
L2 > [.idea

| ¥ [Eapp
% » Ebuild
& Bl libs
§ v
| b [JandroidTest
o ¥ [main
é ¥ [Cjava
IE.._ ¥ [F1uk.sky.paveljacko.calculator
rl| £ & CalculatorEngine
v I & CalculatorEnginelistener

£ B MainActivity
» Cires
& AndroidManifest.xml
¥ [Jtest
¥ [Ojava
¥ [F7uk.sky.paveljacko.calculator
& & CalculatorEngineTest

g ' |2l .gitignore

g Il app.iml

‘.".Ig & build.gradle

| g,

4 | |=l proguard-rules.pro

= | Build Variants E .
=1

g

& Test Artifact: | Unit Tests o]
% Module Build Wariant

2

W% |C@ app) debug

Now let’s think about what do we want the calculator engine to do:
e It should do calculations
e it should NOT do Ul manipulations

Let’s think of an interface for this new class.
We already have some functions embedded in MainActivity.java :

private void addNumber(int number)

private void addOperation(Operator operator)
private void doAction(Operator operator)
private void calculate()

addNumber(), addOperation() and doAction() sound like a good public API for our
CalculatorEngine.java while calculate() might stay hidden behind.

We also need to communicate back to an interested party (in this case an Activity). We can
do it via several methods. In this example, I'll use a simple listener in which the Activity can
implement and the calculator engine can use.

Create CalculatorEngineListener.java interface and add only one method:

void updateResult(String value);

Your Activity can implement this interface and pass itself down to CalculatorEngine.java for
future observation via it's constructor.

So our final setup might look like this:

CalculatorEngine.java

package uk.sky.paveljacko.calculator;

public class CalculatorEngine {

private String result = "";
private Float value = 0.0f;

private Operator lastOperator;
private boolean needsClear = true;

private final CalculatorEngineListener listener;

public CalculatorEngine(CalculatorEngineListener listener) {
this.listener = listener;

public void addNumber(int number) {

}

public void addOperation(Operator operator) {

}

private void calculate() {

}

public void doAction(Operator operator) {

}

public enum Operator {
Plus,
Minus,

Divide,
Multiply,
Equals,
Comma,
Clear

CalculatorEngineListener.java

package uk.sky.paveljacko.calculator;

public interface CalculatorEngineListener {
void updateResult(String value);

}

MainActivity.java

package uk.sky.paveljacko.calculator;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;
import android.view.View;

import android.widget. TextView;

public class MainActivity extends AppCompatActivity implements CalculatorEngineListener {

private CalculatorEngine calculatorEngine;
private TextView textView;

ButtonHolder[] numbers = new ButtonHolder[]{
new ButtonHolder(R.id.btn_0, 0),
new ButtonHolder(R.id.btn_1, 1),
new ButtonHolder(R.id.btn_2, 2),
new ButtonHolder(R.id.btn_3, 3),
new ButtonHolder(R.id.btn_4, 4),
new ButtonHolder(R.id.btn_5, 5),
new ButtonHolder(R.id.btn_6, 6),
new ButtonHolder(R.id.btn_7, 7),
new ButtonHolder(R.id.btn_8, 8),
new ButtonHolder(R.id.btn_9, 9)

},.

ButtonHolder{] operators = new ButtonHolder[]{
new ButtonHolder(R.id.btn_divide, CalculatorEngine.Operator.Divide),
new ButtonHolder(R.id.btn_minus, CalculatorEngine.Operator.Minus),

new ButtonHolder(R.id.btn_multiply, CalculatorEngine.Operator.Multiply),
new ButtonHolder(R.id.btn_equals, CalculatorEngine.Operator.Equals),
new ButtonHolder(R.id.btn_plus, CalculatorEngine.Operator.Plus)

}!.

ButtonHolder[] actions = new ButtonHolder[J{
new ButtonHolder(R.id.btn_clear, CalculatorEngine.QOperator.Clear),
new ButtonHolder(R.id.btn_comma, CalculatorEngine.Operator.Comma),

}’.

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity _main);

textView = (TextView) findViewByld(R.id.txt_result);
calculatorEngine = new CalculatorEngine(this);

for (final ButtonHolder buttonHolder : numbers) {
findViewByld(buttonHolder.id).setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
calculatorEngine.addNumber(buttonHolder.value);
}
i
}

for (final ButtonHolder buttonHolder : operators) {
findViewByld(buttonHolder.id).setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
calculatorEngine.addOperation(buttonHolder.operator);
}
N
}

for (final ButtonHolder buttonHolder : actions) {
findViewByld(buttonHolder.id).setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
calculatorEngine.doAction(buttonHolder.operator);
}
o
}
}

@©Override
public void updateResult(String value) {
textView.setText(value);

}

private class ButtonHolder {
public int id;

public CalculatorEngine.Operator operator;
public int value;

public ButtonHolder(int id, CalculatorEngine.Operator operator) {
this.id = id;
this.operator = operator;

}

public ButtonHolder(int id, int value) {
this.id = id;
this.value = value;

}
}
}

MainActivity.java has now been simplified and is only responsible for making sure it's views
are being updated and clicking of the buttons gets passed down to the calculator engine.

Now it’s time to test CalculatorEngine.java, but you might have noticed that it does nothing!
That’s exactly what we want. Remember write your test first, then implement functionality.

Our CalculatorEngine.java is a black box which has 3 public inputs and 1 output in the form
of a listener. We can use any listener as long as it implements the
CalculatorEngineListener.java interface. For the sake of simplicity our MainActivity.java
is an actual listener.

Calling public APl methods is easy, but how exactly are we supposed to test the actual
listener? We have a couple of options:

e Fakes
e Mocks
Mockito

Mocking is one of the most powerful concepts available in TDD. It allows you to mock and
inject dependencies without altering the tested class internals. This acts as a little
endoscope allowing the doctor to see what’s going on in a patient’s body without performing
horrifying butchering up front, unless of course, he’s a Jack the Ripper type of character, in
which case | would withdraw the word “horrifying”.

Mockito is my favourite “endoscope” in this case.

In order to use it, we have to add it to our build.gradle dependencies:

testCompile "org.mockito:mockito-core:1.+"

Once we have synced, let’s write our first test:

package uk.sky.paveljacko.calculator;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.runners.MockitoJUnitRunner;

@RunWith(MockitoJUnitRunner.class)
public class CalculatorEngineTest {

@Mock
private CalculatorEngineListener listener;

private CalculatorEngine sut;

@Before
public void startUp() {
sut = new CalculatorEngine(listener);

}

@Test

public void testAddNumber() throws Exception {
//when
sut.addNumber(5);
Mockito.verify(listener).updateResult("5");
sut.addNumber(6);
Mockito.verify(listener).updateResult("56");
sut.addNumber(1);
Mockito.verify(listener).updateResult("561");

If you run this test (right click on CalculatorEngineTest.java and press run test...) you will
get a failure simillar to this:

Wanted but not invoked:

listener.updateResult("5");

Adding Functionality

Now let’s add some functionality to the empty method we’re trying to test. Let’s replace it
with:

public void addNumber(int number) {
if(needsClear) {
result ="";
needsClear = false;
}
result += number;
listener.updateResult(result);

}

now run it again and see the result:

Process finished with exit code 0

We’'ll add more tests and cover with additional missing functionality until we reach state
where we were before we applied TDD. A functional app.

The final code of our test would be:

CalculatorEngineTest. java

package uk.sky.paveljacko.calculator;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.runners.MockitoJUnitRunner;

@RunWith(MockitodJUnitRunner.class)
public class CalculatorEngineTest {

@Mock
private CalculatorEngineListener listener;

private CalculatorEngine sut;

@Before
public void startUp() {
sut = new CalculatorEngine(listener);

}

@Test

public void testAddNumber() throws Exception {
sut.addNumber(5);
Mockito.verify(listener).updateResult("5");
sut.addNumber(6);
Mockito.verify(listener).updateResult("56");
sut.addNumber(1);
Mockito.verify(listener).updateResult("561");

}

@Test

public void testPlusOperator() throws Exception {
sut.addNumber(6);
Mockito.verify(listener).updateResult("6");
sut.addOperation(CalculatorEngine.Operator.Plus);
sut.addNumber(4);
Mockito.verify(listener).updateResult("4");
sut.addOperation(CalculatorEngine.Operator.Equals);
Mockito.verify(listener).updateResult("10.0");

}

@Test

public void testMinusOperator() throws Exception {
sut.addNumber(7);
Mockito.verify(listener).updateResult("7");
sut.addOperation(CalculatorEngine.Operator.Minus);
sut.addNumber(3);
Mockito.verify(listener).updateResult("3");
sut.addOperation(CalculatorEngine.Operator.Equals);
Mockito.verify(listener).updateResult("4.0");

}

@Test

public void testMultiplyOperator() throws Exception {
sut.addNumber(2);
Mockito.verify(listener).updateResult("2");
sut.addOperation(CalculatorEngine.Operator.Multiply);
sut.addNumber(8);
Mockito.verify(listener).updateResult("8");
sut.addOperation(CalculatorEngine.Operator.Equals);
Mockito.verify(listener).updateResult("16.0");

}

@Test

public void testDivideOperator() throws Exception {
sut.addNumber(1);
Mockito.verify(listener).updateResult("1");
sut.addNumber(5);
Mockito.verify(listener).updateResult("15");
sut.addOperation(CalculatorEngine.Operator.Divide);
sut.addNumber(2);
Mockito.verify(listener).updateResult("2");
sut.addOperation(CalculatorEngine.Operator.Equals);
Mockito.verify(listener).updateResult("7.5");

}

@Test

public void testCommaOperator() throws Exception {
sut.addNumber(1);
Mockito.verify(listener).updateResult("1");
sut.doAction(CalculatorEngine.Operator. Comma);
Mockito.verify(listener).updateResult("1");
sut.addNumber(5);
Mockito.verify(listener).updateResult("1.5");

}

@Test

public void testClearOperator() throws Exception {
sut.addNumber(1);
Mockito.verify(listener).updateResult("1");
sut.addNumber(1);
Mockito.verify(listener).updateResult("11");
sut.doAction(CalculatorEngine.Operator.Clear);
Mockito.verify(listener).updateResult("0");

And

CalculatorEngine.java

package uk.sky.paveljacko.calculator;
public class CalculatorEngine {
private String result = "";
private Float value = 0.0f;
private Operator lastOperator;
private boolean needsClear = true;

private final CalculatorEngineListener listener;

public CalculatorEngine(CalculatorEngineListener listener) {
this.listener = listener;
}

public void addNumber(int number) {
if(needsClear) {
result ="";
needsClear = false;
}
result += number;
listener.updateResult(result);

}

public void addOperation(Operator operator) {
needsClear = true;
calculate();
lastOperator = operator;
listener.updateResult(value.toString());

}

private void calculate() {
if(lastOperator == null) {
value = Float.parseFloat(result);
return;

}

switch (lastOperator) {

case Plus:
value += Float.parseFloaf(result);
break;

case Minus:
value -= Float.parseFloat(result);
break;

case Multiply:
value *= Float.parseFloat(result);
break;

case Divide:
value /= Float.parseFloat(result);
break;

}
}

public void doAction(Operator operator) {
switch (operator) {
case Comma:
result +=".";
break;
case Clear:
result = "0";
needsClear = true;
value = 0.0f;
lastOperator = null;
listener.updateResult(result);
break;
}
}

public enum Operator {

Plus,

Minus,

Divide,

Multiply,

Equals,

Comma,

Clear

Re-run all tests, commit this to your repo and have a nice cup of coffee/tea/beer/lucozade,
you’ve passed half way through!

“Hero team stabilized their app, but as more developers started
committing at the same time, tests started failing on developers’

machines after synchronization.”

_.:.\
%

Code J=={ Repo J=={ TDD

Continuous Integration

The biggest issue of collaborating developers is surprisingly collaboration itself. How can you
make sure that changes introduced by one developer and similar changes done by other
developer at the same time will work well together?

It's time to fix this, and to do that we need some help. Say ‘hello’ to Continuous Integration.
The idea is that every commit to your branch would trigger a Cl build which executes your
tests and, therefore, your code is, well... “continuously integrated”.

Tools

There are plenty of Cl options from local ones like:

Jenkins, Hudson, Bamboo

To Hosted ones like:

CircleCl, Travis, Ship.io and so on.

Full list:

https://en.wikipedia.org/wiki/Comparison_of continuous_integration_software

All these hosted services are fairly new and choosing the right one probably comes down to
your requirements, current state of the tool as well as some personal preferences.

I've done a lot with Jenkins in the past, but recently I've got tired maintaining it. What can |
say.. I’'m getting older and lazier.

I've been using CircleCl for some time and | like it's “no maintenance, no hassle” benefits so
that | can concentrate on what | get paid to do (development).

https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software

CircleCl

CircleCl offers a fairly good amount of flexibility, but most importantly these 2 key
characteristics:

e Reliability
e Scalability

In our current Sky project, we managed to reduce the Jenkins build time from 1 hour to 15
minutes by using multiple containers and clever yml configurations.

CircleCl setup

Go to https://circleci.com/ and sign up.

Here is the cool part...you can log in using your github account instead of creating a new
account.

Connect CircleCl with Github:

CircleCl => Authorize with CircleCIl => Authorize

Once logged in, you can set your current master branch to build by CircleClI after each
commit;

CircleCl => Add new projects => Select your account => Build project

Once done you should see something like this:

https://circleci.com/

By Repo v Mine All

androidautomationde... 5

maste o

#& / Builds / androidautomationdev / calculator-cd-android / master / build &

++ Project Settings

androidautomationdev

Triggered by Started 13hoursago [Rel without cache jith
[pushed 2e1f121) ~

Previous 5 Duration 01:25 ,(Repc.’l;,\l
00:01 waiting + 00:00

Queued Status Failed
in gueue -

Parallelism 1x

Author Pavel Jacko

Commit Log circle.ym Queue (0001 Debug via S5H Test Failures ac

compare)
update ymifile 9e1f121 ©

infrastructure

<7 Starting the build

Start container

&

<4 Enable SSH

00:05

config 00:07

00:1

machine

checkout
¢4 Restore source cache cache 00:01
¢ Checkout using deploy key: ¢2:¢7:f8:69:50:78:d7:50:61:db:26:31:1¢:f5:18:36
config 00:02

Configure the build

I ¢ Setting Java version to OpenJDK 7

config 00:05

cache 00:03

Your project will fail initially because we’re missing the yml file and CircleCl is trying to use
the default one which is not what we need.

YML File

The yml file will act as a configuration file for CircleClI.

Let’s override it with our own implementation.
In your root project directory create the file circle.yml with this content:

machine:
java:

version: openjdk7
ruby:

version: 2.1.1
environment:

GRADLE_OPTS: '-Dorg.gradle.jvmargs="-Xmx2048m machine:
java:
version: openjdk7
environment:
GRADLE_OPTS: '-Dorg.gradle.jvmargs="-Xmx2048m -XX:+HeapDumpOnOutOfMemoryError"

dependencies:
pre:

- echo y | android update sdk --no-ui --all -filter
platform-tools,tools,android-23,build-tools-23.0.1,extra-android-m2repository,extra-android-support,extra-goog
le-m2repository

- chmod +x gradlew

cache_directories:
- ~/.android
- ~/.gradle
override:
- ./gradlew dependencies

test:
override:
- ./gradlew test --stacktrace;
- ./gradlew assembleDebug --stacktrace;

general:
artifacts:
- "**/build/outputs/apk"
- "**/build/outputs/mapping/**/**/mapping.txt"

In short, this file does the following:
e updates all dependencies
e runs all the tests
e saves the build artifacts (apk files)

Then commit and push your changes to the master branch.
CircleCl will automatically trigger its master branch which should pass successfully.

The outcome should look similar to this:

By Repo v Mine All A / Builds / androidautomationdev / calculator-cd-android / master / build 7 &b Project Settings

Q androidautomationdevy...

Tri d b Andreidautomationdey Started 5 minut (Rebund ‘ without cache
= riggere arte. minutes ago " a
master L 99 Y (pushed 95690ch) K

Previous 6 Duration 03:12
00:01 waiting + 00:00

Queued Status Fixed
in queue -

with ssh

Parallelism 1x
Author Pavel Jacko

Commit Log circle.yml Queue (00:01) Debug via SSH Test Failures Artifacts

v Container @/

~ home/
v ubuntu/
~ calculator-cd-android/
~ app/
v build/
- outputs/
- apk/
app-debug-unaligned.apk
app-debug. apk
0
Nz +
infrastructure
Q Starting the build 00:04
Q¥ Start container config 00:07
¥ Enable SSH 00:01
checkout
¥ Restore source cache cache 00:01
¥ Checkout using deploy key: c2:c7:f8:69:50:78:d7:50:61:db:26:31:1c:f5:18:36
config 00:01

machine ‘

And there you go, you now have Continuous Integration running and every commit will be
evaluated by an automated Cl job.

“Unit Tests were passing and the quest continued, but once the app
was delivered to stakeholders it would not behave as Hero's demanding

manager wished.”

ul

| Automation |

Ul Automation

Let's say your Product Owner wanted to make sure that when a user interacts with the
calculator, that the result display would state “Result is: 80.0” instead of “80.0” (for whatever
weird reason) and he is furious! How could this be missed?

The issue is that this was never covered by unit tests. This is a very Ul specific message and
had nothing to do with our CalculatorEngine.java functionality.

In order to cover User journeys we want to setup something which would simulate our
demanding manager and all our potential customers. That requires a different type of testing.
The one which interacts with final Ul and observe results on Ul “customer” scale rather than
on internal component “unit” scale.

Welcome to the world of Ul automation.

Let's make it clear from the start: Ul automation is hard. Not the writing of it, but everything
else surrounding it including maintenance, collaboration, dependencies, change of
requirements and so on.

| would compare it to an old light switch. You have to remember one cardinal rule: “/t is either
working 100% or 0%”. There is no inbetween, no compromise, no “just the little”. Your switch
is either on or off. If you commit your efforts to automation and you don’t use this rule, you
will waste time, effort and money.

This is definitely the most challenging part of Continuous Delivery.

Tools
Appium, Calabash, Android Espresso

Hosted Providers:
Sauce labs, Xamarin test cloud, AWS, Perfecto Mobile

The first and most important question you need to ask yourself is: “What are you trying to do
with Ul automation?”

Save development time? Build a stable app? Eliminate manual testing?

| see one main reason to introduce Ul automation and the clue can be found in its name. It’s
to “automate”

Don’t forget one of the requirements we had at the beginning:

As Ford’s introduction of the assembly line revolutionized the automotive industry, Ul
automation can revolutionize the process and speed of deploying apps to your customers.

Faster deployment = faster feedback = faster response.

Just like Darwin’s theory of evolution says, it's the ability to adapt to an ever changing
environment that ensures survival.

Thus it's the most responsive businesses which have the best chances of survival in the
jungle of ever changing technology evolution and competition.

By automating most of the usual time consuming journeys across the app you can shrink
your manual testing to exploratory testing at the point of major releases. Any hotfix or small
change could be dealt with automation alone.

While this is, of course, a theory, in practice this is much harder to achieve.
Nevertheless, we'll try to attempt to introduce Ul automation into our app.

Android Espresso

What is it? Well according to uncle google:
The Espresso testing framework, provided by the Android Testing Support Library, provides APls
for writing Ul tests to simulate user interactions within a single target app.

Before we start using it, we need to add new dependencies to our build.gradle file:

androidTestCompile ‘com.android.support:support-annotations:23.0.1"
androidTestCompile ‘com.android.support.test:runner:0.4.1'
androidTestCompile ‘com.android.support.test:rules:0.4.1"
androidTestCompile ‘com.android.support.test.espresso:espresso-core:2.2.1'

and update our config section:

defaultConfig {
applicationld "uk.sky.paveljacko.calculator"
minSdkVersion 16
targetSdkVersion 23
versionCode 1
versionName "1.0"

testinstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

Now it's time to add a new class to our src/androidTest folder. Let’s call it:
UseCalculatorBehaviorTest java

https://developer.android.com/tools/testing-support-library/index.html

Let's add some initial code to it:

package uk.sky.paveljacko.calculator;

import android.support.test.rule.Activity TestRule;
import android.support.test.runner.AndroidJUnit4;
import android.test.suitebuilder.annotation.LargeTest;

import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

import static android.support.test.espresso.Espresso.onView;

import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.withld;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

@RunWith(AndroidJUnit4.class)
@LargeTest
public class UseCalculatorBehaviorTest {

public static final String INITIAL_TEXT ="1",

@Rule
public ActivityTestRule<MainActivity> mActivityRule = new ActivityTestRule<>(
MainActivity.class);

@Test
public void checkInitalValue() {
onView(withld(R.id.txt_result)).check(matches(with Text(INITIAL_TEXT)));

}
}

Now if you run it (right click => run...) you will see the actual test run, but it will fail with a
message:
android.support.test.espresso.base.DefaultFailureHandler$AssertionFailedWithCauseError:
'with text: is "1" doesn't match the selected view.

Expected: with text: is "1"

Now if you have a keen eye you might spot the reason why:

public static final String INITIAL_TEXT ="1";

That’s not what we want. We expect “0”. Let’s update it and run it again:
Success

Running tests

Test running startedFinish

Good. We now have the correct Ul expectation and app which satisfies that; however, there
is one requirement which has not been satisfied.

Going back to the failed product requirement:

So let’'s update our automation to match it. Add a new test to your
UseCalculatorBehaviorTest. java:

@Test

public void checkOutcomeValue() {
onView(withld(R.id.btn_1)).perform(click());
onView(withld(R.id.btn_5)).perform(click());
onView(withld(R.id.btn_multiply)).perform(click());
onView(withld(R.id.btn_2)).perform(click());
onView(withld(R.id.btn_equals)).perform(click());
onView(withld(R.id.txt_result)).check(matches(withText("Result is: 30.0")));

Running this will result in an expected failure. Now it’s time to update our MainActivity.java
with additional code. Replace updateResult method content with this new line:

@Override
public void updateResult(String value) {
textView.setText("Result is: " + value);

}

Now you run it and bingo! All is green. Go and grab yourself a refreshment.

CircleCIl Automation

Now before we commit this, we want to make sure the same tests can be executed on
CircleCl. So it’s time to update the circle.yml file. Override the test section with this code:

test:
override:
- $ANDROID_HOME/tools/emulator -avd testing -no-window -no-boot-anim -no-audio:
background: true
parallel: true
- ./gradlew test --stacktrace;
- ./gradlew assembleDebug --stacktrace;
- ./gradlew assembleDebugAndroidTest --stacktrace;

Now it’s time to commit=>push and if everything goes well you should see the build pass
green. And we’re almost there!

“Hero team managed to build a stable app, commit often and according
to product requirements, but delivering the app to stakeholders was

still time consuming”

Deployment

Deployment

So how can we set up something which would allow us to deploy our app directly to our
stakeholders, trialists, or anybody interested without developers performing this task
manually?

Tools

There are couple of tools available to do this job:
HockeyApp, Google Play Alpha/Beta, Ship.io, Fabric, Appaloosa, TestFairy, Apphance etc.
They all vary in features and pricing.

Hockeyapp

I've been using Hockeyapp for some time and so far it suits my and my team’s needs.
It's easy to setup, manage, deployments are almost instantaneous and it supports both
Android and iOS.

Setup Hockeyapp account

Navigate to: http://hockeyapp.net/ and sign up
Once you pass all the setup screens you should be able to get to this initial dashboard:

http://hockeyapp.net/features/

S @ Pavel Jacko o
Dashboard
Apps Devices Feedback Statistics Teams Timeline
(2] B B =
Getting Started as a Developer
Organizations Every person who uses HockeyApp has their own user account. If you want to use HockeyApp in your organization, click or tap the
following button.
Create Organization
Personal Account Want to use HockeyApp with your personal account? Start your trial now with all features for free for 1 month. No credit card is
required.
| Start Trial
Create Team Teams help simplify workflows such as adding the same users to multiple apps. Any number of teams can be created and both
users and apps may belong to multiple teams.
Create Team
Register Device Don't forget to register all of your devices by opening rink.io/sEFXVJL on your Android, iOS, or Windows Phone devices.
Restricted builds can only be installed on registered devices and other developers may need your device ID to provision their
builds.
You are not a member or tester of any apps.
— =l Microsoft Welcome Support More

Create a new Team (you can called it “Stakeholders” for example):

HockeyApp => Dashboard => Create Team => invite members => Create

Create a new Organization:

HockeyApp => Dashboard => Create Organization => Save

@ Pavel Jacko O

Dashboard
pDasnpoard g i i
Apps Devices Feedback Statistics Teams Timeline

Cren o o

Getting Started as a Developer

Create Team Teams help simplify workflows such as adding the same users to multiple apps. Any number of teams can be created and both
users and apps may belong to multiple teams.

Create Team

Integrate SDK Integrate our open source SDK to collect crash reports, show update alerts for new beta builds, add a feedback view directly into
your app, and much more. For iOS and OS X apps, our native app, HockeyApp for Mac, will guide you through the process.

Start Integration HockeyApp for Mac

Upload Builds Quickly upload .ipa, .apk, and .zip files by dragging them directly on this page. The build will be automatically assigned to the right
apps by matching the bundle identifier or package name. You can also drag builds directly onto the app or version page of existing
apps.

Register Device Don't forget to register all of your devices by opening rink.io/sEFXVJL on your Android, iOS, or Windows Phone devices.
Restricted builds can only be installed on registered devices and other developers may need your device ID to provision their
builds.

You are not a member or tester of any apps.

<= BE \jirrncoft

< Welcome Support More
https://rink.hockeyapp.net/manage/dashboard

Now go to your CircleCl builds and download your latest build. It should be called
app-debug.apk:

CircleCl => pick latest build => Artifacts => app-debug.apk

Now go back to Hockeyapp, hit the “New app” button and drag and drop your apk over there:

HockeyApp => Dashboard => New App => drag and drop downloaded apk => Next

Once uploaded, you can perform a release.

Calculator-cd-android Android | Beta @ (6]

-

Version created from build.

4

App

Overview Versions 1 Crashes Feedback Users 2

Invite User Manage App

No version of this app is currently downloadable. Release version 1.0 (1) now?

Calculator-cd-android
com.paveljacko.calculator

App ID: 5c937d7c12343564943715d85db52d2f % Owner
Secret: Show i Calculator
Android

Download & Feedback Latest Downloadable Version beta
Private Page No version installable.
Latest Versions

Name Code Downloads Crashes Last Updated

1.0 1 0 @ 0 11 Oct 2015, 21:51

HockeySDK Integration

No statistics found. Please integrate HockeySDK to collect analytics, crash reports, and feedback:

Quick Integration Full Tutorial

Downloading the app

Getting the app from Hockeyapp is extremely easy, even for a non technical person (ahem,
that is once they manage to register).

Open the https://hockeyapp.net/apps in your phone browser and download the Android
version. Sign in/up with one of the invited emails you’'ve added to your team in the previous
step and accept the invitation.

Versioning

Those with a keen eye may have noticed one important value. “Code” which currently stands
at 1. This is a very important property. In order to allow people to install a new version of an
app on top of \an old one, each new app has to have a higher version code.

https://hockeyapp.net/apps

If you compare this to your build.gradle file you’ll notice the same version information:

defaultConfig {
applicationld "uk.sky.paveljacko.calculator"
minSdkVersion 16
targetSdkVersion 23
versionCode 1
versionName "1.0"

Sure, you could update this number manually every time you’re about to do a commit to
master but that go against our first requirement:

“Every commit to master should be deployable to stakeholders without manual steps”

So we need bit more clever setup. This is where gradle and git comes to rescue. Idea is that
each commit in git is countable and that sounds like perfect auto increment tool.

we’'ll add this code to the bottom of our app/build.gradle:

def computeVersionCode() {

try {
def p = Runtime.getRuntime().exec("qgit rev-list --all --count")

def result = p.waitFor()
if (result = 0) {

return 0 // no git revisions
}

return p.getinputStream().readLines().get(0).tolnteger()
} catch (ignored) {
return O;
}
}

def computeVersionName() {
def command = Runtime.getRuntime().exec("git rev-parse --short HEAD")
def result = command.waitFor()
return (result == 0) ? computeVersionCode() + "-" + command.inputStream.text.trim() : "nogit"

}

and the replace to versioning lines at the top of the file:

versionCode computeVersionCode()
versionName computeVersionName()

Additionally, to test it before we upload it to hockeyapp let's add little logging at the bottom:

task printVersion() {
print "\n**************** APP BUlLD VERS'ON ***********\n";
print "Version Code: " + computeVersionCode() + "\n";

print "Version Name: " + computeVersionName() + "\n";
print \n\n"

}

Now you can run any gradle command and you should see our initial log message similar:

$./gradlew test

kkkkkkkkkkkkhkkkk MOBILE BUlLD VERSION *kkkkkkkkkk
Version Code: 7
Version Name: 7-95690cb

My log indicates that I've done 7 commits on the master. each commit will bump up the
version code. Version code must be an integer but version name is string so we also
included part of the commit hash to be able to easily identify commit in the git history.

Ok, so far all good and we have last step in front of us. we need to automate the whole
upload process.

Connecting with CircleCl

At first, we need to generate HockeyApp token, go to:
HockeyApp => Account Settings => APl Tokens => Create

This should generate an (very long digit) APl token number for you at the bottom of the
page.

Now copy that and go back to your CircleCl:

CircleCl => Project Settings => Environment Variables
Name: HOCKEYAPP_TOKEN

Value: [add your api token value here]

=> Save variables

Now it’s time to add support for Hockeyapp deployment into your build:

To do this we’ll make some updates to our circle.yml file. To make things more readable
we’ll move hockeyapp script into separate file.
Create deploy.sh file in the root project directory and paste this code into it:

PRODUCT_NAME=hockey
NOTIFY="True"
NOTES="Build uploaded via the upload API"

echo "Downloading File..."
echo "Archives: ${CIRCLE_ARTIFACTS}"

if [II$1 "]

then
NOTES="$1"

fi

if [! -f "app/build/outputs/apk/app-debug.apk”]
then
echo "app/build/outputs/apk/app-debug.apk not found!"
else
echo "Uploading to HockeyApp..."
Jusr/bin/curl "https://rink.hockeyapp.net/api/2/apps/upload” \
-F ipa=@"app/build/outputs/apk/app-debug.apk” \
-F "status=2"\
-F "notify=1"\
-F "notes=Some new features and fixed bugs." \
-F "notes_type=0"\
-H "X-HockeyAppToken: ${HOCKEYAPP_TOKEN}" \
fi

Then add additional lines at the bottom of your circle.yml file:

deployment:
master:
branch: master
commands:
- ./deploy.sh

Now, if you commit/push this back to master repo and wait couple of minutes you should be
able to see magic in action. If you navigate to hockeyapp you should be able to see new app
version:

Calculator-cd-android Andreid| Beta @ O

Overview Versions 2 Crashes Feedback Users 2 Timeline

Invite User Manage App

Calculator-cd-android
com.paveljacko.calculator

App ID: 5c937d7c12343564943715d85db52d21 F Owner b,
Secret: Show i Calculator
Android
Download & Feedback Latest Downloadable Version beta
Private Page 16-9d36ee0 (16)
Latest Versions
Name Code Devices Downloads Crashes Storage Last Updated
16-9d36ee0 16 0 + 0 ® 0 1.11MB 12 Oct 2015, 14:39
1.0 1 0 a (o] 0 1.11MB 11 Oct 2015, 21:51

HockeySDK Integration

No statistics found. Please integrate HockeySDK to collect analytics, crash reports, and feedback:

Quick Integration Full Tutorial

And once you've done that your stakeholders can see a new app through their Hockeyapp
console and download it straight away.

Every new commit to master will automatically trigger the whole process. If it fails, no
deployment will happen and developers would be forced to fix the issue as soon as possible.
This forces the team to maintain a healthy codebase at all times.

To recap, we went from updating code and committing it to having it available to
stakeholders within 10 minutes through unit tests and Ul automation coverage.

| have good news for you:
1. We’ve completed our quest!
2. The fact that you are still reading this means you finished mentally unharmed.

“Hero and his team managed to reach the holy grail that they were
looking for - the mighty Continuous Deployment! Hero's team got pay
rises. Hero managed to get married during his annual paid holiday in

Las Vegas, and they all lived happily thereafter..at least until the next

recession”
Code Repo ™ TDD | : Ci % Automationd % Deployment
Conclusion

Continuous Delivery is not easy.

It reminds me of an F1 racing car. It's fast, it's powerful, it can deliver great results, but all
that comes at a price.

You have to maintain it and treat it with the respect it deserves.

And while it's powerful, it's also very fragile. You can’t just put your keys into an ignition and
drive it off to your local Tesco grocery shop. You need to know what you’re doing and you
need to know how to tweak it just right for your needs and current environment.

If you do it right, it will reward you with the ability to build products and release them to your
potential customers at the fraction of traditional development lifecycle times. It will also
greatly contribute towards making your team truly agile (having a daily standup # being
agile).

If you do not commit to it fully; however, you might just end up wasting a lot of precious time
on an imaginary holy grail which no matter how daunting it sounds, delivers only failed
promises.

Notes

This is a very simplistic scenario to demonstrate a basic idea of Continuous Delivery with a
working example.
It's real benefits will become more obvious as you start scaling your team and app.

As your app grows you might start to think about implementing tools which could support
larger project demands such as:

e Git Flow setup for sub branching

e Using fragments

e Applying MVC/MVP/MVVM architecture

Using crash logging tools like fabric or even Hockeyapp

Analytics

AB Testing

Google play deployment integration

Introduce BDD and Gherkin format to your tests

Dependency Injection tools (Dagger 2)

More enterprise Automation tool (Calabash, Appium)

Slack: message integration via CircleCl

..and an infinite number of other tools/frameworks/design patterns

Sky has it's well known slogan “Believe in Better”, but as far as | know the universe's fate is
sealed and pretty grim, so | would probably change it to “Believe in Continuous Delivery”.

Sources are available here:
https://github.com/beherithrone/calculator-cd-android

This story and its characters are definitely fictional (as far as | know).
Author: Pavel Jacko

Special thanks to Rhonda Hoonjan for editorial sanitisation.

https://github.com/beherithrone/calculator-cd-android

