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Why Do Streams Matter?

Disparate data is constantly being connected to drive predictions that keep us engaged!

In our world today, machine intelligence & personalization drive engaging 
experiences online
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Why Do Streams Matter?

The reality is that data growth has made it impractical to store all of this data in 
a single DB
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Why Do Streams Matter?

A key piece to the puzzle is data movement, which usually comes in 2 forms:

Batch Processing

Stream Processing

How do companies manage the complexity below?
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Why Are Streams Hard?
The answer lies in the image below : complexity, lots of moving parts
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Why Are Streams Hard?
In streaming architectures, implementation gaps in non-functional requirements can be 
unforgiving

You end up spending a lot of your time fighting fires & keeping systems up

If you don’t build your systems with the -ilities as first class citizens, you pay an 
operational tax

… and this translates to unhappy customers and burnt-out team members!
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Why Are Streams Hard?

Data Infrastructure is an iceberg 

Your customers may only see 10% of your 
effort — those that manifest in features 

The remaining 90% of your work goes 
unnoticed because it relates to keeping the 
lights on

In this talk, we will build high-fidelity 
streams-as-a-service from the ground up!
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Start Simple

Goal : Build a system that can deliver messages from source S to destination D

S D

But first, let’s decouple S and D by putting messaging infrastructure between them

ES D

Events topic
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Start Simple

Make a few more implementation decisions about this system

Operate at low scale

Kafka with a single partition

Kafka across 3 brokers split across AZs with RF=3 (min in-sync replicas =2)

Run S & D on single, separate EC2 Instances

ES D

Run our system on a cloud platform (e.g. AWS)



Start Simple

To make things a bit more interesting, let’s provide our stream as a service  

We define our system boundary using a blue box as shown below!

ÈS D
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Reliability

Goal : Build a system that can deliver messages reliably from S to D

ÈS D

Concrete Goal : 0 message loss

Once S has ACKd a message to a remote sender, D must deliver that message to  
a remote receiver



Reliability

How do we build reliability into our system?

ÈS D



Reliability

Let’s first generalize our system!

`A B Cm1 m1
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Reliability

`A B Cm1 m1

Treat the messaging system like a chain — it’s only as strong as its weakest link

How do we make each link transactional?

In order to make this system reliable

Insight : If each process/link is transactional in nature, the chain will be 
transactional!

Transactionality = At least once delivery
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Let’s first break this chain into its component processing links

B̀m1 m1

`Am1 m1

` C m1m1
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Reliability

Let’s first break this chain into its component processing links

B̀m1 m1

`Am1 m1

` C m1m1

C is an expel node



Reliability

But, how do we handle edge nodes A & C? 

B̀m1 m1

`Am1 m1

` C m1m1

What does A need to do? 

• Receive a Request (e.g. REST) 

• Do some processing 

• Reliably send data to Kafka 
• kProducer.send(topic, message) 
• kProducer.flush() 
• Producer Config 

• acks = all 

• Send HTTP Response to caller



Reliability

But, how do we handle edge nodes A & C? 

B̀m1 m1

`Am1 m1

` C m1m1

What does C need to do? 

• Read data (a batch) from Kafka 

• Do some processing 

• Reliably send data out 

• ACK / NACK Kafka 
• Consumer Config 

• enable.auto.commit = false 
• ACK moves the read checkpoint 

forward 
• NACK forces a reread of the same data
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Reliability

But, how do we handle edge nodes A & C? 

B̀m1 m1

`Am1 m1

` C m1m1

B is a combination of A and C

B needs to act like a reliable Kafka Producer

B needs to act like a reliable Kafka Consumer



`A B Cm1 m1

Reliability

How reliable is our system now?
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Reliability

How reliable is our system now?

If C crashes, we will stop delivering messages to external consumers!

What happens if a process crashes?

If A crashes, we will have a complete outage at ingestion!

`A B Cm1 m1
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`A B Cm1 m1

Solution : Place each service in an autoscaling group of size T

`A B Cm1 m1

T-1 concurrent  
failures



Reliability

`A B Cm1 m1

Solution : Place each service in an autoscaling group of size T

`A B Cm1 m1

T-1 concurrent  
failures

For now, we appear to have a pretty reliable data stream



But how do we measure its reliability?



Observability
(A story about Lag & Loss Metrics)

(This brings us to …)
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Lag : What is it?
Lag is simply a measure of message delay in a system

The longer a message takes to transit a system, the greater its lag

The greater the lag, the greater the impact to the business

Hence, our goal is to minimize lag in order to deliver insights as quickly as possible
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Lag : How do we compute it?
eventTime : the creation time of an event message 

Lag can be calculated for any message m1 at any node N in the system as  

lag(m1, N) = current_time(m1, N) - eventTime(m1)

`A B Cm1 m1

T0eventTime:
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Lag-in @  

A = T1 - T0 (e.g  1 ms) 
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C = T5 - T0 (e.g  10 ms)

Cumulative Lag



Lag : How do we compute it?

Lag-in @  

A = T1 - T0 (e.g  1 ms) 

B = T3 - T0 (e.g  5 ms) 

C = T5 - T0 (e.g  10 ms)

Lag-out @  

A = T2 - T0 (e.g  3 ms) 

B = T4 - T0 (e.g  8 ms) 

C = T6 - T0 (e.g  12 ms)
`A B C

Arrival Lag (Lag-in): time message arrives - eventTime

T1 T3 T5

Departure Lag (Lag-out): time message leaves - eventTime

T2 T4 T6

T0eventTime:

m1



Lag : How do we compute it?

Lag-in @  

A = T1 - T0 (e.g  1 ms) 

B = T3 - T0 (e.g  5 ms) 

C = T5 - T0 (e.g  10 ms)

Lag-out @  

A = T2 - T0 (e.g  3 ms) 

B = T4 - T0 (e.g  8 ms) 

C = T6 - T0 (e.g  12 ms)
`A B C

Arrival Lag (Lag-in): time message arrives - eventTime

T1 T3 T5

Departure Lag (Lag-out): time message leaves - eventTime

T2 T4

T0eventTime:

m1

E2E Lag

E2E Lag is the total time a message spent in the system

T6



Lag : How do we compute it?
While it is interesting to know the lag for a particular message m1, it is of little use 
since we typically deal with millions of messages



Lag : How do we compute it?
While it is interesting to know the lag for a particular message m1, it is of little use 
since we typically deal with millions of messages

Instead, we prefer statistics (e.g. P95) to capture population behavior
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Lag : How do we compute it?
Some useful Lag statistics are: 

E2E Lag (p95) : 95th percentile time of messages spent in the system  

Lag_[in|out](N, p95): P95 Lag_in or Lag_out at any Node N 

Process_Duration(N, p95) : Lag_out(N, p95) - Lag_in(N, p95)



m1 m1

Process_Duration Graphs show you the contribution to overall Lag from each hop

Lag : How do we compute it?
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Loss : What is it?
Loss is simply a measure of messages lost while transiting the system

Messages can be lost for various reasons, most of which we can mitigate!

The greater the loss, the lower the data quality

Hence, our goal is to minimize loss in order to deliver high quality insights
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Loss : How do we compute it?

Concepts : Loss 

Loss can be computed as the set difference of messages between any 2 
points in the system

m1m1m1m1m1m1
m1m1m1m1m1m1



Loss : How do we compute it?

Message Id E2E Loss E2E Loss %

m1 1 1 1 1

m2 1 1 1 1

m3 1 0 0 0

… … … … …

m10 1 1 0 0

Count 10 9 7 5

Per Node Loss(N) 0 1 2 2 5 50%

m1m1m1m1m1m1
m1m1m1m1m1m1



Loss : How do we compute it?

In a streaming data system, messages never stop flowing. So, how do we know when 
to count?
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Loss : How do we compute it?

Message Id E2E Loss E2E Loss %

m1 1 1 1 1

m2 1 1 1 1

m3 1 0 0 0

… … … … …

m10 1 1 0 0

Count 10 9 7 5

Per Node Loss(N) 0 1 2 2 5 50%

m1m1m1m1m1m1
m1m1m1m1m1m1

@12:34p



Loss : How do we compute it?

In a streaming data system, messages never stop flowing. So, how do we know when 
to count?

Solution 

Allocate messages to 1-minute wide time buckets using message eventTime 

Wait a few minutes for messages to transit, then compute loss 

Raise alarms if loss occurs over a configured threshold (e.g. > 1%) 
 

m1m1m1m1m1m1
m1m1m1m1m1m1

m1m1m1m1m1m11
m1m1m1m1m1m21

m1m1m1m1m1m31



We now have a way to measure the reliability (via Loss metrics) and latency (via Lag 
metrics) of our system. 

Loss : How do we compute it?

But wait…



Performance
(have we tuned our system for performance yet??)



Performance

Goal : Build a system that can deliver messages reliably from S to D with low latency

SSSS
SSSD

SSS…
SSS…

To understand streaming system performance, let’s understand the components of E2E Lag



Performance

Ingest Time

SSSS
SSSD

SSS…
S SS…

Ingest Time : Time from Last_Byte_In_of_Request to First_Byte_Out_of_Response 



Performance

Ingest Time

SSSS
SSSD

SSS…
S SS…

• This time includes overhead of reliably sending messages to Kafka

Ingest Time : Time from Last_Byte_In_of_Request to First_Byte_Out_of_Response 



Performance

Ingest Time Expel Time

SSSS
SSSD

SSS…
S SS…

Expel Time : Time to process and egest a message at D.



Performance

E2E Lag

Ingest Time Expel TimeTransit Time

SSSS
SSSD

SSS…
S SS…

E2E Lag : Total time messages spend in the system from message ingest to expel!



Performance

Ingest Time Expel TimeTransit Time

SSSS
SSSD

SSS…
S SS…

Transit Time : Rest of the time spent in the data pipe (i.e. internal nodes)



Performance Penalties
(Trading of Latency for Reliability)



Performance : Penalties

In order to have stream reliability, we must sacrifice latency! 

How can we handle our performance penalties?



Performance
Challenge 1 : Ingest Penalty 

In the name of reliability, S needs to call kProducer.flush() on every inbound API 
request 

S also needs to wait for 3 ACKS from Kafka before sending its API response

E2E Lag

Ingest Time Expel TimeTransit Time

SSSS
SSSD

SSS…
SSS…



Performance
Challenge 1 : Ingest Penalty 

Approach : Amortization 

Support Batch APIs (i.e. multiple messages per web request) to amortize the 
ingest penalty

E2E Lag

Ingest Time Expel TimeTransit Time

SSSS
SSSD

SSS…
SSS…



Performance

E2E Lag

Ingest Time Expel TimeTransit Time

Challenge 2 : Expel Penalty 

Observations 

Kafka is very fast — many orders of magnitude faster than HTTP RTTs 

The majority of the expel time is the HTTP RTT

SSSS
SSSD

SSS…
SSS…



Performance

E2E Lag

Ingest Time Expel TimeTransit Time

Challenge 2 : Expel Penalty 

Approach : Amortization 

In each D node, add batch + parallelism

SSSS
SSSD

SSS…
SSS…
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Concepts 

In order to run a zero-loss pipeline, we need to retry messages @ D that will 
succeed given enough attempts 
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Performance
Challenge 3 : Retry Penalty (@ D) 

Concepts 

In order to run a zero-loss pipeline, we need to retry messages @ D that will 
succeed given enough attempts

We call these Recoverable Failures

In contrast, we should never retry a message that has 0 chance of success! 

We call these Non-Recoverable Failures

E.g. Any 4xx HTTP response code, except for 429 (Too Many Requests)
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Challenge 3 : Retry Penalty 

Approach 

We pay a latency penalty on retry, so we need to smart about 

What we retry — Don’t retry any non-recoverable failures 

How we retry



Performance
Challenge 3 : Retry Penalty 

Approach 

We pay a latency penalty on retry, so we need to smart about 

What we retry — Don’t retry any non-recoverable failures 

How we retry — One Idea : Tiered Retries
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configurable number of times @ D

Global Retries 
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Performance - Tiered Retries

Local Retries  

Try to send message a 
configurable number of times @ D

If we exhaust local retries, D 
transfers the message to a Global 
Retrier

Global Retries 

The Global Retrier than retries 
the message over a longer span of 
time



`

E
SSSS

SSSD
RO

RI
SSSgr

Performance - 2 Tiered Retries

RI : Retry_In 
RO : Retry_Out



At this point, we have a system that works well at low scale

Performance
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Scalability
First, Let’s dispel a myth!

Each system is traffic-rated

The traffic rating comes from running load tests

There is no such thing as a system that can handle infinite scale

We only achieve higher scale by iteratively running load tests &  removing bottlenecks
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Scalability - Autoscaling
Autoscaling Goals (for data streams): 

Goal 1: Automatically scale out to maintain low latency (e.g. E2E Lag) 

Goal 2: Automatically scale in to minimize cost

Autoscaling Considerations

What can autoscale? What can’t autoscale?



Scalability - Autoscaling EC2

The most important part of autoscaling is picking the right metric to trigger 
autoscaling actions



Scalability - Autoscaling EC2
Pick a metric that  

Preserves low latency 

Goes up as traffic increases 

Goes down as the microservice scales out
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Scalability - Autoscaling EC2
Pick a metric that  

Preserves low latency 

Goes up as traffic increases 

Goes down as the microservice scales out

E.g. 

Average CPU 

What to be wary of 

Any locks/code synchronization & IO Waits

Otherwise … As traffic increases, CPU will plateau, auto-
scale-out will stop, and latency (i.e. E2E Lag) will increase



What Next?

We now have a system with the Non-functional Requirements (NFRs) that we desire!



What Next?
What if we want to handle  

• Different types of messages  

• More complex processing ( i.e. more processing stages) 

• More complex stream topologies (e.g. 1-1, 1-many, many-many)



What Next?

It will take a lot of work to rebuild our data pipe for each variation of customers’ needs!

What we need to do is build a more generic Streams-as-a-Service (STaaS) platform!



Building StaaS

Firstly, let’s make our pipeline a bit more realistic by adding more processing stages

SSSS
SSSD

SSS…
SSS…

Ingest Normalize Enrich Route Transform Transmit



Building StaaS
And by handling more complex topologies (e.g. many-to-many)

Normalize Enrich Route Transform

Transmit 
(T1)

Transmit 
(T2)

Transmit 
(T3)

Transmit 
(T4)

Transmit 
(T5)

Ingest (n1)

Ingest (n2)

Ingest (n3)



Building StaaS

This our data plane — it send messages from multiple sources to multiple destinations

Normalize Enrich Route Transform

Transmit 
(T1)

Transmit 
(T2)

Transmit 
(T3)

Transmit 
(T4)

Transmit 
(T5)

Ingest (n1)

Ingest (n2)

Ingest (n3)



Building StaaS
But, we also want to allow users the ability to define their own data pipes in this data 
plane



Building StaaS
Hence, we need a management plane to capture the intent of the users

Admin 
FE

Admin 
BE



Data  
Plane

Building StaaS
We now have 2 planes: a Management Plane & a Data Plane

Admin 
FE

Admin 
BE

Management  
Plane



Building StaaS
Hence, we need at least 2 planes : Management & Data

Data  
Plane

Admin 
FE

Admin 
BE

Management  
Plane



Building StaaS

Data  
Plane

Admin 
FE

Admin 
BE

Management  
Plane

Control  
Plane

P

We also need a Provisioner(P)



Building StaaS

Data  
Plane

Admin 
FE

Admin 
BE

Management  
Plane

Control  
Plane

P

We also need a Deployer(D)

D



Building StaaS

Data  
Plane

Admin 
FE

Admin 
BE

Management  
Plane

Control  
Plane

O

A

Finally, we can add systems to promote health and stability: Observer(O) & Autoscaler (A)

P

D



Building StaaS

Data  
Plane

Admin 
FE

Admin 
BE

Management  
Plane

Control  
Plane

O

A

Together these 4 services form the Control Plane

P

D



Building StaaS

The Control Plane Topology is a diamond-cross

Control  
Plane

O

D

A

P



Building StaaS

• The observer(O) is the source of truth for system health 

• It is aware of D, P, and A activity & may quiet alarms 
during certain actions
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D

A
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Building StaaS

• The observer(O) is the source of truth for system health 

• It is aware of D, P, and A activity & may quiet alarms 
during certain actions

Control  
Plane

O

D

A

P

• The system can also detect common causes of non-
recoverable failures & alert customers

• It can collect and monitor more complex health 
metrics than lag and loss. For example, in ML 
pipelines, it can track scoring skew



Building StaaS
• The deployer(D) deploys new code to the data plane 

• It can however not deploy if the system is unstable or 
autoscaling 

• It can also automatically roll back if the system becomes 
unstable due to deployment

Control  
Plane

O

D

A

P



Building StaaS
• The provisioner(P) deploys customer data pipes to the 

system.  

• It can pause if the system is unstable or autoscaling

Control  
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Building StaaS
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• The provisioner(P) can also control things like phased 
traffic ramp ups for new deployed pipelines



Conclusion



Conclusion

• We have built a Streams-as-a-Service system with many NFRs as first class 
citizens

• While we’ve covered many key elements, a few areas will be covered in future 
talks (e.g. Isolation, Containerization, Caching)

• Should you have questions, join me for Q&A and follow for more on 
(@r39132) 



Thank You for your Time
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