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Eliminating Bugs with 
Dependently Typed Haskell



The State of Software Engineering

• Modern software is growing quickly


• Engineering practices are not


• Software systems are complicated and 
difficult to reason about


• Code is too low level


• No good way to get a high-level view 
of the system



The Role of Types

• Static types prevent a program from 
crashing


• This is profound, prevents many bugs


• ...but can we do better?



The Role of Dependent Types

• Dependent types are types that can depend on values


• This allows them to express more properties about code


• Self-documenting


• Checked by compiler


• Critics claim that dependent types are not practical for real world use


• In this talk, we will refute those claims



Haskell @ Facebook

• Haskell is used to write abuse detection rules as part 
of a system called Sigma


• These rules prevent abuse such as spam, fake 
accounts, and fraud


• Correctness is crucial because code is deployed to 
production quickly in order to mitigate adversarial 
threats


• Sigma is large scale (over one million requests per 
second)



Programming with Dependent Types

• Goal: Express more invariants at the type level


• Haskell's type system is expressive, but it is not a fully dependently typed 
language


• Con: Cannot express everything at the type level


• Pro: More powerful type inference; GHC's constraint solver can automate 
the proof


• Formal verification provides strong guarantees, but is heavyweight



Examples



The Thrift IDL

• Thrift is an Interface Description Language


• Developers can define data structures and Remote Procedure Calls (RPCs)


• The Thrift Compiler translates Thrift code into code in some programming 
language (eg Haskell, C++, Python, etc)


• Sigma rules use extensively autogenerated Thrift code to fetch additional data 
needed to make decisions


• Correctness is crucial; bugs in the Thrift compiler cause abuse detection 
rules to behave unexpectedly



Thrift Examples
  

typedef i64 Id 

struct User { 
  1: Id id, 
  2: string name, 
  3: Pet pet, 
}  

enum Pet { 
  Dog = 0, 
  Cat = 1, 
}  

service MyService { 
  User getUser(1: Id id) 
} 

  

type Id = Int 

data User = User 
  { user_id   :: Id 
  , user_name :: String 
  , user_pet  :: Pet 
  }  

data Pet = Dog | Cat 

getUser :: Id → IO User  
getUser user_id = ... 



The Haskell Thrift Compiler

• The Haskell Thrift compiler uses dependent types in its internals to express 
correctness invariants


• The C++ Thrift compiler is used to compile Thrift to other languages


• The C++ implementation had many more bugs than the Haskell 
implementation including:


• Infinite loops


• Accepting ill-typed inputs


• Ambiguous behavior



Basic AST Design

• A basic AST for Thrift IDL code may define 
a Thrift type as shown on the right


• This AST is not very expressive


• Is this type wellformed?


• What does a value of type TInt look 
like?


• Is this named type a struct or an enum? 
Does it even exist?

  

data Type 
  = TInt 
  | TBool 
  | TString 
  | TList Type 
  | TMap Type Type 
  | TNamed String



Constrained Data Structures

• Using GADTs and Data Kinds, we can 
ensure that named types get properly 
resolved


• Base types and collections can be either 
resolved of unresolved


• Named types can only be unresolved


• After typechecking, all named types must 
be converted to type aliases, structs, or 
enums

  

data Status = Resolved | Unresolved 

data Type (u :: Status) where 
  TInt    :: Type u 
  TBool   :: Type u 
  TString :: Type u  
  TList   :: Type u → Type u 
  TMap    :: Type u → Type u → Type u  

  -- Unresolved Named Type 
  TNamed :: String → Type 'Unresolved 

  -- Resolved Named Types 
  TAlias 
    :: String → Type 'Resolved → Type 'Resolved  
  TStruct :: String → Type 'Resolved 
  TEnum   :: String → Type 'Resolved 



Bug: Infinite Loops

• The Thrift code on the right is invalid; the 
types X, Y, and Z form a loop


• When faced with this input, the C++ Thrift 
compiler diverged


• A correct solution requires topological 
sorting to find cycles


• In Haskell, the need to topological sorting 
was implied by the requirement for 
resolved types to be deeply resolved


• ie, TAlias "Y" (TNamed "X") is ill-typed

  

typedef X Y 
typedef Y Z 
typedef Z X 

X

YZ



Sync vs Async Rules

• Sigma rules execute in two rounds (sync 
and async) 


• Sync rules are run before a web request 
finishes and can affect the request (eg, tag 
with additional metadata)


• Async rules run after the request finishes 
and cannot affect the request (eg logging)
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Sync vs Async Code

• We use a GADT to express which rounds a 
response can be used in


• Tagging a request must happen in the sync 
round whereas logging can happen at any 
time


• The code example on the right is ill-typed 
because it attempts to tag content in an 
async rule


• Before the type-level distinction was 
introduced, hundreds of these bugs were 
present in the code

  

data RuleType = Sync | Async  

data Response (t :: RuleType) where 
  Tag :: Response 'Sync 
  Log :: Response t 

-- This code is ill-typed 
checkScore :: Double → [Response 
'Async] 
checkScore score =  
  if score > 0.9 then [Tag] else [] 

Expected 'Async, but got 'Sync



Associated Types

• We extend the Type GADT to include a 
second parameter


• This parameter tells us what a wellformed 
value looks like


• We associate this parameter with other 
types in function signatures to ensure that 
typechecked literals are wellformed


• Wellformed values can still go wrong, but 
this invariant is enough to prevent most 
accidental errors

  

data Status = Resolved | Unresolved 
data Bottom 

data Type (u :: Status) (t :: ★) where 
  TInt    :: Type u Int 
  TBool   :: Type u Bool 
  TString :: Type u String 
  TList   :: Type u t → Type u [t] 
  TMap    :: Type u k → Type u v → Type u (Map k 
v)  

  -- Unresolved Named Type 
  TNamed :: String → Type 'Unresolved Bottom 

  -- Resolved Named Types 
  TAlias 
    :: String → Type 'Resolved t → Type 'Resolved 
t 
  TStruct :: String → Type 'Resolved ??? 
  TEnum   :: String → Type 'Resolved ??? 



Associated Types
  

data UntypedConst 
  = IntLit Int 
  | StrLit String 
  | BoolLit Bool 
  | ListLit [UntypedConst] 
  | MapLit [(UntypedConst, UntypedConst)] 
  | Ident String 

data TypeConst t 
  = Identifier String (Type 'Resolved t) 
  | Literal t  

  

typecheckConst 
  :: Type 'Resolved t 
  →  UntypedConst 

  →  Either TypeError (TypedConst t)  

-- Wellformed Literals 
typecheckConst TInt (IntLit n) = 
  Right $ Literal n 
typecheckConst TString (StrLit s) = 
  Right $ Literal s 

-- Ill-typed! 
typecheckConst TInt (StrLit s) = 
  Right $ Literal s 



Typed Data Fetches

• Sigma uses a library called Haxl for async 
data fetching and caching


• Data fetch requests are represented as 
GADTs, each request declares its return 
type


• These data constructors are also used as 
cache keys, enabling type-safe lookups

  

data Request a where 
  GetName :: Id → Request String 
  GetPet  :: Id → Request Pet  

dataFetch :: Request a → Haxl a 
cacheLookup :: Request a → Haxl a 
cacheInsert :: Request a → a → Haxl () 

getName :: Int → Haxl String 
getName userId = 
  dataFetch $ GetName userId  



Type-Level Schemas

• GHC cannot trivially check 
wellformedness of structs and enums


• We need to dynamically generate a 
representation of their types


• This is possible using type-level schemas

  

data Status = Resolved | Unresolved 
data Bottom 

data Type (u :: Status) (t :: ★) where 
  TInt    :: Type u Int 
  TBool   :: Type u Bool 
  TString :: Type u String 
  TList   :: Type u t → Type u [t] 
  TMap    :: Type u k → Type u v → Type u (Map k 
v)  

  -- Unresolved Named Type 
  TNamed :: String → Type 'Unresolved Bottom 

  -- Resolved Named Types 
  TAlias 
    :: String → Type 'Resolved t → Type 'Resolved 
t 
  TStruct :: String → Type 'Resolved ??? 
  TEnum   :: String → Type 'Resolved ??? 

What can we put here?



Struct Schemas

• Wellformed structs have wellformed 
values for all of their named fields


• The kind of struct schemas is a type-level 
list of type-level string (of kind Symbol) 
and type (of kind ★) pairs


• This allows us to define schemas and 
values for structs that can be associated 
using a type of kind [(Symbol, ★)] 

• KnownSymbol allows us to get a runtime 
representation of the type-level string

  

data Schema (s :: [(Symbol, ★)]) where 
  SNil :: Schema '[] 
  SCons  
    :: ∀ (name :: Symbol) t s. KnownSymbol name 
    ⇒ Type 'Resolved t 

    → Schema s 
    → Schema ('(name, t) ': s)  

data StructVal (s :: [(Symbol, ★)] where 
  SVNil  
    :: Schema '[] 
  SVCons 
    :: ∀ (name :: Symbol) t s. KnownSymbol name 
    ⇒ Type 'Resolved t 

    → TypedConst t 
    → StructVal s  
    → StructVal ('(name, t) ': s)  



Typechecking Structs
  

typecheckStruct 
  :: Schema s 
  →  [(UntypedConst, UntypedConst)] 

  →  Either TypeError (StructVal s) 
typecheckStruct = ... 

typecheckConst 
  :: Type 'Resolved t 
  →  UntypedConst 

  →  Either TypeError (TypedConst t)  

-- Struct Case 
typecheckConst (TStruct _ schema) (MapLit fields) = 
  Literal <$> typecheckStruct schema fields  

  

userSchema 
  :: Schema 
     '[ ("id", Int) 
      , ("name", String) 
      , ("pet", (EnumSchema ...)) 
      ]  
userSchema = 
  SCons @"id" TInt 
  (SCons @"name" TString 
   (SCons @"pet" (TEnum "Pet" ...) 
    SNil))



Enum Schemas

• Wellformed enums can be one of many 
values


• An enum schema is a type-level list of 
allowed identifier names


• Typechecked enum values require a proof 
that the enum's identifier is a member of 
the schema list

  

data EnumSchema (s :: [Symbol]) where 
  ESNil :: EnumSchema '[] 
  ESCons  
    :: ∀ (name :: Symbol) s. KnownSymbol name 
    ⇒ Proxy name 

    → EnumSchema s 
    → EnumSchema (name ': s)  

data EnumVal (s :: [Symbol]) = 
  ∀ n. EnumVal String (MembershipProof n s)  

data MembershipProof x xs where 
  PHere :: MembershipProof x (x ': xs) 
  PThere  
    :: MembershipProof x xs 
    →  MembershipProof x (y ': xs)  



Typechecking Enums

• Typechecking an enum builds an inductive 
membership proof


• Building the proof introduces additional 
time and space complexity


• We could improve the runtime using a 
different type-level data structure, but it 
would complicate the code


• In practice, performance was not an issue

  

typecheckEnum 
  :: EnumSchema s 
  →  Proxy name 
  →  Maybe (MembershipProof name s)  
typecheckEnum ESNil _ = Nothing 
typecheckEnum (ESCons name s) name' =  
  case eqT name name' of 
    Just Refl → Just PHere 
    Nothing → PThere <$> typecheckEnum s name'  

typecheckConst 
  :: Type 'Resolved t 
  →  UntypedConst 
  →  Either TypeError (TypedConst t) 

-- Enum Case 
typecheckConst (TEnum schema) (Ident symbol) = 
  case someSymbolVal symbol of 
   SomeSymbol name →  
    case typecheckEnum schema name of 
     Just pf → Right $ Literal $ EnumVal symbol pf 
     Nothing → Left $ TypeError $ ...  



More Bugs: Enum Typechecking

• In the example on the right, the first two 
constants are valid, but the third is ill-
typed because X has no member with 
value 3


• The C++ Thrift typechecker would have 
accepted all of these inputs because it 
treated enums as integers


• In Haskell, this bug would not have been 
possible due to the requirement of 
building a membership proof

  

enum X { 
  A = 0, 
  B = 1, 
  C = 2, 
} 

// Valid Enum Values 
const X b_int = 1 
const X b_name = B 

// Type Error! 
const X invalid_value = 3 



More Bugs: Implicit Coercions

• In the code on the left, error_status 
appears to be an error, but it is actually Ok


• The C++ Thrift typechecker would have 
accepted this input


• In Haskell, it would be impossible to 
accept this code because ERROR is not a 
member of the schema for Status


• A bug of this nature was found in 
production due to the Haskell Thrift 
typechecker

  

enum Status { 
  Ok = 0, 
  Error = 1, 
}  

enum Result { 
  ERROR = 0, 
  OK = 1, 
} 

const Status error_status = ERROR 



More Bugs: Ambiguous References

• In Thrift, values from other modules must 
be qualified and enum values can be 
optionally qualified


• This leads to ambiguous behavior: is the 
value on the right equal to 0 or 12345?


• The C++ Thrift typechecker arbitrarily 
resolved these, leading to silent bugs

  

enum Animal { 
  Dog = 0, 
  Cat = 1, 
} 

// Is this 0 or 12345??? 
const i32 dog = Animal.Dog 

  

// Animal.thrift 

const i32 Dog = 12345 



Schematized Inputs

• Sigma rules receive inputs via untyped JSON 
input-maps


• This code can fail in two ways:


• The key may not be present in the input map


• The key may be present, but with a different 
type


• Lookup failures are very prominent in 
production


• Strongly typed inputs are difficult because of 
code sharing

  

-- Input Lookup API 
lookupInput :: FromJSON a ⇒ Text → Haxl a 

commenterIsFriend :: Haxl Bool 
commenterIsFriend = do 
  poster    ← lookupInput "PostAuthor" 

  commenter ← lookupInput "CommentAuthor" 
  poster `isFriendOf` commenter



Solution: Type-Level Schemas

• Schema is encoded as a constraint


• Code sharing is easy: just implement the 
Has type class for any underlying input 
type


• Lookups are pure, they can't fail at runtime


• The getter uses a visible type application 
(it takes no term arguments)


• This is a foreign concept to most Sigma 
developers, but the syntax is natural to 
use

  

-- Typesafe Lookup API 
get 
  :: ∀ (key :: Symbol) ty input. 
     Has key ty input 
  ⇒ ty 

commenterIsFriend 
 :: ( Has "PostAuthor" Id input 
    , Has "CommentAuthor" Id input 
    ) ⇒ Haxl Bool 

commenterIsFriend = do 
  let 
    poster = get @"PostAuthor" 
    commenter = get @"CommentAuthor" 
  poster `isFriendOf` commenter 



Conclusion

• The increasing complexity of modern codebases makes software difficult to 
reason about correctness


• Using dependent types is a practical way to eliminate bugs in production


• Current and future Haskell projects should take advantage of dependent 
types


• Given these promising results, other languages should increase the 
expressivity of their type systems



Thank you!


