
Noam Zilberstein
Facebook Programming Languages & Runtimes
YOW! Lambda Jam－May 6, 2021

Eliminating Bugs with
Dependently Typed Haskell

The State of Software Engineering

• Modern software is growing quickly

• Engineering practices are not

• Software systems are complicated and
difficult to reason about

• Code is too low level

• No good way to get a high-level view
of the system

The Role of Types

• Static types prevent a program from
crashing

• This is profound, prevents many bugs

• ...but can we do better?

The Role of Dependent Types

• Dependent types are types that can depend on values

• This allows them to express more properties about code

• Self-documenting

• Checked by compiler

• Critics claim that dependent types are not practical for real world use

• In this talk, we will refute those claims

Haskell @ Facebook

• Haskell is used to write abuse detection rules as part
of a system called Sigma

• These rules prevent abuse such as spam, fake
accounts, and fraud

• Correctness is crucial because code is deployed to
production quickly in order to mitigate adversarial
threats

• Sigma is large scale (over one million requests per
second)

Programming with Dependent Types

• Goal: Express more invariants at the type level

• Haskell's type system is expressive, but it is not a fully dependently typed
language

• Con: Cannot express everything at the type level

• Pro: More powerful type inference; GHC's constraint solver can automate
the proof

• Formal verification provides strong guarantees, but is heavyweight

Examples

The Thrift IDL

• Thrift is an Interface Description Language

• Developers can define data structures and Remote Procedure Calls (RPCs)

• The Thrift Compiler translates Thrift code into code in some programming
language (eg Haskell, C++, Python, etc)

• Sigma rules use extensively autogenerated Thrift code to fetch additional data
needed to make decisions

• Correctness is crucial; bugs in the Thrift compiler cause abuse detection
rules to behave unexpectedly

Thrift Examples

typedef i64 Id

struct User {

 1: Id id,

 2: string name,

 3: Pet pet,

}

enum Pet {

 Dog = 0,

 Cat = 1,

}

service MyService {

 User getUser(1: Id id)

}

type Id = Int

data User = User 
 { user_id :: Id 
 , user_name :: String

 , user_pet :: Pet 
 }

data Pet = Dog | Cat

getUser :: Id → IO User

getUser user_id = ...

The Haskell Thrift Compiler

• The Haskell Thrift compiler uses dependent types in its internals to express
correctness invariants

• The C++ Thrift compiler is used to compile Thrift to other languages

• The C++ implementation had many more bugs than the Haskell
implementation including:

• Infinite loops

• Accepting ill-typed inputs

• Ambiguous behavior

Basic AST Design

• A basic AST for Thrift IDL code may define
a Thrift type as shown on the right

• This AST is not very expressive

• Is this type wellformed?

• What does a value of type TInt look
like?

• Is this named type a struct or an enum?
Does it even exist?

data Type

 = TInt

 | TBool

 | TString

 | TList Type

 | TMap Type Type

 | TNamed String

Constrained Data Structures

• Using GADTs and Data Kinds, we can
ensure that named types get properly
resolved

• Base types and collections can be either
resolved of unresolved

• Named types can only be unresolved

• After typechecking, all named types must
be converted to type aliases, structs, or
enums

data Status = Resolved | Unresolved

data Type (u :: Status) where

 TInt :: Type u 
 TBool :: Type u 
 TString :: Type u

 TList :: Type u → Type u 
 TMap :: Type u → Type u → Type u

 -- Unresolved Named Type

 TNamed :: String → Type 'Unresolved

 -- Resolved Named Types

 TAlias

 :: String → Type 'Resolved → Type 'Resolved

 TStruct :: String → Type 'Resolved

 TEnum :: String → Type 'Resolved

Bug: Infinite Loops

• The Thrift code on the right is invalid; the
types X, Y, and Z form a loop

• When faced with this input, the C++ Thrift
compiler diverged

• A correct solution requires topological
sorting to find cycles

• In Haskell, the need to topological sorting
was implied by the requirement for
resolved types to be deeply resolved

• ie, TAlias "Y" (TNamed "X") is ill-typed

typedef X Y

typedef Y Z

typedef Z X

X

YZ

Sync vs Async Rules

• Sigma rules execute in two rounds (sync
and async)

• Sync rules are run before a web request
finishes and can affect the request (eg, tag
with additional metadata)

• Async rules run after the request finishes
and cannot affect the request (eg logging)

https://www.facebook.com/

Sync vs Async Rules

• Sigma rules execute in two rounds (sync
and async)

• Sync rules are run before a web request
finishes and can affect the request (eg, tag
with additional metadata)

• Async rules run after the request finishes
and cannot affect the request (eg logging)

https://www.facebook.com/

Σ

Sync vs Async Code

• We use a GADT to express which rounds a
response can be used in

• Tagging a request must happen in the sync
round whereas logging can happen at any
time

• The code example on the right is ill-typed
because it attempts to tag content in an
async rule

• Before the type-level distinction was
introduced, hundreds of these bugs were
present in the code

data RuleType = Sync | Async

data Response (t :: RuleType) where

 Tag :: Response 'Sync 
 Log :: Response t 

-- This code is ill-typed

checkScore :: Double → [Response
'Async]

checkScore score =

 if score > 0.9 then [Tag] else []

Expected 'Async, but got 'Sync

Associated Types

• We extend the Type GADT to include a
second parameter

• This parameter tells us what a wellformed
value looks like

• We associate this parameter with other
types in function signatures to ensure that
typechecked literals are wellformed

• Wellformed values can still go wrong, but
this invariant is enough to prevent most
accidental errors

data Status = Resolved | Unresolved

data Bottom

data Type (u :: Status) (t :: ★) where

 TInt :: Type u Int 
 TBool :: Type u Bool 
 TString :: Type u String

 TList :: Type u t → Type u [t] 
 TMap :: Type u k → Type u v → Type u (Map k
v)

 -- Unresolved Named Type

 TNamed :: String → Type 'Unresolved Bottom

 -- Resolved Named Types

 TAlias

 :: String → Type 'Resolved t → Type 'Resolved
t

 TStruct :: String → Type 'Resolved ???

 TEnum :: String → Type 'Resolved ???

Associated Types

data UntypedConst

 = IntLit Int 
 | StrLit String

 | BoolLit Bool

 | ListLit [UntypedConst]

 | MapLit [(UntypedConst, UntypedConst)]

 | Ident String

data TypeConst t 
 = Identifier String (Type 'Resolved t)

 | Literal t

typecheckConst 
 :: Type 'Resolved t 
 → UntypedConst 

 → Either TypeError (TypedConst t)

-- Wellformed Literals

typecheckConst TInt (IntLit n) =

 Right $ Literal n

typecheckConst TString (StrLit s) =

 Right $ Literal s

-- Ill-typed!

typecheckConst TInt (StrLit s) =

 Right $ Literal s

Typed Data Fetches

• Sigma uses a library called Haxl for async
data fetching and caching

• Data fetch requests are represented as
GADTs, each request declares its return
type

• These data constructors are also used as
cache keys, enabling type-safe lookups

data Request a where 
 GetName :: Id → Request String

 GetPet :: Id → Request Pet

dataFetch :: Request a → Haxl a 
cacheLookup :: Request a → Haxl a

cacheInsert :: Request a → a → Haxl ()

getName :: Int → Haxl String 
getName userId =

 dataFetch $ GetName userId

Type-Level Schemas

• GHC cannot trivially check
wellformedness of structs and enums

• We need to dynamically generate a
representation of their types

• This is possible using type-level schemas

data Status = Resolved | Unresolved

data Bottom

data Type (u :: Status) (t :: ★) where

 TInt :: Type u Int 
 TBool :: Type u Bool 
 TString :: Type u String

 TList :: Type u t → Type u [t] 
 TMap :: Type u k → Type u v → Type u (Map k
v)

 -- Unresolved Named Type

 TNamed :: String → Type 'Unresolved Bottom

 -- Resolved Named Types

 TAlias

 :: String → Type 'Resolved t → Type 'Resolved
t

 TStruct :: String → Type 'Resolved ???

 TEnum :: String → Type 'Resolved ???

What can we put here?

Struct Schemas

• Wellformed structs have wellformed
values for all of their named fields

• The kind of struct schemas is a type-level
list of type-level string (of kind Symbol)
and type (of kind ★) pairs

• This allows us to define schemas and
values for structs that can be associated
using a type of kind [(Symbol, ★)]

• KnownSymbol allows us to get a runtime
representation of the type-level string

data Schema (s :: [(Symbol, ★)]) where

 SNil :: Schema '[] 
 SCons

 :: ∀ (name :: Symbol) t s. KnownSymbol name

 ⇒ Type 'Resolved t 

 → Schema s 
 → Schema ('(name, t) ': s)

data StructVal (s :: [(Symbol, ★)] where

 SVNil

 :: Schema '[]

 SVCons

 :: ∀ (name :: Symbol) t s. KnownSymbol name

 ⇒ Type 'Resolved t 

 → TypedConst t 
 → StructVal s

 → StructVal ('(name, t) ': s)

Typechecking Structs

typecheckStruct 
 :: Schema s 
 → [(UntypedConst, UntypedConst)] 

 → Either TypeError (StructVal s)

typecheckStruct = ...

typecheckConst 
 :: Type 'Resolved t 
 → UntypedConst 

 → Either TypeError (TypedConst t)

-- Struct Case

typecheckConst (TStruct _ schema) (MapLit fields) =

 Literal <$> typecheckStruct schema fields

userSchema

 :: Schema

 '[("id", Int)

 , ("name", String)

 , ("pet", (EnumSchema ...))

]

userSchema =

 SCons @"id" TInt

 (SCons @"name" TString

 (SCons @"pet" (TEnum "Pet" ...)

 SNil))

Enum Schemas

• Wellformed enums can be one of many
values

• An enum schema is a type-level list of
allowed identifier names

• Typechecked enum values require a proof
that the enum's identifier is a member of
the schema list

data EnumSchema (s :: [Symbol]) where

 ESNil :: EnumSchema '[] 
 ESCons

 :: ∀ (name :: Symbol) s. KnownSymbol name

 ⇒ Proxy name 

 → EnumSchema s 
 → EnumSchema (name ': s)

data EnumVal (s :: [Symbol]) = 
 ∀ n. EnumVal String (MembershipProof n s)

data MembershipProof x xs where 
 PHere :: MembershipProof x (x ': xs)

 PThere

 :: MembershipProof x xs 
 → MembershipProof x (y ': xs)

Typechecking Enums

• Typechecking an enum builds an inductive
membership proof

• Building the proof introduces additional
time and space complexity

• We could improve the runtime using a
different type-level data structure, but it
would complicate the code

• In practice, performance was not an issue

typecheckEnum 
 :: EnumSchema s 
 → Proxy name 
 → Maybe (MembershipProof name s)

typecheckEnum ESNil _ = Nothing

typecheckEnum (ESCons name s) name' =

 case eqT name name' of 
 Just Refl → Just PHere 
 Nothing → PThere <$> typecheckEnum s name'

typecheckConst 
 :: Type 'Resolved t 
 → UntypedConst 
 → Either TypeError (TypedConst t)

-- Enum Case

typecheckConst (TEnum schema) (Ident symbol) =

 case someSymbolVal symbol of

 SomeSymbol name →

 case typecheckEnum schema name of

 Just pf → Right $ Literal $ EnumVal symbol pf

 Nothing → Left $ TypeError $...

More Bugs: Enum Typechecking

• In the example on the right, the first two
constants are valid, but the third is ill-
typed because X has no member with
value 3

• The C++ Thrift typechecker would have
accepted all of these inputs because it
treated enums as integers

• In Haskell, this bug would not have been
possible due to the requirement of
building a membership proof

enum X {

 A = 0,

 B = 1,

 C = 2,

}

// Valid Enum Values

const X b_int = 1

const X b_name = B

// Type Error!

const X invalid_value = 3

More Bugs: Implicit Coercions

• In the code on the left, error_status
appears to be an error, but it is actually Ok

• The C++ Thrift typechecker would have
accepted this input

• In Haskell, it would be impossible to
accept this code because ERROR is not a
member of the schema for Status

• A bug of this nature was found in
production due to the Haskell Thrift
typechecker

enum Status {

 Ok = 0,

 Error = 1,

}

enum Result {

 ERROR = 0,

 OK = 1,

}

const Status error_status = ERROR

More Bugs: Ambiguous References

• In Thrift, values from other modules must
be qualified and enum values can be
optionally qualified

• This leads to ambiguous behavior: is the
value on the right equal to 0 or 12345?

• The C++ Thrift typechecker arbitrarily
resolved these, leading to silent bugs

enum Animal {

 Dog = 0,

 Cat = 1,

}

// Is this 0 or 12345???

const i32 dog = Animal.Dog

// Animal.thrift

const i32 Dog = 12345

Schematized Inputs

• Sigma rules receive inputs via untyped JSON
input-maps

• This code can fail in two ways:

• The key may not be present in the input map

• The key may be present, but with a different
type

• Lookup failures are very prominent in
production

• Strongly typed inputs are difficult because of
code sharing

-- Input Lookup API

lookupInput :: FromJSON a ⇒ Text → Haxl a

commenterIsFriend :: Haxl Bool

commenterIsFriend = do

 poster ← lookupInput "PostAuthor"

 commenter ← lookupInput "CommentAuthor"

 poster `isFriendOf` commenter

Solution: Type-Level Schemas

• Schema is encoded as a constraint

• Code sharing is easy: just implement the
Has type class for any underlying input
type

• Lookups are pure, they can't fail at runtime

• The getter uses a visible type application
(it takes no term arguments)

• This is a foreign concept to most Sigma
developers, but the syntax is natural to
use

-- Typesafe Lookup API

get 
 :: ∀ (key :: Symbol) ty input.

 Has key ty input

 ⇒ ty

commenterIsFriend

 :: (Has "PostAuthor" Id input

 , Has "CommentAuthor" Id input

) ⇒ Haxl Bool

commenterIsFriend = do

 let

 poster = get @"PostAuthor"

 commenter = get @"CommentAuthor"

 poster `isFriendOf` commenter

Conclusion

• The increasing complexity of modern codebases makes software difficult to
reason about correctness

• Using dependent types is a practical way to eliminate bugs in production

• Current and future Haskell projects should take advantage of dependent
types

• Given these promising results, other languages should increase the
expressivity of their type systems

Thank you!

