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Eliminating Bugs with 
Dependently Typed Haskell



The State of Software Engineering

• Modern software is growing quickly


• Engineering practices are not


• Software systems are complicated and 
difficult to reason about


• Code is too low level


• No good way to get a high-level view 
of the system



The Role of Types

• Static types prevent a program from 
crashing


• This is profound, prevents many bugs


• ...but can we do better?



The Role of Dependent Types

• Dependent types are types that can depend on values


• This allows them to express more properties about code


• Self-documenting


• Checked by compiler


• Critics claim that dependent types are not practical for real world use


• In this talk, we will refute those claims



Haskell @ Facebook

• Haskell is used to write abuse detection rules as part 
of a system called Sigma


• These rules prevent abuse such as spam, fake 
accounts, and fraud


• Correctness is crucial because code is deployed to 
production quickly in order to mitigate adversarial 
threats


• Sigma is large scale (over one million requests per 
second)



Programming with Dependent Types

• Goal: Express more invariants at the type level


• Haskell's type system is expressive, but it is not a fully dependently typed 
language


• Con: Cannot express everything at the type level


• Pro: More powerful type inference; GHC's constraint solver can automate 
the proof


• Formal verification provides strong guarantees, but is heavyweight



Examples



The Thrift IDL

• Thrift is an Interface Description Language


• Developers can define data structures and Remote Procedure Calls (RPCs)


• The Thrift Compiler translates Thrift code into code in some programming 
language (eg Haskell, C++, Python, etc)


• Sigma rules use extensively autogenerated Thrift code to fetch additional data 
needed to make decisions


• Correctness is crucial; bugs in the Thrift compiler cause abuse detection 
rules to behave unexpectedly



Thrift Examples
 


typedef i64 Id


struct User {

  1: Id id,

  2: string name,

  3: Pet pet,

} 


enum Pet {

  Dog = 0,

  Cat = 1,

} 


service MyService {

  User getUser(1: Id id)

}


 


type Id = Int


data User = User 
  { user_id   :: Id 
  , user_name :: String

  , user_pet  :: Pet 
  } 


data Pet = Dog | Cat


getUser :: Id → IO User 

getUser user_id = ...




The Haskell Thrift Compiler

• The Haskell Thrift compiler uses dependent types in its internals to express 
correctness invariants


• The C++ Thrift compiler is used to compile Thrift to other languages


• The C++ implementation had many more bugs than the Haskell 
implementation including:


• Infinite loops


• Accepting ill-typed inputs


• Ambiguous behavior



Basic AST Design

• A basic AST for Thrift IDL code may define 
a Thrift type as shown on the right


• This AST is not very expressive


• Is this type wellformed?


• What does a value of type TInt look 
like?


• Is this named type a struct or an enum? 
Does it even exist?

 


data Type

  = TInt

  | TBool

  | TString

  | TList Type

  | TMap Type Type

  | TNamed String



Constrained Data Structures

• Using GADTs and Data Kinds, we can 
ensure that named types get properly 
resolved


• Base types and collections can be either 
resolved of unresolved


• Named types can only be unresolved


• After typechecking, all named types must 
be converted to type aliases, structs, or 
enums

 


data Status = Resolved | Unresolved


data Type (u :: Status) where

  TInt    :: Type u 
  TBool   :: Type u 
  TString :: Type u 

  TList   :: Type u → Type u 
  TMap    :: Type u → Type u → Type u 


  -- Unresolved Named Type

  TNamed :: String → Type 'Unresolved


  -- Resolved Named Types

  TAlias

    :: String → Type 'Resolved → Type 'Resolved 

  TStruct :: String → Type 'Resolved

  TEnum   :: String → Type 'Resolved




Bug: Infinite Loops

• The Thrift code on the right is invalid; the 
types X, Y, and Z form a loop


• When faced with this input, the C++ Thrift 
compiler diverged


• A correct solution requires topological 
sorting to find cycles


• In Haskell, the need to topological sorting 
was implied by the requirement for 
resolved types to be deeply resolved


• ie, TAlias "Y" (TNamed "X") is ill-typed

 


typedef X Y

typedef Y Z

typedef Z X


X

YZ



Sync vs Async Rules

• Sigma rules execute in two rounds (sync 
and async) 


• Sync rules are run before a web request 
finishes and can affect the request (eg, tag 
with additional metadata)


• Async rules run after the request finishes 
and cannot affect the request (eg logging)

https://www.facebook.com/
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Sync vs Async Code

• We use a GADT to express which rounds a 
response can be used in


• Tagging a request must happen in the sync 
round whereas logging can happen at any 
time


• The code example on the right is ill-typed 
because it attempts to tag content in an 
async rule


• Before the type-level distinction was 
introduced, hundreds of these bugs were 
present in the code

 


data RuleType = Sync | Async 


data Response (t :: RuleType) where

  Tag :: Response 'Sync 
  Log :: Response t 

-- This code is ill-typed

checkScore :: Double → [Response 
'Async]

checkScore score = 

  if score > 0.9 then [Tag] else []


Expected 'Async, but got 'Sync



Associated Types

• We extend the Type GADT to include a 
second parameter


• This parameter tells us what a wellformed 
value looks like


• We associate this parameter with other 
types in function signatures to ensure that 
typechecked literals are wellformed


• Wellformed values can still go wrong, but 
this invariant is enough to prevent most 
accidental errors

 


data Status = Resolved | Unresolved

data Bottom


data Type (u :: Status) (t :: ★) where

  TInt    :: Type u Int 
  TBool   :: Type u Bool 
  TString :: Type u String

  TList   :: Type u t → Type u [t] 
  TMap    :: Type u k → Type u v → Type u (Map k 
v) 


  -- Unresolved Named Type

  TNamed :: String → Type 'Unresolved Bottom


  -- Resolved Named Types

  TAlias

    :: String → Type 'Resolved t → Type 'Resolved 
t

  TStruct :: String → Type 'Resolved ???

  TEnum   :: String → Type 'Resolved ???




Associated Types
 


data UntypedConst

  = IntLit Int 
  | StrLit String

  | BoolLit Bool

  | ListLit [UntypedConst]

  | MapLit [(UntypedConst, UntypedConst)]

  | Ident String


data TypeConst t 
  = Identifier String (Type 'Resolved t)

  | Literal t 


 


typecheckConst 
  :: Type 'Resolved t 
  →  UntypedConst 

  →  Either TypeError (TypedConst t) 


-- Wellformed Literals

typecheckConst TInt (IntLit n) =

  Right $ Literal n

typecheckConst TString (StrLit s) =

  Right $ Literal s


-- Ill-typed!

typecheckConst TInt (StrLit s) =

  Right $ Literal s




Typed Data Fetches

• Sigma uses a library called Haxl for async 
data fetching and caching


• Data fetch requests are represented as 
GADTs, each request declares its return 
type


• These data constructors are also used as 
cache keys, enabling type-safe lookups

 


data Request a where 
  GetName :: Id → Request String

  GetPet  :: Id → Request Pet 


dataFetch :: Request a → Haxl a 
cacheLookup :: Request a → Haxl a

cacheInsert :: Request a → a → Haxl ()


getName :: Int → Haxl String 
getName userId =

  dataFetch $ GetName userId 




Type-Level Schemas

• GHC cannot trivially check 
wellformedness of structs and enums


• We need to dynamically generate a 
representation of their types


• This is possible using type-level schemas

 


data Status = Resolved | Unresolved

data Bottom


data Type (u :: Status) (t :: ★) where

  TInt    :: Type u Int 
  TBool   :: Type u Bool 
  TString :: Type u String

  TList   :: Type u t → Type u [t] 
  TMap    :: Type u k → Type u v → Type u (Map k 
v) 


  -- Unresolved Named Type

  TNamed :: String → Type 'Unresolved Bottom


  -- Resolved Named Types

  TAlias

    :: String → Type 'Resolved t → Type 'Resolved 
t

  TStruct :: String → Type 'Resolved ???

  TEnum   :: String → Type 'Resolved ???


What can we put here?



Struct Schemas

• Wellformed structs have wellformed 
values for all of their named fields


• The kind of struct schemas is a type-level 
list of type-level string (of kind Symbol) 
and type (of kind ★) pairs


• This allows us to define schemas and 
values for structs that can be associated 
using a type of kind [(Symbol, ★)]


• KnownSymbol allows us to get a runtime 
representation of the type-level string

 


data Schema (s :: [(Symbol, ★)]) where

  SNil :: Schema '[] 
  SCons 

    :: ∀ (name :: Symbol) t s. KnownSymbol name

    ⇒ Type 'Resolved t 

    → Schema s 
    → Schema ('(name, t) ': s) 


data StructVal (s :: [(Symbol, ★)] where

  SVNil 

    :: Schema '[]

  SVCons

    :: ∀ (name :: Symbol) t s. KnownSymbol name

    ⇒ Type 'Resolved t 

    → TypedConst t 
    → StructVal s 

    → StructVal ('(name, t) ': s) 




Typechecking Structs
 


typecheckStruct 
  :: Schema s 
  →  [(UntypedConst, UntypedConst)] 

  →  Either TypeError (StructVal s)

typecheckStruct = ...


typecheckConst 
  :: Type 'Resolved t 
  →  UntypedConst 

  →  Either TypeError (TypedConst t) 


-- Struct Case

typecheckConst (TStruct _ schema) (MapLit fields) =

  Literal <$> typecheckStruct schema fields 


 


userSchema

  :: Schema

     '[ ("id", Int)

      , ("name", String)

      , ("pet", (EnumSchema ...))

      ] 

userSchema =

  SCons @"id" TInt

  (SCons @"name" TString

   (SCons @"pet" (TEnum "Pet" ...)

    SNil))



Enum Schemas

• Wellformed enums can be one of many 
values


• An enum schema is a type-level list of 
allowed identifier names


• Typechecked enum values require a proof 
that the enum's identifier is a member of 
the schema list

 


data EnumSchema (s :: [Symbol]) where

  ESNil :: EnumSchema '[] 
  ESCons 

    :: ∀ (name :: Symbol) s. KnownSymbol name

    ⇒ Proxy name 

    → EnumSchema s 
    → EnumSchema (name ': s) 


data EnumVal (s :: [Symbol]) = 
  ∀ n. EnumVal String (MembershipProof n s) 


data MembershipProof x xs where 
  PHere :: MembershipProof x (x ': xs)

  PThere 

    :: MembershipProof x xs 
    →  MembershipProof x (y ': xs) 




Typechecking Enums

• Typechecking an enum builds an inductive 
membership proof


• Building the proof introduces additional 
time and space complexity


• We could improve the runtime using a 
different type-level data structure, but it 
would complicate the code


• In practice, performance was not an issue

 


typecheckEnum 
  :: EnumSchema s 
  →  Proxy name 
  →  Maybe (MembershipProof name s) 

typecheckEnum ESNil _ = Nothing

typecheckEnum (ESCons name s) name' = 

  case eqT name name' of 
    Just Refl → Just PHere 
    Nothing → PThere <$> typecheckEnum s name' 


typecheckConst 
  :: Type 'Resolved t 
  →  UntypedConst 
  →  Either TypeError (TypedConst t)


-- Enum Case

typecheckConst (TEnum schema) (Ident symbol) =

  case someSymbolVal symbol of

   SomeSymbol name → 

    case typecheckEnum schema name of

     Just pf → Right $ Literal $ EnumVal symbol pf

     Nothing → Left $ TypeError $ ... 




More Bugs: Enum Typechecking

• In the example on the right, the first two 
constants are valid, but the third is ill-
typed because X has no member with 
value 3


• The C++ Thrift typechecker would have 
accepted all of these inputs because it 
treated enums as integers


• In Haskell, this bug would not have been 
possible due to the requirement of 
building a membership proof

 


enum X {

  A = 0,

  B = 1,

  C = 2,

}


// Valid Enum Values

const X b_int = 1

const X b_name = B


// Type Error!

const X invalid_value = 3




More Bugs: Implicit Coercions

• In the code on the left, error_status 
appears to be an error, but it is actually Ok


• The C++ Thrift typechecker would have 
accepted this input


• In Haskell, it would be impossible to 
accept this code because ERROR is not a 
member of the schema for Status


• A bug of this nature was found in 
production due to the Haskell Thrift 
typechecker

 


enum Status {

  Ok = 0,

  Error = 1,

} 


enum Result {

  ERROR = 0,

  OK = 1,

}


const Status error_status = ERROR




More Bugs: Ambiguous References

• In Thrift, values from other modules must 
be qualified and enum values can be 
optionally qualified


• This leads to ambiguous behavior: is the 
value on the right equal to 0 or 12345?


• The C++ Thrift typechecker arbitrarily 
resolved these, leading to silent bugs

 


enum Animal {

  Dog = 0,

  Cat = 1,

}


// Is this 0 or 12345???

const i32 dog = Animal.Dog


 


// Animal.thrift


const i32 Dog = 12345




Schematized Inputs

• Sigma rules receive inputs via untyped JSON 
input-maps


• This code can fail in two ways:


• The key may not be present in the input map


• The key may be present, but with a different 
type


• Lookup failures are very prominent in 
production


• Strongly typed inputs are difficult because of 
code sharing

 


-- Input Lookup API

lookupInput :: FromJSON a ⇒ Text → Haxl a


commenterIsFriend :: Haxl Bool

commenterIsFriend = do

  poster    ← lookupInput "PostAuthor"


  commenter ← lookupInput "CommentAuthor"

  poster `isFriendOf` commenter



Solution: Type-Level Schemas

• Schema is encoded as a constraint


• Code sharing is easy: just implement the 
Has type class for any underlying input 
type


• Lookups are pure, they can't fail at runtime


• The getter uses a visible type application 
(it takes no term arguments)


• This is a foreign concept to most Sigma 
developers, but the syntax is natural to 
use

 


-- Typesafe Lookup API

get 
  :: ∀ (key :: Symbol) ty input.

     Has key ty input

  ⇒ ty


commenterIsFriend

 :: ( Has "PostAuthor" Id input

    , Has "CommentAuthor" Id input

    ) ⇒ Haxl Bool


commenterIsFriend = do

  let

    poster = get @"PostAuthor"

    commenter = get @"CommentAuthor"

  poster `isFriendOf` commenter




Conclusion

• The increasing complexity of modern codebases makes software difficult to 
reason about correctness


• Using dependent types is a practical way to eliminate bugs in production


• Current and future Haskell projects should take advantage of dependent 
types


• Given these promising results, other languages should increase the 
expressivity of their type systems



Thank you!


