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Elixir for UAV avionics
a happy problem domain in which to ply your concurrent 

functional fault tolerant programming language of 
choice

Hi I’m Robin. By day I’m the Founder and CTO of RocketBoots, a company working on computer vision products for banking and retail 
clients. In the evenings and weekends one of my hobbies is programming, building and simulating UAVs or Uncrewed Aerial Vehicles, 
otherwise referred to as drones. 



This has particularly been the case since 2013, when my friend Brian and I prepared a UAV for the 2014 UAV Outback Rescue Challenge. 
This competition, started in 2007 by the CSIRO and QUT, attracts teams from around the world to compete in challenges such as 
dropping a bottle of water for a lost “bush walker” returning a blood sample from a sick farmer or providing video and audio feeds of an 
accident victim to an approaching a medical team. 


Uniquely the competition takes place beyond line of sight at distances of tens of kilometres from the launch point under a special 
dispensation from the Civil Aviation Safety Authority. This is illegal in most countries where people are well off enough to be involved in 
UAVs as a hobby, so it’s a great opportunity for all involved.


It is a huge amount of work to put together an entry for this competition. I’ve had three attempts at getting to the competition so far. Our 
team Beam UAV entered the 2020 competition which is now deferred till 2022 at the earliest due to COVID. In the process I’ve built and 
bent a few airplanes, learned a lot, written many lines of code and had a lot of fun. My assumption is that some of you are interested, if 
not in the UAV Challenge, then at least in building, programming and flying UAVs.    
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ASSUMED KNOWLEDGE

UAVS

This is a programming conference so I assume you know a lot about programming and less about UAVs.



p
r
o

g
r
a
m

m
in

g

POST TALK TARGET

UAVS

At the end of the talk I want to equip you with enough knowledge about UAVs to be able go off and try something out.
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UAVS

TALK CONTENT

So this talk is mostly going to be about UAV topics.
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UAVS

• control/sensor basics 
• autonomy 
• requirements 
• hardware 
• communications 
• software 
• elixir sweet spot 
• brief recorded demo 

TALK CONTENT

I’ll talk about the basics of how machines help to control vehicles and the kinds of sensors used; the nature of and requirements arising 
from autonomous vehicles; the hardware and communication methods commonly encountered; the programs you’ll use and write, and 
what sort of programs Elixir in particular might be suitable for. We’ll finish up with a simple demonstration that uses Elixir to wire up a 
physical remote control unit to a simulation. This is a lot to cover so let’s start.



control

We’ll talk about autonomy later on – let’s start by talking about direct human control.



crewed control

Aircraft started out as human carrying kites - Australian Lawrence Hargrave flew under his box kites at Stanwell Park south of Sydney, 
and the Wright Brothers flew their 1901 and 1902 gliders as kites before attempting free flight. An aircraft is really just a kite with the 
strings re-routed internally to a joystick and rudder pedals for the pilot to manipulate. 



remote control

With remote control the pilot moves back to the ground and the strings are still there, it’s just that a segment of their length is made out of 
radio waves. 


In all of these cases we’ve seen direct, live control of the vehicle by a human using some sort of string-analogous technology. It’s 
basically been a communications problem. 


What happens when we want to use technology to start participating somehow in the control of the vehicle? For example, what if the 
pilot is learning to fly and needs help to avoid over controlling or getting into situations from which they cannot recover? Or what if the 
aircraft is so difficult to control that even a trained pilot needs some help to control it?



augmented control

For example I have a large-ish RC helicopter. Helicopters are particularly difficult to fly because every control input causes one or two 
secondary reactions that you need to anticipate. I spent most of a year with a simulator unlearning my fixed–wing flying habits before 
attempting to fly this spinning carbon fibre vortex of death, and it still takes a lot of concentration. Like all model helicopters it has 
stability augmentation to reduce un-commanded changes in orientation - in this case it’s a processing unit highlighted by the yellow box 
sitting between the radio receiver and the servos (electric motors that control the rotor blade angle). Smaller helicopters would have the 
same thing integrated into the rest of the electronics on board.


To make this work, the software on this box has to know what the pilot wants to happen; to sense what is actually happening, and then 
tweak the control outputs going to the servos and engine to try and reduce the error between the two. The first part (the pilot’s intentions) 
are coming from the radio receiver, so we need to talk about sensors and control outputs to complete the picture.



SENSORS – magnetometer

Magnetometer is a fancy word for compass, and it can be used to measure the orientation of the Earth’s magnetic field in 3D, and from 
that the heading of the vehicle (an aside - heading is the direction you’re pointing. Track is the direction you’re travelling over the ground. 
They are generally not the same due to wind if you’re in an aircraft, or currents and leeway in a boat).


I understand they use three “Hall Effect” sensors (I’ve only shown one here). These work by running a small electric current along the 
length of a conductor. The magnetic field causes the electrons to favour one side of the conductor over the other, and this bias can be 
measured by the voltage difference across the conductor, which is sort of cool.



SENSORS – altimeter

An altimeter or barometer measures the air pressure relative to some reference pressure - 1013 hectopascals is sea level in the standard 
atmosphere, and the pressure drops 1 hectopascal for every 30 feet you rise, until you reach space at just over 300,000 feet. It is actually 
a measurement of pressure difference, not height, and it’s measured in feet even in countries using metric. The reason it is used is 
because it’s easily available to all aircraft, who use it for collision avoidance.


For this purpose your height above ground (as you might get from a GPS, or laser or radar pointed at the surface below you) is worse 
than useless, and changes with every hill and tree you fly over.


Anyway these chips have a little container of gas at a known pressure, and piezo crystals again determine how much the walls of the 
container are being bent by the atmosphere pressing in on it. 


An airspeed sensor works similarly, except that it measures the pressure difference between the ambient air and the air being rammed 
into a forward pointing tube. This “dynamic” pressure is what makes the wings work, and is much more important to flight control than 
the speed over the ground, which is more relevant to navigation.



SENSORS – Inertial Measurement Unit (IMU)

You have Inertial Measurement Units in your smartphone to measure acceleration and orientation. Most hobby UAVs use the same piezo 
electric IMUs found in consumer grade electronics - these measure voltages induced in crystals as they bend to give instantaneous 
measurements of acceleration and rotation rates in three axes. 


There are higher accuracy alternatives such as laser ring gyros which are used in full scale aircraft and spacecraft but for our purposes 
the cheap ones are fine.



SENSORS - Attitude Heading Reference System (AHRS)

time 

acceleration 

velocity 

position

Instantaneous accelerations from the IMU aren’t really useful in themselves. What you need to do is use a clock * to measure the 
acceleration * at regular intervals and keep a running total of all the acceleration measurements, which should be your current * velocity. If 
you do this again by summing up all your velocities you should get the * distance you’ve travelled. 


Together with the heading from the magnetometer and the constant acceleration due to gravity if you know where you started you should 
be able to estimate your current position by dead reckoning (by the way dead is short for “deduced”, and has nothing to do with pirates 
or revenge).


How well does this work? In the 90s I was on a 747 crossing the Pacific and turned out to be sitting next to an off duty pilot who invited 
me up to the cockpit to visit his colleagues while we were in a particularly remote bit of the flight southwest of Hawaii. 



more than one sensor

The 747 has three Inertial Reference Systems and their position was visible on the navigation display. At this point of the flight they were 
spread out across 10 nautical miles or so, which is pretty amazing considering they had been initialised in Sydney.


Consumer grade IMUs and AHRS units are a lot less accurate. I read one estimate saying that it would only take 20 or so seconds for 
your position to be out by more than 10 metres.



SENSOR FUSION

Luckily for us we live in the age of GPS so we can get position updates at a rate high enough to keep the AHRS errors in check. 

There are other sensors like LIDAR (distance measuring lasers) and motion flow (used by optical mice) that can help when you can’t get a 
clear GPS signal. This leaves us with a problem though – how best to average out all the different estimates about our acceleration, velocity 
and position into an accurate estimate? This process is called “sensor fusion”.



SENSOR FUSION – extended kaLman filter

Wikipedia says that “the Extended Kalman Filter is arguably the de facto standard in navigation systems and GPS”. This sensor fusion 
algorithm is a child of the space age, with much of its development being undertaken by NASA because it’s exactly what you need to 
work out where your rocket is from lots of different sensors.


The EKF gives you a near optimal estimate of the current vehicle state that’s a mix of the new raw measurements with historical 
estimates. 


There are lots of Youtube videos and EKF libraries implemented in various languages. I couldn’t find one in Elixir, (there is one for vanilla 
Kalman Filters) but as I’ll explain later this doesn’t matter so much. 


So we now know where the pilot wants to be, and approximately where we are



control – set point

“I want this here now.”

…so let’s discuss how to close the gap between the two. Firstly our desired location is called the “set point”.



control – set point + ideal feedback

“done.”

Under ideal circumstances with direct control and perfect sensor fusion the sensor feedback would match our set point. But neither of 
these things are true. In real life it’s more like trying to steer a car or boat for the first time - you make a change, see what happens and 
adjust your input in a continuous loop. There are a few strategies you might follow to do this.



control – command proportional to error

error = set point - feedback

“long way to go, step on it!”

Firstly, the bigger the error between set point and feedback, the bigger the input you make. This generally leads to action-movie-style 
over control, particularly on a vehicle with lots of inertia like a bus or a boat. But if you dial in the proportion correctly it can work with a 
little bit of oscillation.



control – command proportional to 
derivative (rate of change) of error

“whoaH slow down!”

Secondly, the faster the error is changing, the more you put the brakes on to dampen the oscillations so that when you arrive at the set 
point you don’t zoom past it. As this increases it takes longer to reach the set point, and if it’s too strong it might smooth out your path to 
the point where important features (say your flight path hopping over rather than through a mountain) are left out.



control – command proportional to 
integral (sum) of error

“we keep missing 
that set point!”

Finally, you can track over time whether you’re consistently under or over-shooting your set point and introduce a pressure to correct it – 
an example might be steering a pram on a sloping footpath or controlling the height of a lift with a slightly stretched cable.



control – integral error

“we keep missing 
that set point!”

“not lifting my 
foot until that 
error is used up!”

You have to be careful with this approach as error sums can build up such that when conditions change suddenly it takes a while to 
realise that the cause of the error is no longer there. 


An example of this is the cruise control on our Forrester, which tends to overspeed as it crests hills with a long approach. At least that’s 
what I plan to tell the Highway Patrol officer.


Another example is the alarming lurch my RC helicopter makes on take off from a non-level surface. The augmented stability unit has 
been trying to level the helicopter as the rotors spin up, but there’s no thrust to make that happen and the total error keeps rising. As it 
lifts off it tries to cancel this error with extreme prejudice and overshoots a level attitude, at which point the proportional and derivative 
components take control, but for a fraction of a second the helicopter behaves like a dog about to roll over and scratch its back on the 
grass. To avoid this I either use a level surface or take off as quickly as possible to prevent too much error accumulating.



control – A perfectly tuned proportional 
integral derivative (PID) controller

“smooth!”

Together these three strategies are summed together to make a PID controller, used in autopilots, cruise control, air conditioners,  lift 
motor controllers and pretty much anywhere software controls some physical process. 


Tuning PIDs is a bit of a black art but there are processes to follow. Usually you start with P and add a bit of D to dampen things down. I 
is used sparingly for the reasons we just discussed. 


The rate at which the sensor-fusion-PID-control loop runs is critical - generally the faster the better.



control – A perfectly tuned pid controller 
running too slowly

“dear UAV, please turn left 20º. yours, the pilot”

“Dear UAV, i refer 
to my letter 
dated…

“Dear uav, …

“Dear uav, …

Too slow and chaos ensures - it’s like trying to fly via correspondence. 


The required sensor-control loop speed differs depending on how stable or twitchy the thing is that you’re controlling.



control loop rates

~ 20-30 Hz

Most aircraft are designed to be naturally stable and have a fair bit of inertia and damping in all their axes of control. This makes them 
easy to fly - once trimmed in calm cruising conditions a pilot only needs to nudge the controls occasionally to maintain heading and 
height. As an aircraft becomes smaller and optimised for manoeuvrability (say a Red Bull aerobatic race plane) this is less and less true, 
however sensor-control loop rates of 20-30Hz should be sufficient.



control loop rates

~ 50 Hz

Where manoeuvrability becomes a matter of life and death, “fly-by-wire” controls allow military fighter aircraft to be designed from the 
outset to be unstable, and only controllable using something like the augmented stability unit on my RC helicopter. 


Watching videos of aircraft carrier takeoffs you can see massive control inputs completely counter to what a pilot would normally 
command on takeoff, showing the PID hard at work keeping things together.


I recall reading that the General Dynamics F16 Falcon (designed in the 1970s) had a fly-by-wire system operating at 50Hz. Presumably 
more modern fighters are using rates at least as high and probably higher.



control loop rates

~ 60 Hz

Model aircraft are less stable by virtue of their smaller size. When it ran on lower powered Arduino microcontroller hardware the 
“Ardupilot” autopilot software ran at 60Hz and it’s “Arduplane” control loop was sufficiently fast for fixed wing models.



control loop rates

60–400 Hz

I never ran Arducopter on Arduino hardware but I understand 60Hz was right at the bottom end of what was possible for a “traditional 
helicopter” control.



control loop rates

~ 400 Hz

On faster hardware such as the Raspberry-Pi based Navio we ran on our 2016 “Quadplane” the control loop frequency was around 
400Hz, and I understand that is typical now for most multi-rotor UAVs.


At 400Hz it should be clear that we are now talking about genuine real-time computing, with each loop taking 2.5 milliseconds.

 



indirect control

altitude set point

servo set point

servo 
position 
sensor

link to 
altitude

pid
altitude measured

Most PIDs aren’t directly controlling the thing being measured. For example, if we want our UAV to fly at a particular altitude, it’s not like 
the whole UAV is on the end of a string tied directly to a servo arm.



cascading pid controllers

altitude set point

altitude measured

pid
rate of climb set point

rate of climb measured

pid pitch angle set point

pitch angle measured

pid

pid

pitch angle rate 
set point

pitch angle rate measured

servo set point

servo 
position 
sensor

link to 
elevator

(simplified, ignoring tecs)

Instead the servo is connected to the elevator, a flying control surface on the horizontal stabiliser at the back of the aircraft that 
determines how quickly the aircraft is pitching nose up or nose down.


This means that the first PID tries to fix the altitude using the rate of climb, the second  PID tries to fix rate of climb with a pitch angle. The 
third PID tries to fix pitch angle with the pitch angle change rate and the final PID tries to fix the pitch angle change rates using the 
elevator position.


The servo itself has a sensor that measures its current arm position and engages the motor to wind one way or the other to match the set 
point, making it a little hardware sensor-PID loop in its own right.


That’s it for our basic introduction to sensing and controlling vehicles. While you probably will not have to program this stuff yourself, it 
explains a cool bit of technology that lets tiny camera drones hover like they’re nailed to the sky and SpaceX boosters nail landings from 
space. And it highlights the safety critical nature of tuning PIDs (which you will be doing) and giving them the real-time computing 
resources they need to work. (~15 MINUTES AT FAST PACE)



autonomy

Autonomy is about what happens when a human has left the live control loop.



autonomy – deferred/delegated control

There is still control, but it’s set up before the flight. There’s a blurry line between the design process and issuing autonomous 
commands, but it becomes clearer… 



autonomy – sensors trigger actions

as time based triggers become involved, for example the clockwork timers they use on free flight glider models to cause them to return to 
earth after a set period of time.



autonomy – fixed set points

v1 - the 
first 

cruise 
missile

The same sorts of sensor control loops we’ve talked about can be used with a set point fixed before launch… 



autonomy – sequences of set points

torpedo for 
attacking 
convoys

Or the set points can vary according to a timer, or advance as the next navigation waypoint on a flight plan established before takeoff is 
reached.



autonomy – complex sensor/control loops

terrain relative navigation

Set points can be updated continuously from a recording (say robot dance moves) or by real time sensors, such as the ground scanning 
radars used by modern cruise missiles to navigate without relying on vulnerable satellite navigation networks.



Since we’re talking about autonomy and I seem to have struggled over the last few slides to find some  more pleasant use cases we may 
as well address the elephant in the room…



autonomy = evil?

… is autonomy evil? A landmine is an example of an autonomous weapon with a single sensor and a single response. It will explode and 
kill or maim anyone or anything that touches it. It is widely considered to be one of the most awful and insidious kinds of weapon ever 
created.



autonomy = evil?

…what if we used a camera and a computer vision classifier sensor so that the mine was only detonated by a person wearing a military 
uniform - is that more - or less, evil?



autonomy = evil?

What if we restricted the criteria even further so that they had to be armed?



autonomy = evil?

Or used face recognition to target a specific list of people? I’m absolutely not making the “guns don’t kill people” argument. I’m more 
cautioning against falling into Terminator tropes and allowing a little more room for nuance the next time you’re in the comments section 
of a Boston Dynamics robot video. Of course in civilian life…



autonomy – fundamental requirement

…we don’t want to kill, maim or even mildly inconvenience ANYONE. This is the fundamental requirement of UAV autonomy, and it’s what 
the vast bulk of autonomous behaviour in UAVs is designed to mitigate. Taking photos and delivering packages are a distant nice-to-have 
second item on our autonomy priority list.


UAVs are not toys and the risk is real. For example…



130km

…in it’s 2014 Outback Challenge configuration our UAV weighed 26kg and carried * 5 litres of petrol, which surprisingly (and I checked 
twice) has the same energy content as 170kg of TNT.


From the competition location at Kingaroy it had the range to reach the Sunshine Coast to the east or Toowoomba to the south - an area 
containing 100s of 1000s of people and vast tracts of inflammable bushland.


Model helicopters have killed people. An unpowered 2kg drone can badly injure someone just falling on them. 



risk/mitigation geofence/fts dynamic flight planning redundancy

loss of telemetry X x x

loss of navigation x x

loss of control x

traffic conflict x x

engine failure x x

electrical failure x x

battery FIRE x

prop strike

autonomy – Risk mitigation

What are some specific ways in which our UAV mission can go pear shaped?

We could loose our ground station or communication link with the aircraft.

We could loose a GPS signal or altimeter and become uncertain of  our position. 

We could have a blocked airspeed pitot tube, an IMU failure or badly tuned PIDs and loose control of the aircraft. 

We could find ourselves in conflict with other air traffic, loose an engine or electrical bus, or one of our lithium polymer batteries could 
short and catch fire (as they are prone to do). 

Some risks such as prop strikes are addressable with team procedures and checklists, but after takeoff the onboard hardware and 
software are only way to affect the outcome of the mission.



geofence/flight termination system

The best way to protect people from a UAV is to fly it somewhere where they are not - just one reason urban delivery drones are a really 
dubious idea. A geofence (like the one shown from the 2014 challenge) is a boundary set before launch containing the entire flight plan . 


Geofences are separated into “hard” and “soft” varieties. A soft geofence might trigger a return to base or turn back towards the main 
volume of the geofenced area, assuming that there’s perhaps a strong wind or error in the flight plan, and that the operators will issue 
new instructions. A hard geofence enclosing the soft geofence will trigger the flight termination system, based on the assumption that 
whatever was supposed to happen at the soft geofence hasn’t worked, and the risk to people and property inside the geofence of a UAV 
planting itself in the ground is lower than the risk outside.  


For the competition notices are published to global pilot briefing systems warning of UAV activity, residents have given permission for 
UAV operations over their properties and have been briefed on the risks. The geofence boundary was just behind the team set-up tent at 
the airfield and part of the qualification check was for each team to carry their aircraft over the geofence so that the competition 
organisers could confirm the triggering of the FTS.



geofence/flight termination system

Flight termination can be triggered for other reasons than a hard geofence breach, for example a failure of the GPS signal, which will 
cause the fused position estimate to be unusable within 30 or so seconds. Termination involves sending set points directly to the servos 
to cut the engines on a helicopter or multi-rotor, or initiate a spin on a fixed wing aircraft. A spin is better than a dive because while the 
flight path is still vertical, the speed is limited and less likely to cause an impact fire or damage property. That said, our own UAV 
demonstrated to us during an unscheduled in-flight reboot of one of its computers that even without FTS inputs it was going to make a 
crater pretty much directly underneath where the computer failed. I’m sorry I can’t find the video, it involved a lot of screaming and a very 
very late save.



dynamic flight planning

In the case of a communications failure the UAV is still flyable, but the mission priority shifts to re-establishing communications. This 
means reducing the distance to the ground station - the most simple option is to skip to a point in the flight plan where the aircraft returns 
to launch and orbit overhead, or where the distance is greater, at an interim hold point between the mission area and the launch. 
Eventually FTS or a landing (the latter much easier for helicopters than fixed wing to perform autonomously) can be triggered after a 
timeout. The advantage of a comms hold point is then that the FTS isn’t triggered over the operator’s heads.


In the most recent competitions there has been an “extension challenge” to autonomously avoid simulated moving flocks of birds, bad 
weather and aircraft transiting the mission airspace, while continuing the mission and not breaching the geofence. This involves forward 
planning, projection of flight paths and constant battles of priority with all sorts of nasty edge cases to test. It’s hard enough with these 
challenges, let alone cars, children and dogs: another reason urban delivery drones are a really really dubious idea. And yet this sort of 
autonomy is a really interesting problem, and right at the cutting edge of hobbyist, academic and commercial research.



redundancy - quick intro to HARDWARE

Before I show you more avionics pictures here’s a quick identification guide: 

Model aircraft radio control * receivers and  * transmitters, which work on the same 2.4GHz range as WiFi.

* A radio modem with an omnidirectional antenna. Depending on distance and the gain of the antennas a pair of radio modems can 
provide a serial link from the USB port of a laptop running ground station software to the UAV. This particular radio modem is Australian 
designed and uses the 920MHz class license frequency range.

* An original Arduino microcontroller based Ardupilot 

* A more recent Raspberry PI based Ardupilot with a NAVIO 2 “shield” or “hat” module plugged in containing IMUs, altimeters, and 
connections to modems and other sensors

* An engine remote ignition switch and sensor package that monitors RPM and the separate ignition battery voltage while isolating 

ignition electrical noise from the rest of the avionics (that stumped us for a while: the closer you get to hardware from software the more 
unfair the bugs get)


*  A LIDAR for accurate height measurement above ground, very necessary for landing fixed wing UAVs

* a voltage regulator to provide the correct amount of power from the batteries to your hardware, and 

* a servo used to move flight control surfaces




Redundancy - 2014 companion intel computer 
for computer vision

SSD

DUAL voltage 
regulators

three 
ardupilots

rc receiver

failsafe 
arduino

3:1 
demuXER for 

servo control 
input

two radio 
modems and 
three gps 

antennas on 
other (upper) 

side
power plug

servo 
outputs/

sensor 
inputs

vibration 
isolated 
platform

This is the avionics platform for our 2014 entry, with five separate computers: three autopilots, a companion computer for computer 
vision tasks and a failsafe arduino. The failsafe had an independent power source and ran a state machine that monitored the status of 
the autopilots, communications and navigation, and controlled which of autopilots or the RC receiver got to control the servos through 
the demuxer circuit. If the answer was none of them, it would send the flight termination outputs to the servos itself.


This may go some way to explaining why our two person team ran out of time to make the competition deadline (blowing up my car’s 
electrical system trying to power our ground station trailer and problems with the UAV’s engine ignition unit didn’t help either).



Redundancy - 2021 naVIO AUTOPILOT SHIELD 
(IMU, BAROMETER, GPS, …)
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we hacked into the 
receiver’s “signal being 

received” LED circuit so the 
failsafe could monitor it

This is the current state of the avionics, after a drastic weight loss program and some more refinement on where redundancy is most 
required. There are only two user-programmable computers, the multicore Pi autopilot/companion computer and the original Arduino 
failsafe.


The failsafe is still the most critical redundant component. Under normal circumstances while receiving a heartbeat containing a location 
from the autopilot it leaves control of the UAV to the autopilot and the first RC receiver via the autopilot. At any point if the second RC 
receiver starts receiving it overrides the autopilot. 


If the heartbeat position is outside the hard geofence (which cannot be changed during flight) or the heartbeat stops and there is no 
signal being received on the second RC receiver, the failsafe takes over control of the servos to send FTS inputs. If the failsafe itself 
looses power it leaves control with the autopilot and alarms will be going off.




redundancy - split servo power

port aileron

starboard aileron

starboard elevator

rudder

port elevator

throttle

ignition

port
starboard

yes elevators are 
articulated separately 

and have their own 
servos

Since neither the failsafe or the autopilot can make anything happen if the servos are unpowered, one of the changes we’ve made is to 
split the control surfaces between two power supplies so that if one fails there should be enough control left to limp home or engage the 
FTS.


Probably the key takeaway from the redundancy requirement is that it forces UAV software to be distributed. Speaking of distribution…



communications
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slide

… how do all these things talk to each other? 

* The most basic communication is through voltage levels, for instance the power supply battery voltage. To access it from your software 

you would set up the corresponding pin on your hardware to act as an analog to digital converter so that you can read the voltage as 
an integer. 


* Simpler still are general purpose I/O pins that can be used as a boolean sensor or to switch things on and off - low power devices like 
LEDs can be powered by the pin, but more powerful devices will need to be switched via a remote switch called a relay. Arrays of 
GPIOs can be switched in parallel to control simple circuits like our servo demuxer, or flicked on and off according to some protocol - 
all the remaining communication methods are variations on this.


* Pulse width modulation is used to control a single servo - every 20ms you flick a pin on for between 1 and 2ms, and the length of the 
pulse indicates the desired servo position. A variation of this is Pulse Position Modulation (PPM) which round-robins PWM signals for 
multiple servos on a single wire, giving less redundancy but also a lot less weight because wires are heavy. Trick for young players, do 
not power your servos from your autopilot unless you want to experience the thrills of a voltage drop and autopilot mid-air reboot.


* I squared C is a popular, super simple two wire protocol for a microcontroller to communicate with over 1,000 peripheral devices 
(usually not microcontrollers in their own right) in a master-slave relationship - both our autopilots used I2C for airspeed sensors.


* Serial communication is getting into the realm of normal software programming. Unsurprisingly it’s used for computer to computer 



communication - this includes talking to more complex peripherals with embedded microcontrollers but particularly for air to ground 
comms because of limited bandwidth over radio modems and less complexity establishing or re-establishing connections. As for TCP/
IP some people run PPP over serial, others might use mobile networks for air to ground. I mainly use the network at home for 
simulation, and then it’s UDP messages rather than TCP sessions.


Of course there are drivers and libraries for all of these, but if you’re new to microcontrollers it can take a while just to work out how and 
where each of them are used.



SOFTWARE - MAVLINK

MAVLink (Micro Air Vehicle Link) is a communication protocol for publishing and subscribing to streams of data or sending commands 
between UAVs, ground stations and individual components. It is lightweight with only 8 to 27 bytes of overhead per message depending 
on the protocol version and whether signing is used. It can address up to 255 systems over noisy/high latency communication channels 
and has two levels of checksums at the message and message definition level. 


Messages are defined in XML dialect files. The pymavlink project from Ardupilot provides code generators for C, C++, C#, Java, 
Javascript, Objective C, Lua, Typescript and Swift, and I’ve written one for Elixir available on hex.



software - autopilot (ardupilot)

arduplane

AVR, NAVIO 2 or sitl

https://ardupilot.org/dev/
docs/learning-ardupilot-

introduction.html

Ardupilot is an umbrella project for open source autonomous vehicle software, including onboard autopilots for fixed wing planes, 
traditional helicopters and multicopters, rovers, submarines and antenna trackers (which sit at the ground station and point directional 
antennas at other vehicles for communications). The bulk of it is written in C++ and released under GPL3. The lead maintainer is 
Canberra-based Andrew Tridgell of RSync and Samba fame. Coincidentally Canberra UAV have been the team to beat for most of the 
history of the UAV Challenge.


To grossly over simplify how it works, the main loop cycles the IMU/AHRS/Sensor Fusion/PID process and occasionally invokes loops 
that run at lower and lower frequencies to carry out other less real-time sensitive tasks. The code is nicely isolated from the various 
platforms Ardupilot runs on by the HAL, or Hardware Abstraction Layer. One of the most useful HAL implementations is the Software in 
the Loop or “SITL” which allows Ardupilot to run on my laptop hooked up to a vehicle simulator for testing.



SOFTWARE - GROUND STATION

A ground station provides a user interface for the UAV operators to calibrate and configure a vehicle, plan and upload a mission, arm and 
launch the UAV and monitor the mission progress. During flight users might redirect the UAV to another waypoint in the plan, tell it to 
circle at a point, return to base or hand over control to a pilot using a RC transmitter.


Ardupilot provides three ground stations, MavProxy APM Planner and Mission Planner. MavProxy is a modular CLI application written in 
Python, while APM Planner is a Mac and Windows desktop application and Mission Planner is Windows only. 



ELIXIR - sensor fusion and control?

https://github.com/robinhilliard/autopilot/blob/master/test/pid_controller_test.exs

test "PID converges more quickly than PI and copes with drift" do
  start_state = %{
    time: 0,
    feedback: 1.0,
    setpoint: 0.0,
    output: 0.0}
  |> add_pid(
       :feedback,
       :setpoint,
       :output,
       p: 0.1, i: 0.09, d: -0.03)
  end_state = Enum.reduce(1..66, start_state,
    fn _, state ->
      new_state = state |> set_pid_output(:feedback, :setpoint, :output)
      %{new_state | feedback: new_state.feedback + new_state.output + 0.01, time: state.time + 1}
    end
  )
  assert abs(end_state.feedback) < 0.001
end

initial state

define a pid that tries to match 
feedback to set point by calculating an output 

based on these PID coefficients

set point was 0, are 
we close?

simulate our “vehicle” 
with some drift

iterate

Where does Elixir fit in all of this?


A year back I demonstrated a simple autopilot using PIDs to control a light aircraft in an XPlane simulator at Elixir Sydney, so it can be 
done, but critically, that was a simulation: as geofencing goes, flying your aircraft in a separate reality is as good as it gets. 


I’ve already explained how critical timing is to the sensor control loop. In the simulation we were easily exceeding the 20-30Hz required to 
control a general aviation full scale aircraft,  but as we now know smaller, less stable aircraft like UAVs require higher frequencies, and 
why would you take the chance of trying to run software with hard safety related real-time requirements in a process that could be 
swapped out?


So no, I feel that the main loop of the autopilot should be running close to the metal in a language like C or Rust - think of it like a low 
level driver (literally) for the vehicle. In the same way a printer driver prints documents while hiding the PID loop controlling the print head, 
the autopilot takes altitude and heading set points and manipulates the controls to make it so. 


If you’re running an autopilot on a multi-tasking OS you need to take the real-time requirement seriously - swapping your autopilot 



process out too often could make your vehicle uncontrollable. Navio provided a modified Linux kernel that prioritises interrupts so that 
the timer can trigger the Ardupilot sensor control loop reliably.



ELIXIR - “soft” real-time autonomy

http://erlang.org/pipermail/erlang-questions/2017-October/093931.html

soft real time: Some requests might miss their deadlines 

… 

Hard real time is mostly associated with hardware control -  
examples: Braking systems in cars, control systems in unstable 
aircraft, pulling out fuel rods in a nuclear reactor if things go 
wrong. 

- Joe armstrong

When we start thinking about the lower frequency autopilot loops responsible for things like dynamic flight planning things get more 
interesting. As I said earlier this is where the innovation and research is going on - tasks like flight path optimisation and constraint 
propagation can be undertaken concurrently in the background as long as they don’t interrupt more important tasks, and the best-to-date 
flight plan being flown by the autopilot can be updated as better options become available. 


BEAM/Erlang/Elixir is often described as being optimised for “soft” real-time software as encountered in the telephone exchange domain 
it was built for, which by happy coincidence is also highly suitable to web servers. I think this higher level autonomy code would (at the 
risk of annoying people perfectly happy writing it all in C) be a fantastic fit for Elixir.




elixir - phoenix live view ground station!

Existing ground station software is improving but occasionally buggy, designed for a single user and a single point of failure for air to 
ground communications, even if redundant links are available. What if your ground station could be run as a cluster, with individual cluster 
members sharing their communication links, using distributed consensus algorithms for failover and allowing multiple users to log in and 
monitor particular aspects of the mission over a ground station local area network?


In other words, a perfect application for Elixir and Phoenix Live View. 


* Josh Price wrote a flight simulator in live view that got runner-up in the 2019 Phoenix Frenzy competition, and we’re hoping to marry this 
one day with MAVLink to make a bullet proof, multi-user ground station solution.



ELIXIR - communications

defmodule APM.Message.RcChannelsOverride do
  @enforce_keys [:target_system, :target_component, :chan1_raw, :chan2_raw, :chan3_raw, :chan4_raw, :chan5_raw, :chan6_raw, :chan7_raw, :chan8_raw]
  defstruct [:target_system, :target_component, :chan1_raw, :chan2_raw, :chan3_raw, :chan4_raw, :chan5_raw, :chan6_raw, :chan7_raw, :chan8_raw, :chan9_raw, :chan10_raw, :chan11_raw, :chan12_raw, :chan13_raw, :chan14_raw, :chan15_raw, :chan16_raw, :chan17_raw, :chan18_raw]
  @typedoc "The RAW values of the RC channels sent to the MAV to override info received from the RC radio. A value of UINT16_MAX means no change to that channel. A value of 0 means control of that channel should be released back to the RC radio. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification."
  @type t :: %APM.Message.RcChannelsOverride{target_system: MAVLink.Types.uint8_t, target_component: MAVLink.Types.uint8_t, chan1_raw: MAVLink.Types.uint16_t, chan2_raw: MAVLink.Types.uint16_t, chan3_raw: MAVLink.Types.uint16_t, chan4_raw: MAVLink.Types.uint16_t, chan5_raw: MAVLink.Types.uint16_t, chan6_raw: MAVLink.Types.uint16_t, chan7_raw: MAVLink.Types.uint16_t, chan8_raw: MAVLink.Types.uint16_t, chan9_raw: MAVLink.Types.uint16_t, chan10_raw: MAVLink.Types.uint16_t, chan11_raw: MAVLink.Types.uint16_t, chan12_raw: MAVLink.Types.uint16_t, chan13_raw: MAVLink.Types.uint16_t, chan14_raw: MAVLink.Types.uint16_t, chan15_raw: MAVLink.Types.uint16_t, chan16_raw: MAVLink.Types.uint16_t, chan17_raw: MAVLink.Types.uint16_t, chan18_raw: MAVLink.Types.uint16_t}
  defimpl MAVLink.Message do
    def pack(msg, 1), do: {:ok, 70, APM.msg_attributes(70), <<msg.chan1_raw::little-integer-size(16),msg.chan2_raw::little-integer-size(16),msg.chan3_raw::little-integer-size(16),msg.chan4_raw::little-integer-size(16),msg.chan5_raw::little-integer-size(16),msg.chan6_raw::little-integer-size(16),msg.chan7_raw::little-integer-size(16),msg.chan8_raw::little-integer-size(16),msg.target_system::integer-size(8),msg.target_component::integer-size(8)>>}
    def pack(msg, 2), do: {:ok, 70, APM.msg_attributes(70), <<msg.chan1_raw::little-integer-size(16),msg.chan2_raw::little-integer-size(16),msg.chan3_raw::little-integer-size(16),msg.chan4_raw::little-integer-size(16),msg.chan5_raw::little-integer-size(16),msg.chan6_raw::little-integer-size(16),msg.chan7_raw::little-integer-size(16),msg.chan8_raw::little-integer-size(16),msg.target_system::integer-size(8),msg.target_component::integer-size(8),msg.chan9_raw::little-integer-size(16),msg.chan10_raw::little-integer-size(16),msg.chan11_raw::little-integer-size(16),msg.chan12_raw::little-integer-size(16),msg.chan13_raw::little-integer-size(16),msg.chan14_raw::little-integer-size(16),msg.chan15_raw::little-integer-size(16),msg.chan16_raw::little-integer-size(16),msg.chan17_raw::little-integer-size(16),msg.chan18_raw::little-integer-size(16)>>}
  end
end

def unpack(70, 1, <<chan1_raw_f::little-integer-size(16),chan2_raw_f::little-integer-size(16),chan3_raw_f::little-integer-size(16),chan4_raw_f::little-integer-size(16),chan5_raw_f::little-integer-size(16),chan6_raw_f::little-integer-size(16),chan7_raw_f::little-integer-size(16),chan8_raw_f::little-integer-size(16),target_system_f::integer-size(8),target_component_f::integer-size(8)>>), do: {:ok, %APM.Message.RcChannelsOverride{chan1_raw: chan1_raw_f, chan2_raw: chan2_raw_f, chan3_raw: chan3_raw_f, chan4_raw: chan4_raw_f, chan5_raw: chan5_raw_f, chan6_raw: chan6_raw_f, chan7_raw: chan7_raw_f, chan8_raw: chan8_raw_f, target_system: target_system_f, target_component: target_component_f}}

Elixir binary pattern matching, Dialyzer build-time type checks along with Erlang’s XML and networking libraries makes working with 
MAVLink if not easy, then certainly extremely light weight and low boilerplate. My Elixir-MAVLink project provides a code generator to 
convert MAVLink dialect XML files into Elixir code and an easily configured, fully supervised application that lets your code speak to any 
MAVLink device over serial, UDP or TCP connections.



a very brief demo

I could have spent the whole presentation on this demo but I felt it wouldn’t add much to your understanding without the background 
information we’ve just been through. The goal is to show in the lightest possible way Elixir being used in UAV avionics. 


I have a simulation of our UAV in the XPlane Flight Simulator. The Ardupilot Software in the Loop Hardware Abstraction Layer provides a 
way to connect Arduplane to this simulation, but I want to control the simulation from my radio transmitter. So I’ll plug the radio receiver 
into one of my old Ardupilots to decode the PWM signals, and use Elixir to forward them to the Arduplane instance connected to the 
simulation.



fly my pretties! questions?

https://mavlink.io/en/

https://ardupilot.org/

https://navio2.emlid.com/

https://github.com/beamuav

Thanks and I hope I’ve inspired some of you to look further into UAV technologies.


