Smart
contract
testing

John Hughes

2} CHALMERS Q uvi Q

"DAO attack”

June 2016
‘ S60 million stolen

A\ 4

ethereum

é: | ouTPUT HOME ABOUT RESEARCH EDUCATION PROJECTS BLOG CAREERS¥@

< C @& docs.cardano.org/projects/plutus/en/latest/plutus/tutorials/contract-testing.html B @ % ?B ® » = o :

A » Plutus tutorials »
oo Property-based testing of Plutus contracts

':‘:'::'::‘ CA RDAN 0) Edit on GitHub

<Search docs)

_ Property-based testing of
EXPLORE PLUTUS
Plutus contracts

& Plutus tutorials

Compiling and testing a Plutus app Plutus comes with a library for testing contracts using

in the Plutus Playground QuickCheck. Tests generated by this library perform a
Writing a basic Plutus app in the sequence of calls to contract endpoints, checking that
Plutus Playground tokens end up in the correct wallets at the end of each
Using Plutus Tx test. These sequences can be generated at random, orin a
Writing basic validator scripts more directed way to check that desirable states always

e : : . remain reachable. This tutorial introduces the testing
Writing basic forging policies

library by walking through a simple example: a contract
Property-based testing of Plutus

contracts that implements a guessing game.

Troubleshooting

An overview of the guessing game
EXPLORE MARLOWE

& Read the Docs

The source code of the guessing game contract is

_ Monetary
Verifier policy
TX = Bool _TX =» Bool |

—

\ :!‘ﬁgfx N,

Extended
UTXO

Contract
endpoints

Action

Action

$EEEE &

Do the ‘ ‘
wallets have
the right ‘

contents?

The Guessing Game

The Guessing Game

Modelling Actions

What is the password?
How much is locked?
Where is the game token?

To model a guess:

nextState (Guess w old new val) = do
correctGuess <- (old == <$>
viewContractState currentSecret
holdsToken <- (Just w ==) <$>
viewContractState hasToken
enoughAda <- (val <=) <$>
viewContractState gameValue
when (correctGuess && holdsToken && enoughAda) $ do
deposit w $ Ada.lovelaceValueOf val
currentSecret $= new
gameValue $~ subtract val

What happens when we test?

> quickCheck prop Game

*** Fajled! Assertion failed (after 5 tests and 7

shrinks) :

Actions
[Lock (Wallet 1) "hunter2" O,
Lock (Wallet 1) "hello" 0

Outcome of Contract ins
False

Failed 'Contra

e stopped with error’

.."Found 2 tputs, expected 1”..

Preconditions

Precondition for Lock:
* There is no game token yet

What happens now?

> quickCheck $ propGame' Warning
*** Failed! Assertion failed (after 10 tests and 6
shrinks) :
Actions
[Lock (Wallet 2) "hello" O,
Guess (Wallet 1) "hello" "secret" 0]
Outcome of Contract instance for wallet 1:
False
Failed 'Contract instance stopped with error’

..InsufficientFunds.. gmg%
%/’ L4

Preconditions

Precondition for Guess:
* The wallet holds the game token

This isn’t enough... >pectly 3
strategy

remain

locked
: ~ There is a
Nothing E
oes
5 reach the
wrong

goal

Specityingagoal

nolLocke sequence at all...

ed funds should be zero" $
lockedValue

isZero

...no funds are locked in
contracts

> quickCheck $ forAllDL nolLockedFunds prop Game
*** Failed! Falsified (after 1 test and 2
shrinks) :
BadPrecondition
[Do $ Lock (Wallet 1) "**x*kkxkx*x" 7]
[Assert '"Locked funds should be zero"]
(GameModel { gameValue = 1, hasToken = Just (Wallet
1), currentSecret = "**Xxxkkxi})

Specifying a strategy

w <- forAllQ $ elementsQ wallets
secret <- viewContractState currentSecret
val <- viewContractState gameValue
action $ Guess w "" secret val

> quickCheck $ forAllDL nolLockedFunds prop Game
*** Failed! Falsified (after 1 test and 2 shrinks):
BadPrecondition
[Witness (Wallet 1 :: Wallet)]
[Action (Guess (Wallet 1) "" "" 0)]

(GameModel { gameValue = 0, hasToken = Nothing,
_currentSecret = ""})

Preconditions

Precondition for Guess:
* The wallet holds the game token

w <- ;

secret <- viewContractState currentSecret
val <- viewContractState gameValue
action $ Guess w "" secret val

> quickCheck $ forAllDL nolLockedFunds prop Game
*** Failed! Falsified (after 1 test and 2 shrinks):
BadPrecondition
[Witness (Wallet 1 :: Wallet)]
[Action (Guess (Wallet 1) """ "" 0)]

(GameModel { gameValue = 0, hasToken = Nothing,
_currentSecret = ""})

Specifying a strategy

nolLockedFunds = do

anyActions__
w <- forAllQ $ elementsQ wallets
secret <- viewContractState currentSecret
val <- viewContractState gameValue
when (val > 0) $ do

action $ Guess w "" secret val

assertModel "Locked funds should be zero" $
isZero . lockedValue

Of course not...

> quickCheck $ forAllDL nolLockedFunds prop Game
*** Failed! Falsified (after 1 test and 1 shrink):
BadPrecondition

[Do $§ Lock (Wallet 1) "**kxkkkkn]

Witness (Wallet 2 :: Wallet)] Qs

[Action (Guess (Wallet 2) "" "kkkkkkk" 1)] W

(GameModel { gameValue = 1, hasToken = Just (Wallet 1),
_currentSecret = "*¥*kkk%1})

Specifying a strategy

action $ GiveToken w

> quickCheck $ forAllDL noLockedFunds prop Game
+++ OK, passed 100 tests

Other strategies...

anyActions
action $ a..
anyActions
action $ b..

action a <|> action b

weight 2.5 a <|> action b

Limitations

* Testing via endpoints only
* Timing and race conditions

* Information leaks

Something good is always possible

	Smart contract testing
	Bildnummer 2
	Bildnummer 3
	Bildnummer 4
	Bildnummer 5
	Bildnummer 6
	The Guessing Game
	The Guessing Game
	Modelling Actions
	What happens when we test?
	Preconditions
	What happens now?
	Preconditions
	This isn’t enough…
	Specifying a goal
	Specifying a strategy
	Preconditions
	Specifying a strategy
	Specifying a strategy
	Of course not…
	Specifying a strategy
	Other strategies…
	Limitations
	Something good is always possible

