N T
A History of

Enterprise
Monads

Lars Hupel
YOW! Lambda Jam
2021-05-05

Q

Humble beginnings

Founded in 2013 at Northeast Scala Symposium

TYPELEVEL
SCALA

Q

Humble beginnings

Founded in 2013 at Northeast Scala Symposium

Today: 70+ projects, vibrant ecosystem

TYPELEVEL
SCALA

Typelevel projects

Central theme: Scala-idiomatic Functional Programming

Typelevel projects

Central theme: Scala-idiomatic Functional Programming
... with as little hassle as possible

Typelevel projects

Central theme: Scala-idiomatic Functional Programming
... with as little hassle as possible

... with as little runtime overhead as possible

Typelevel projects

Central theme: Scala-idiomatic Functional Programming
... with as little hassle as possible
... with as little runtime overhead as possible

... as safe as possible

Adopters
X zusamns (47
CCCCCCC

PHILIPS

Type classes

Supremely useful tool, pioneered in Haskell

Type classes

Supremely useful tool, pioneered in Haskell

class Semigroup a => Monoid a where
mempty :: a
mconcat :: [a] -> a
mconcat = foldr mappend mempty

Type classes

Supremely useful tool, pioneered in Haskell
class Semigroup a => Monoid a where

mempty :: a

mconcat :: [a] -> a

mconcat = foldr mappend mempty
It Just Works™!

Type classes in Scala

... now we just need to encode them in Scala

Type classes in Scala

.. now we just need to encode them in Scala

multiple inheritance?

Type classes in Scala

.. now we just need to encode them in Scala
multiple inheritance?

syntax??

Type classes in Scala

.. now we just need to encode them in Scala
multiple inheritance?
syntax??

global confluence???

Type classes in Scala

.. now we just need to encode them in Scala
multiple inheritance?
syntax??

global confluence???

The Limitations of Type Classes as Subtyped Implicits
(Short Paper)

Adelbert Chang

adelbertc@gmail.com

Abstract

Type classes enable a powerful form of ad-hoc polymorphism
which provide solutions to many programming design prob-
lems. Inspired by this, Scala programmers have striven to
emulate them in the design of libraries like Scalaz and Cats.

The natural encoding of type classes combines subtyping
and implicits, both central features of Scala. However, this
encoding has limitations. If the type class hierarchy branches,
seemingly valid programs can hit implicit resolution failures.
These failures must then be solved by explicitly passing the
implicit arguments which is cumbersome and negates the
advantages of type classes.

In this paper we describe instances of this problem and
show that they are not merely theoretical but often arise in
practice. We also discuss and compare the space of solutions
to this problem in Scala today and in the future.

N NEY o ~ £ g o4 s . -

the type class resolver automatically searches through the
dictionary of instances to ensure the appropriate instances
are defined.

Scala programmers have sought to emulate type classes
to leverage this kind of ad-hoc polymorphism. The natural
encoding of type classes uses implicits for instance defini-
tion and resolution and subtyping for specifying type class
relationships.

As a running example consider the (stubbed) encoding
of the Functor and Monad type classes. Each type class be-
comes a trait, and relationships between type classes become
subtype relationships. For example, every Monad gives rise
to a Functor, so Monad[F] extends Functor[F].

trait Functor[F[_]] { }
trait Monad[F[_]] extends Functor[F] { }

It is also possible to write functions abstracting over these
tvpne classes

Type classes, encoded

In 2015, Michael Pilquist started simulacrum.

Goal: consistent encoding across different projects, O boilerplate

Simulacrum

Input

import simulacrum._

@typeclass trait Semigroup[A] {
@op("|+|") def append(x: A, y: A): A
b

Simulacrum

Output

object Semigroup {
def apply[A](implicit instance: Semigroup[A]): Semigroup[A] = instance

/...
}

Simulacrum

More output
object Semigroup {
trait Ops[A] {
def typeClassInstance: Semigroup[A]
def self: A
def |+|(y: A): A = typeClassInstance.append(self, y)
}

Simulacrum

Even more output
object Semigroup {
trait ToSemigroupOps {
implicit def toSemigroupOps[A](target: A)(implicit tc: Semigroup[A]): Ops[A]
val self = target
val typeClassInstance = tc

}

object nonInheritedOps extends ToSemigroupOps

Simulacrum

Yet more output
object Semigroup {
trait All0ps[A] extends Ops[A] {
def typeClassInstance: Semigroup[A]
}
object ops {
implicit def toAllSemigroupOps[A](target: A)(implicit tc: Semigroup[A]): ALl10
val self = target
val typeClassInstance = tc

}

But it works!

Simulacrum solved a ton of issues

We can write x |+]| y!

But it works!

Simulacrum solved a ton of issues
We can write x |+]| y!

Used by Cats and tons of third-party
libraries

Numerics for Scala

started out as a SIP in 2011 (1)
evolved into a dedicated library
"what if functional but also fast”

What about performance?

Simulacrum didn't solve the performance issue of type classes.

What about performance?

Simulacrum didn't solve the performance issue of type classes.

Input

X |+|y

What about performance?

Simulacrum didn't solve the performance issue of type classes.

Output
Semigroup.ops.toAllSemigroupOps(x). |+|(y)

Enter Machinist

Split out of Spire by Erik Osheim in 2014

Enter Machinist

Split out of Spire by Erik Osheim in 2014

Now (2020) archived and re-incorporated into Spire

4

Shapeless

started out as a series of talks
in2011 (H

scratched an itch:
how to abstract over data?

pioneered "type class derivation”

many concepts incorporated
into Scala 3

Type Class Derivation

Problem: You want to serialize a bunch of case classes to JSON.

Solution: Boilerplate?

Type Class Derivation

Problem: You want to compare a bunch of case classes.

Solution: Boilerplate ... again?!

case class Account(owner: Person, balance: Int)

case class Person(name: String, address: Address)

case class Address(lines: List[String], country: Country)

case class Country(code: String)

type Account = Person :: Int :: HNil

type Person = String :: Address :: HNil

type Address

List[String] :: Country :: HNil

type Country = String :: HNil

In Action 0

SCALA
CHECK

]
Tt

CIRCE

T 11

Cats Effect

full history almost impossible to trace
draws from multitude of influences

supports the rise of asynchronous
software construction

Functional Programming

+ resource safety

(]

+ unique tokens

o

+ fibers

(©
(©

B)i v o o "

[l

()

+ sync ffi

+ monotonic time

+ system time

+ ref

+ deferred

+ async ffi

+ suspend fibers

flatMap(0slo)

yo dawg i herd u like monads

so i put some monads in ur java
<o u can flatmap while u enterprise

L
seriously the answer is almost always .traverse
@ So are we not flatmapping that shit any more?

k/’ traverse is flatmapping that shit on our behalf

Q& A Q

www.innog.com

Lars Hupel

lars.hupel@innog.com

@larsr_h

LARS HUPEL

Senior Consultant
innoQ Deutschland GmbH

Lars is known as one of the founders of the Type-
level initiative which is dedicated to providing
principled, type-driven Scala libraries in a friendly,
welcoming environment. A frequent conference
speaker, they are active in the open source com-
munity, particularly in Scala.

Sovurces

https:
https:
https:
https:
https:
https:
https:

//pixabay.com/photos/people-business-meeting-1979261/
//unsplash.com/photos/FaNUdWGJqBg
//twitter.com/bodil/status/1383908807588204552/photo/1
//twitter.com/milessabin/status/1364523756601937921
//www.manning.com/books/functional-programming-in-scala
//impurepics.com/posts/2021-03-31-cats-effect-3.html
//twitter.com/tpolecat/status/721019769869045760

https://pixabay.com/photos/people-business-meeting-1979261/
https://unsplash.com/photos/FaNUdWGJqBg
https://twitter.com/bodil/status/1383908807588204552/photo/1
https://twitter.com/milessabin/status/1364523756601937921
https://www.manning.com/books/functional-programming-in-scala
https://impurepics.com/posts/2021-03-31-cats-effect-3.html
https://twitter.com/tpolecat/status/721019769869045760

