4 Code | Love

Don Syme

-# Community Contributor, Language Designer,
Researcher @ Microsoft

A stroll through some of the F# code | love...
..and some that | love a little less :)

..and how this relates to the language features
and F# 5.0+

Aside

The Early History of F# - HOPL IV (2027)

fsharp.org/history

https://fsharp.org/history

F# Is the open-source, cross-platform
functional language for .NET

Get Started with F#

supported on Windows, Linux, and macO5

www.microsoft.com/net/

https://www.microsoft.com/net/

Fbe =
F# |> BABEL

The compiler that emits JavaScript you

|
’ABLE can be proud of!

Fable is an F# to JavaScript compiler powered by Babel,
designed to produce readable and standard code. Try it right

now in your browser!

Functional-first programming Batteries charged
Fable brings all the power of F# to the -:l Fable supports most of the F# core library
4 JavaScript ecosystem. Enjoy advanced and some of most commonly used NET APls:
language features like static typing with collections, dates, regular expressions, string
type inference, exhaustive pattern formatting, observables, async and even

matching, immutability by default, reflection! All of this without adding extra

F# get startec

dotnet new -lang F#

dotnet build

F# tools are part of the

NET SDK, available
everywhere

F# for the backend Al

GIRAFFE
dotnet new -1 "giraffe-template::*" A functional ASP.NET

Core micro web
framework for

dOtnet gi r‘a'F'Fe building rich web

applications.

F# offers extremely h]gh- github com/giraffe-fsharp/Giraffe
performance functional-
first server-side

programming

https://github.com/giraffe-fsharp/Giraffe

F# for the frontend (JS) ‘$
ABLE

dotnet new -i "Fable.Template::*"

dotnet new fable
npm install
npm start

Like Typescript, F# lives
happy in the node/npm

ecosystem. You can use
F# as a Javascript-first
Elgle[VETe[=

F# for the frontend (WASM)

dotnet new -1 Bolero.Templates

dotnet new bolero-app
dotnet run

F# for the full stack

safe

dotnet new -1 SAFE.Template

dothet new SAFE
A EBLE

dotnet tool restore
dotnet fake run

ure
This is the best thing. It

powers real businesses
including Norway’s NRK

A functional-first approach makes a huge
difference in practice

fsharp.org/testimonials

http://fsharp.org/testimonials

An analysis (simon Cousins

350,000

lines of C# OO
by offshore team

Energy Sector)

The C# project took five years and peaked at ~8 devs. It never fully

implemented all of the contracts.

The F# project took less than a year and peaked at three devs (only one
had prior experience with F#). All of the contracts were fully

30,000

lines of robust F#, with
parallel +more features

implemented.

An application to evaluate the revenue due from Balancing Services contracts in

the UK energy industry

http://simontcousins.azurewebsites.net/does-the-language-you-use-make-a-

difference-revisited/

http://www2.nationalgrid.com/uk/services/balancing-services/
http://simontcousins.azurewebsites.net/does-the-language-you-use-make-a-difference-revisited/

Implementation

Braces

Blanks
Null Checks

Comments
Useful Code

App Code
Test Code

Total Code

C#

26,929
29,080
3,011
53,270
163,276
305,566
42,864
348,430

F#
643
3,630
15
487
16,667
21,4472
9,359
30,801

Simon Cousins, Energy Sector

/ero

bugs in deployed system

"F# is the safe choice for this project,
any other choice is too risky”

tracts in the

An application to evaluate the revenue due from Balancing Services con
UK energy industry

imontcousins.azurewebsites.net/does-the-language-you-use-make-a-

http://www2.nationalgrid.com/uk/services/balancing-services/
http://simontcousins.azurewebsites.net/does-the-language-you-use-make-a-difference-revisited/

The Community at the Centre of the <>

Technology

fsharp.org

http://fsharp.org/

he F# Language Design Process

github.com/fsharp/fslang-design
github.com/fsharp/fslang-suggestions

http://github.com/fsharp/fslang-design
http://github.com/fsharp/fslang-suggestions

-# 4.1 (2017)

Optional large scope cycles
Result<T,Error> in standard library
Unboxed (struct) tuples

Unboxed (struct) records

Jnooxea (struct) unions

More bits and pieces

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.1

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.1

-# 4.5 (2018)

Span<T> high pert type-safe non-allocating code
Improved async debugging

Tooling updates

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.5

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.5

-# 4.0 (2019)

Anonymous records

Tooling updates

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.5

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.5

-# 4.7 (2019)

Implicit yields
/langversion

indentation relaxations

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.7

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.7

~# 5.0! (2027)

#r nuget packages in scripts “#r "nuget: Newtonsoft.Json'
Jupyter and .NET Interactive notebooks!

string interpolation

nameof

applicatives syntax in computation expressions

improved NET interop

improved Map/Set performance + more

https://github.com/fsharp/fslang-design/tree/master/FSharp-5.0

https://github.com/fsharp/fslang-design/tree/master/FSharp-5.0

OK, I'm the language designer. | could tell you
apout the features.

But what code do | like and not like?

WARNING: Opinion!

Reminder:

The F# Advent Calendar

(started by F# users in Japan!)

Fnglish 201/, 2016, 2015

Japanese 2016, 2015, 2014, 2013, 2012, 2011, 2010

https://sergeytihon.com/2017/10/22/f-advent-calendar-in-english-2017/
https://sergeytihon.com/2016/10/23/f-advent-calendar-in-english-2016/
https://sergeytihon.com/2015/10/25/f-advent-calendar-in-english-2015/
https://qiita.com/advent-calendar/2016/fsharp
http://connpass.com/event/22056/
http://connpass.com/event/9758/
http://connpass.com/event/3935/
https://atnd.org/events/33927
http://partake.in/events/1c24993a-c475-4fc2-bca4-7a1cd2f81869
https://atnd.org/events/10685

11
2 bleis

FHICEI SR

EANBRE
DE 2

18

P pocketbe...

Persimmon
D.NET CoreXd
iz £

12

P pocketbe...

2016FEBFmT
F# DS
=)% NET

Coredfb=tE

19

Bl corn708

DITEBFET
F#idAzure
Notebook(C
F1LTHD

13

P pocketbe...

dEa157—
>3 ADE
FRfEE = 0l48
b9 aWVw—JL

20

B Waag

F# Data 22701
J A DRER
([CDLT

14

callmeko...

Fsi on Suave (&'

21

) yanosen_jp

Unity CF#%& &
S (FvITF
— k)

15
callmeko...

F# and Neovim
9

22

&8 zed|

TypeProvider
(CRATD5 &
o Nl U] 158
FEE

16

. gab_km
BT ADEIR
[CIF D
HIEDFET !

Overwrite

23

o kekyo

About
Expandable F#
Compiler
project (£

17

Fal moonmile

Android Things
£T

Xamarin.Andro

id %si_ij_b‘bic

24

. matarillo

BRER ST
Za—)LEE
DxFvITF
) ~ATS

https://sergeytihon.com/2017/10/22/f-advent-calendar-in-english-2017/
https://sergeytihon.com/2016/10/23/f-advent-calendar-in-english-2016/
https://sergeytihon.com/2015/10/25/f-advent-calendar-in-english-2015/
https://qiita.com/advent-calendar/2016/fsharp
http://connpass.com/event/22056/
http://connpass.com/event/9758/
http://connpass.com/event/3935/
https://atnd.org/events/33927
http://partake.in/events/1c24993a-c475-4fc2-bca4-7a1cd2f81869
https://atnd.org/events/10685

Foundations of the F# Design (~2007)

F#: The Combination Counts!

Scalable M Explorative

m
Statically
Typed

From that, it's fair to say that | love these)

Code that is succinct
Code that is expressive
Code that interoperates
Code that is performant

Code that is accurate
Code that is well-tooled

Code | love!

printfn "hello world"

Code that is succinct
Code that is expressive
Code that interoperates
Code that is performant

Code that has low bug rates
Code that is well-tooled

AN NN NN

Code | love!
- pipelines

X |> f1

X |>f1 |> f2 |> 3 |> ...

Code | love!
- pipelines
symbolUses

symbolUses
Array.filter (symbolUse)

Array.Parallel.map (symbolUse
Array.filter (.)
Array.groupBy (»)
Array.map (

Code | lovel!
- pipelines
- domain modelling

Code | love!
- pipelines L
- domain modelling A of Expr Exor

Nand Expr Expr
Or Expr Expr
Xor Expr Expr
Not Expr

+ recursion, evaluation, normalization, analysis,
visualization, ..

Code | lovel!
- pipelines
- domain modelling et

UnknownValue

ValValue ValRef ExprValueInfo
TupleValue ExprValueInfo

RecdValue TyconRef * ExprValueInfo

UnionCaseValue UnionCaseRef * ExprValueInfo
ConstValue Const * TType
CurriedLambdaValue Unique Expr * TType

Code we love)

- pipelines .
- domain modelling onLine

Unresponsive string

Missing string
NotChecked string
Ignored

https://lukemerrett.com/fsharp-domain-modelling/

F# has plenty of strengths, many outlined on this outstanding website: F# for Fun and
Profit, however I'm increasingly finding the most useful elements are discriminated
unions, record types and pattern matching. These 3 combined allow for rapid domain

modelling that helps to abstract away complexity and informs terse business logic.

https://lukemerrett.com/fsharp-domain-modelling/

Code we love)

— N ' https://medium.com/@odytrice
pipelines httpsy/med

- domain modelling .. v -

Integer of int64

String of string

Date of DateTime

Data of string

Bool of bool

Dict of list<string * Value>
Array of list<Value>

It might seem obvious but I'll say it anyway. Your choice of data structures and

how you design your domain is crucial when writing code in F# (or in any

other language). Screw it up, and you will be walking around in circles. Nail

1t, and your implementation will be concise, straightforward and probably

even trivial.

https://medium.com/@odytrice

A quide for NET developers

Code we love) “
- pipelines
- domain modelling e |

- domain semantics = DomainModeling

Tackke Soltware Complexity with
Dosnaln: Dretven Deségn and Ve

Isaac Abraham

Code | love)
- data scripting + type providers

// Get the nuget stats schema
type NugetStats = HtmlProvider<"https://www.nuget.org/packages/FSharp.Data">

// Load the live package stats for FSharp.Data
let rawStats = NugetStats().Tables. "Version History °

// Group by minor version and calculate download count
let stats =

rawStats.Rows

|> Seq.groupBy (fun r -> getMinorVersion r.MinorVersion)
|> Seq.sortBy fst

|> Seq.map (fun (k, xs) -> k, xs |> Seq.sumBy (fun x -> x.Downloads))

Code | love ;)
- model-view-update mobile Uls
- view functions!

A model-view-update mobile
app

view (model: Model) dispatch
model.Pressed
Xaml.Label(text="1 was pressed!")

Xaml.Button(text="Press Me!", command=(dispatch Pressed))

Code | love ;)
- model-view-update web Uls
- view functions!

A model-view-update web
view

view model dispatch
model.Text

div div str "Loading..."

div ClassName "container"

button [OnClick (_ dispatch Faster) str "Faster"

div [ClassName "theText" str model.Text.[model.Index

button [OnClick (_ dispatch Slower) str "Slower"

div str (sprintf "Ticks Per Update: " model.TicksPerUpdate)

Code we
- COMPOS

ove ;)
tion

TinyLanguage / TinyLanguage / Compiler.fs

let compile =
Lexer.lex
»» Parser.parse
»> Binder.bind
»> OptimizeBinding.optimize
»» IlGenerator.codegen
»> Railway.map OptimizeIl.optimize

»> Railway.map Il.toAssemblyBuilder

% Craig Stuntz

) Follow [
@craigstuntz B

Replying to @dsyme

This one isn't fancy, but | often get giddy
smiles when people see it.

Code we love)

- super-fast compositional
Web Servers logout : HttpHandler

signOut AuthSchemes.cookie
redirectTo false Urls.index

webApp : HttpHandler
choose
GET
choose

route index index

route login login

route user authenticate
route logout logout

route googleAuth googleAuth

notFound

But....
...not all Functional Code is Good Code...

CUrry, uncurry

NOOO0 Kl String.Compare sl s2
yeS String.Compare (sl1, s2)

let ZipMap f a b =

4 glejele Seqg.zip a b

|> Seq.map (uncurry f)

let curry f x y = £ (x
let uncurry f (x,y) =

Too indecipherable, let ZipMap f a b =
too often yes Seq.zip a b

|> Seg.map (fun (x,y) -> f x y)

let (<]) f x = f x

Please, never, ever use
the <| operator in
beginner code

Please, don't ever put
|> and <| on the same
line ;)

NOOO

yes

testString "Happy"

amendedString
testString

replace "H" "Cr"
joinWith "birthday"

testString "Happy"

amendedString
testString

replace "H" "Cr"
joinWith "birthday"

<

<l

NOO0O

let (<|]) fxy=Ffxy
let (<]||]) fFxyz=Ffxyz

Please, always avoid the <|| and <|||
operators. They should be
deprecated

. . , let addleTo = List.map((-) 18y 11000
Point-free is not a virtue

- "Point free” is code without
explicit lambdas or let

let doubleAndIncr = (*¥) 2 == (=) 1

Please, avoid needless over-

- Often h fr>>" -
Often heavy use o use of point-free code

I/ I/

>>=""curry”, "uncurry’,
partial application

add10To x X 10

- USiﬂg dnaC Combining doubleAndIncr x yeS
existing functions as values

s OK

“In rare cases there can even be point-free DSLs that are actually legible in
the large. However the utility of adopting this approach always carries a big

- P | egse g i\/e e)(p| |C|t burden of proof, and should not be motivated merely out of stylistic

. considerations.” Eirik Tsarpalis
arguments to functions
defined in modules

: Please, avoid needless use of fold in code
FO'd COﬂSldel’ed ha rme| if simpler alternatives are available
- f’Data.fold” is a blunt List/Seq/Array.sumBy
INstrument List/Seq/Array.maxBy
List/Seq/Array.choose
- Replace by something more List/Seq/Array.tryPick
simpler List/Seq/Array.mapFold
List/Seq/Array.reduce
- Sometimes harder to
understand than an If you fold or mapFold, use ||>

imperative while loop

'l List.fold (state x new-state) state@ xs
V.

\/ (state®, xs) List.fold (state x new-state)

Records can be bad If your record types are not

- Each time we design a type, we symmetric or representationally
design the external view of the simple, then use a class
type, and the internal
representation. Program

initial int
- A record is great when these labelToNode : Map<int, string> ref

nodeTolLabel : Map<string, int> ref

are the same. Beware records ;
rogram (parameters)

when they are not. initial = -1

labelToNode = Map.empty

_ nodeToLabel = Map.empty
Be prepared to make records e deCount - 1

private or convert records to transitionCount = @
classes. Can be painful. transitionsArray

activeTransitions Set.empty
variables = Set.empty

Objects Good, Objects Bad

F# - Objects + Functional

type Vector2D (dx:double, dy:double) = .

let d2

member

member

member

member

\"

) . Inputs to object
dx*dx+dy*dy \ construction
.DX = dx Object internals
.DY = dy — = Exported properties
.Length = sqrt d2 Exported method

/
.Scale(k) = Vector2D (dx*k, dy*k)

Objects

Constructed Class Types

type ObjectType(args) =
let internalvalue = expr
let internalFunction args
Tet mutable internalState
member Xx.Propl = expr
member x.Meth2 args =

expr

expr
expr

Object Interface Types

type IObject
interface ISimpleObject
abstract Propl :
abstract Meth?2

type
type -> type

Object Expressions

{ new I0bject with
member Xx.Propl = expr
member x.Methl args =

expr }

{ new Object() with
member Xx.Propl = expr
interface IObject with

member x.Methl args = expr
interface Iwidget with
member x.Methl args = expr }

Code | love: Information in

An early example (EsLexYaco):

Functional computation of KernelTable(kernels)
encapsulated tables and

. kernelsAndIdxs List.indexed kernels
summaries

kernelIdxs List.map fst kernelsAndIdxs EﬂCapsua|ted
toIdxMap = Map.oflList i,x kernelS? COmpUtatiOﬂ

ofIdxMap = Array.oflList kernels
__.Indexes kernelIdxs
__.Index(kernel) toIdxMap. [kernel

_.Kernel(i) = ofIdxMap.|[i

Information out

https://github.com/fsprojects/FsLexYacc/blob/master/src/FsYacc/fsyaccast.fs
https://github.com/fsprojects/FsLexYacc/blob/master/src/FsYacc/fsyaccast.fs

Deconstructing Object Programming

O O N o kW

R N N N W
N W NN — O

dot notation (X.Length)

20+ features of OO

15. type extensions

instance members 16. structs
type-directed name resolution 17. delegates
implicit constructors 12_eNums

static members
indexer notation arr.[x]
named arguments
optional arguments
interface types

. mutable data

. defining events
. defining operators on types
. auto properties

. IDisposable, [Enumerable

19. irffjplementation inheritance

20 41ls and Unchecked.defaultof<_>
2 method overloading

Zz.curried method overloads

23. protected members

24. self types

25. wildcard types

26.aspect oriented programming ...
27. ...

Some make F# a better APl language
Some make F# a better implementation language
Some are part of an interop standard

Some are not needed

O NOo Uk WA

9.

10.
11.
12.

dot notation (x.Length)
instance members

Where do we stand?

Embrace

———

type-directed name resolution

implicit constructors
static members
indexer notation arr.[x]
named arguments
optional arguments

Use where
necessary, use
tastefully, use

. . respectfully, use
mterface types and Ir% psparing}lly

mutable data
operators on types
auto properties

16. structs
17. delegates Down the object
18. enums rabbit hole
19. type casting =
20.large type hierarchies
21. implementation inheritance

2.nulls and Unchecked.defaultof<_>

3.pervasive method overloadina

Not supported

13. IDisposable, IEnumerable
14. type extensions

15.

events

29. ...

O NOo Uk WA

9.

10.
11.
12.
13.
14.
15.

The 20+ features of OO

Love

dot notation (x.Lengtn) L="=
instance members
type-directed name resolution
implicit constructors
static members
indexer notation arr.[x]
named arguments

16. structs
17. delegates |
18. enums %ﬂy Avoid

19. type casting

20.large type hierarchies

21. implementation inheritance
22.nulls and Unchecked.defaultof<_>

optional arguments Tolerate

3.pervasive method overloadina

interface types and Wons
mutable data

operators on types

auto properties

IDisposable, IEnumerable

type extensions

events

Forget

—_—

29. ...

Object Programming
V.
Object-Oriented Programming

Object Programming focuses on ...

succinct coding, notational convenience
APl ergonomics
good naming
practical encapsulation
sensible, small, composable abstractions
expression-oriented
making simple things out of (potentially complex) foundations

works well with expression-oriented programming

In the extreme Object-Oriented Programming can
be...

objects as a single paradigm

hierarchical classification (Animal, Cat, Dog,
AbstractlellyBeanFactoryDelegator)

large abstractions with many holes and failure points
declarations not expressions

compaosition through... more hierarchies

The F# approach is to embrace object programming, make it
fit with the expression-oriented typed functional paradigm

but not embrace full “object-orientation” (unless you happen to be in a project using that technique)

Code | love: computation expressions

‘extensible, intuitive, friendly monadic notation on
steroids”

S€0 { 2 }
[_ _]

async{ ... |
option{ ... }
task { ...}
taskSeq { ... }
asyncOption { ... }

q { Tt }/ [Tt]l H Tt |:| X allSymbolsInEntities compGen (entities: FSharpEntitylist)

‘/ entities
) Many examplesl almOSt gp e.GenericParameters
evel’y page O]C COde compGen not gp.IsCompilerGenerated
gp
- Alternative is explicit append ey e i i
etc *
gp X.GenericParameters
. compGen not gp.IsCompilerGenerated
- Typically much more gp
eXpI’eSSI\/e thaﬂ Othel’ e.UnionCases
comprehension notations f in x.UnionCaseFields

compGen not f.IsCompilerGenerated
.F

X e.FSharpFields
compGen not x.IsCompilerGenerated
X

allSymbolsInEntities compGen e.NestedEntities

asynci ... |

- One example:

let server = async { run dotnetCli "watch run" serverPath]

let client

I
cil
1A

ync { run dotnetCli "fable webpack-dev-server” clientPath 7}

[server; client; browser]

| » Async.Parallel

| » Async.RunSynchronously

[server; client; browser]

| » Async.Parallel

| » Async.RunSynchronously

withTime

asyncseq { } Async.Sleep 1000

- It's alibrary !
Async.Sleep 1000

2
- No inversion of control, you

think in a "forward” way

intervalMs (periodMs:int)

DateTime.UtcNow
true

Async.Sleep periodMs
DateTime.UtcNow

https.//fsprojects.github.io/FSharp.Control.AsyncSeq/

https://fsprojects.github.io/FSharp.Control.AsyncSeq/

| love...

Code that can be debugged
Code that is commented
Code that is tested

Code that is performant
Code that is under C|

Code that is readable

Please, implement .ToString() and
DebuggerDisplay to aid debugging

Please, use good variable names

Please, use good method names
and seek good stack traces

Please, comment your code well

What's coming in F# 5.1/6.0..7

 high-perf computation expressions
 tasks

* aNONYMOUS UNIONS
 inline-it-lambda

 additional type-directed conversions for better
Interop

https://github.com/fsharp/fslang-design/blob/master/RFCs/FS-1087-resumable-code.md
github.com/fsharp/fslang-design/blob/master/RFCs/FS-1097-task-builder.md
https://github.com/fsharp/fslang-design/blob/master/RFCs/FS-1092-anonymous-type-tagged-unions.md
https://github.com/fsharp/fslang-design/blob/master/RFCs/FS-1098-inline-if-lambda.md
https://github.com/fsharp/fslang-design/blob/master/RFCs/FS-1093-additional-conversions.md

In Closing

F# Emphasises Clear
Code to Solve Real-
world Problems

Not all Functional
Code is Good Code

Simple, clear code is
the F# Code | Love

Object Programming

<>

Object-Oriented
Programming

Thanks! Questions?

u Ude my Categories

IT & Software » Other IT & Software » F#

F# From the Ground Up

Launch your journey into .NET's functional-first programming language

4.6 % & %% ¥ (263 ratings) 1,101 students

Created by Kit Eason
@ Last updated 2/2021 @ English [English [Auto]

‘ Wishlist) H Share = H Gift this course

