
A Tale of Nix and Nickel
YOW! Lambda Jam

Yann Hamdaoui
May 5, 2021

1

Introduction

A cautionary tale

Once u–n a time...

2

A cautionary tale

T˙re wa‘ a brifliant prince‘‘

Neur
IPS

2

A cautionary tale

One night, ‘˙ gff‘ to t˙ King˘m Uniffir‘ity Bal

King Uni
Bal

2

A cautionary tale

W˙re ‘˙ fafl‘ in loffi with a my‘terious girl

2

A cautionary tale

But w˙n midnight ‘trike‘, t˙ girl ‘udˇnly run‘!

2

A cautionary tale

S˙ could only get a p„to of ˙r ‘„e

2

A cautionary tale

Mercifufly, t˙re i‘ t˙ DeepS„e «»r!

DeepShoe
c-derel-a@kinguni.edu

Cindy Derel. A.

2

A cautionary tale

S˙ ˘wnload‘ t˙ re–‘itory, whi˜ require‘ Pyt„n

2

A cautionary tale

Wefl, Pyt„n2, a˝uafly

$python main.py
Failed to import the shoe
module...

$install python2

2

A cautionary tale

And t˙ pyt„n binding‘ to o»ncv a‘ wefl

$python2 main.py
Failed to import the
opencv module

$pip2 install opencv-pyth
on

2

A cautionary tale

With o»ncv v1.14

$python2 main.py
Undefined symbol:
 "_ZNreadImgRaw12"

$pack version opencv
package: OpenCV
version: 2.0

2

A cautionary tale

S˙ moffi‘ ˙affin and earth

$uninstall opencv --force
$install opencv-0.92
No candidate found.

2

A cautionary tale

To ˛nd a ‘olution

$curl https...opencv-0.92
$./install.sh
Syntax error:...

2

A cautionary tale

Wit„ut ‘ucce‘‘

$git clone ...opencv.git .
$git checkout rel-0.92
$make install

$python2 main.py
Segmentation fault

2

A cautionary tale

T˙ end

2

Reproducibility

works on my machine ¯_(ツ)_/¯

Reproducibility

1. Concrete and widespread
2. Not addressed by mainstream tools

3

Reproducibility

works on my machine ¯_(ツ)_/¯

Reproducibility

1. Concrete and widespread
2. Not addressed by mainstream tools

3

Reproducibility

works on my machine ¯_(ツ)_/¯

Reproducibility
1. Concrete and widespread

2. Not addressed by mainstream tools

3

Reproducibility

works on my machine ¯_(ツ)_/¯

Reproducibility
1. Concrete and widespread
2. Not addressed by mainstream tools

3

The problem

run

opencv v1.14

main.py

opencv-python

pip

python 2.7
out

?

4

Looks familiar?

build
dependencies

(explicit) out

dependencies
(implicit)

?

5

Looks familiar?

function
inputs

(parameters) out

inputs
(IO, memory, ...)

?

5

Functional approach to reproducibility

function
all inputs

(parameters) out

6

Nix: the (pure) functional package
manager

works on my machine ¯_(ツ)_/¯

7

everywhere
works on my machine ¯_(ツ)_/¯

Nix

7

What if the princess had access to a version packaged by Nix?

Nix

8

Steps

1. Describe a package and its dependencies in full

9

Steps
1. Describe a package and its dependencies in full

9

Describing� �
1 {python2WithOpenCV , opencv , stdenv}:
2 stdenv.mkDerivation rec {
3 pname = "gh-from-shoe";
4 version = "2021-04-30";
5

6 buildInputs = [python2WithOpenCV opencv];
7

8 installPhase = ''
9 mkdir -p $out/bin

10 cp ${./main.py} $out/bin/gh-from-shoe
11 '';
12 };� �

gh-from-shoe/default.nix

10

Describing� �
1 Derive(
2 [("out","/nix/store/qya..-gh-from-shoe","","")],
3 [
4 ("/nix/store/ae4..-python -2-7-10.drv",
5 ["out"]),
6 ("/nix/store/78f..-opencv -1-14.drv",
7 ["out"]),
8 ...
9 ["/nix/store/9kr..-default -builder.sh"],

10 "x86_64 -linux",
11 ...� �

gh-from-shoe-1-0.drv (generated)

11

Steps
1. Describe a package and its dependencies in full
2. Build it in isolation

12

Building

gh-from-shoe-1.0$ nix build

1. Pull and build dependencies
(opencv-1-14, python-2-7-10, …)

2. Create an isolated environment.
3. Run the builder.

13

Steps
1. Describe a package and its dependencies in full
2. Build it in isolation
3. Put the result in the store

14

Storing

/nix/store (read-only)

zx9prppqsnsmwizzmvymvmc090kd4v5p-minimad-0.6.9

zvkc187c0cdx4h2l5zc3g729lfcj08xc-keyutils-1.6.3-lib

zv6808c2f0dn05d2gb1zs974bkzinr5p-python-2.7.19

zry66khb4many3yz7wi2wvg4azeaz4o-gh-from-shoe-1.0

bin

etc

lib

share

15

Storing

/nix/store (read-only)

zx9prppqsnsmwizzmvymvmc090kd4v5p-minimad-0.6.9

zvkc187c0cdx4h2l5zc3g729lfcj08xc-keyutils-1.6.3-lib

zv6808c2f0dn05d2gb1zs974bkzinr5p-python-2.7.19

zry66khb4many3yz7wi2wvg4azeaz4o-gh-from-shoe-1.0

bin/main.py

etc

lib

share

/bin/gh-from-shoe 15

Steps
1. Describe a package and its dependencies in full
2. Build it in isolation
3. Put the result in the store
4. Profit: find love!

16

Perks

• Reproducible
• Declarative
• Complete dependencies
• Fearless upgrades: atomic upgrades and rollbacks

17

Usage examples

• Nix: package management
• NixOS: declarative system configuration
• Nix shell: project-specific environments
• NixOps: Nix-based cloud deployment

18

Constraints

• Steep learning curve
• Everything has to be ”Nixified”

19

Purely functional package management

Nix Pure functional programming
Read-only store Immutability
Hash addressing + sharing Hash consing
Cleaning Garbage collection
Reproducibility Referential transparency

20

Nix expressions

Epilogue

The princess found love and now wants to use Nix for her own projects

21

Package as a function

Building a package should be a pure function: use a functional programming language!

22

Nix expressions

The Nix language
JSON + λ (higher-order functions)

23

Nix expressions� �
1 {python2WithOpenCV , opencv , stdenv}:
2 stdenv.mkDerivation rec {
3 pname = "gh-from-shoe-rust";
4 version = "2021-04-30";
5

6 buildInputs = [python2WithOpenCV opencv];
7

8 installPhase = ''
9 mkdir -p $out/bin

10 cp ${./myscript.py} $out/bin/myscript
11 '';
12 };� �

gh-from-shoe/default.nix

24

Derivation: Nix object code� �
1 Derive(
2 [("out","/nix/store/qya..-gh-from-shoe","","")],
3 [
4 ("/nix/store/ae4..-python -2-7-10.drv",
5 ["out"]),
6 ("/nix/store/78f..-opencv -1-14.drv",
7 ["out"]),
8 ...
9 ["/nix/store/9kr..-default -builder.sh"],

10 "x86_64 -linux",
11 ...� �

/nix/store/27az7...gh-from-shoe-1-0.drv

25

State of affairs

Nix expressions outgrew their initial scope.

In the wild
• Various user-defined abstractions
• Object systems (kind of): overriding
• A module system: NixOS
• Non-trivial algorithms (e.g. topological sort)

All of this without types!

? ? ?

26

Nickel

Meet Nickel

A new take
• Gradual typing
• Run-time contracts
• Recursive records merge system
• Stand-alone language: free us from YAML templating! (Terraform, Kubernetes,

build systems, etc.)

27

A teaser: contract
� �

1 let Port = ...
2

3 let Service = {
4 name | doc "Service name"
5 | Str,
6

7 openPorts | doc "Open ports (firewall)"
8 | List #Port
9 | default = [],

10 ...
11 }� �

contracts.ncl

28

A teaser: configuration� �
1 let portToUrl : Str -> Num -> Str =
2 fun host port => ... in
3

4 {
5 name = "nginx",
6 openPorts = [80, 443],
7 server = "localhost",
8 urls = lists.map
9 (portToUrl server)

10 openPorts ,
11 }
12 | #Service� �

nginx.ncl

29

A teaser: result� �
1 {
2 "name": "nginx",
3 "openPorts": [
4 80,
5 443
6],
7 "server": "localhost",
8 "urls": [
9 "http://localhost",

10 "https://localhost"
11]
12 }� �

nginx.json 30

Untyped code

By default, code is untyped:

• Terminating & fixed inputs
• Contracts for validation
• JSON interop

Example� �
1 services = [
2 "init",
3 {name = "firewall", bin = "/bin/firewall"},
4 {name = "service", repo = "github.com/johndoe/dns-service"}
5]� �

Heterogeneous values

31

Typed code

Library code is statically typed:

• Triggered by annotations
• Scoped
• Type-inference

Example� �
1 map : forall a b. (a -> b) -> List a -> List b
2 = fun f list =>
3 if list == [] then []
4 else
5 let head = lists.head list in
6 let tail = lists.tail list in
7 [f head] @ map f tail� �

Statically typed map 32

Interaction typed/untyped

Problem
Untyped code can sneak in ill-typed parameters

Example� �
1 let add : Num -> Num -> Num
2 = fun x y => x + y in
3 add "a" 0� �� �

let add : Num -> Num -> Num = fun x y => x + y
^

This expression has type Str, expected Num� �
33

Contracts, the invisible glue

Typed code is protected by run-time casts, or contracts.� �
1 let safeNum = fun value =>
2 if builtins.isNum value then value
3 else panic! in
4

5 let addSafe = fun x y =>
6 let safeX = safeNum x in
7 let safeY = safeNum y in
8 safeNum (add safeX safeY)� �

Generated code for add (simplified)

34

Contracts, the invisible glue

35

First-class contracts� �
1 let Url = let pattern = "[-a-zA-Z0-9@:..." in
2 fun label value =>
3 if builtins.isStr value then
4 if strings.isMatch value pattern then
5 value
6 else
7 contracts.blame
8 (contracts.tag "invalid URL" label)
9 else

10 contracts.blame
11 (contracts.tag "not a string" label) in
12

13 let mkUrls | {url: #Url, pattern: Str} -> List #Url = ...� �
36

First-class contracts

� �
1 Derivation | doc "A Nix package , in Nickel" = {
2 name | Str,
3 buildInputs | List #NixPackage ,
4 },
5

6 NixPackage | doc "Interchange format" = {
7 package | Str,
8 input | Str
9 | default = "nixpkgs",

10 _type = "package",
11 },� �

37

First-class contracts

Perks
• Can check arbitrary properties
• Composable
• Allow safe typed/untyped interactions
• Built-in error reporting

Limits
• Run-time cost
• Untriggered code paths

38

Conclusion

Summary

• Reproducibility is a concrete and hard problem. Nix helps.
• Nix expressions have shortcomings. We started the Nickel language to overcome

them.
• There is a design space for alternative type systems. Gradual typing and first-class

contracts is an exciting combo explored in Nickel.

39

CONFLANG21

Configuration languages are a worthy area of research.

The 1st Workshop on Configuration Languages

Website https://2021.splashcon.org/home/conflang-2021
Deadline Friday 6 August 2021
Duration 1 day

Event October 2021, at SPLASH 2021

40

The end

Nickel https://github.com/tweag/nickel/
Nix https://nixos.org/

Tweag’s blog https://www.tweag.io/blog

Contact
• yann.hamdaoui@tweag.io
• hello@tweag.io

41

	Introduction
	Cautionary tale
	Reproducibility

	Nix: the (pure) functional package manager
	Nix expressions
	Nickel
	Conclusion

