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A cautionary tale

Well, Ppthon2, atuallp
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$python main.py

Failed to import the shoe
module...

Sinstall python2
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A cautionary tale

Quv tlp ppthon bimdings to opench as tell

f$python2 main.py h

Failed to import the
opencv module

$pip2 install opencv-pyth
on

\ _ y, :




A cautionary tale

With opench v1.14

f$python2 main.py h

Undefined symbol:
"_ZNreadlmgRawi2"

$pack version opencv
package: OpenCV
version: 2.0

\ _ y, :




A cautionary tale

Sly moles Ipaven amd carth

(o -
$uninstall opencv --force
Sinstall opencv-0.92
No candidate found.




A cautionary tale

@To find a solution

($curl https...opencv-0.92\
$./install.sh
Syntax error....




A cautionary tale

Without success

(- .
$git clone ...opencv.git .
$git checkout rel-0.92
$make install

$python2 main.py
Segmentation fault
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Reproducibility

works on my machine \_(YV)_/

Reproducibility
1. Concrete and widespread

2. Not addressed by mainstream tools



The problem
: | ]

[ opencv-python ]

pip
python 2.7

[ main.py ]




Looks familiar?

dependencies
(explicit)




Looks familiar?
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inputs .
(parameters) unction




Functional approach to reproducibility

all inputs .
(parameters) unction




Nix: the (pure) functional package
manager



works on my machine \_(%V)_/



%:é Nix

works
everywhere




What if the princess had access to a version packaged by Nix?

';“/- Nix




Steps



Steps

1. Describe a package and its dependencies in full



~

1 [{python2WithOpenCV, opencv, stdenv}:
> | stdenv.mkDerivation rec {
3 pname = "gh-from-shoe";
4 version = "2021-04-30";

6 buildInputs = [ python2WithOpenCV opencv ];

8 installPhase = ''

9 mkdir -p $out/bin

10 cp ${./main.py} $out/bin/gh-from-shoe
11 LG

12 | };

gh-from-shoe/default.nix
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N

1 | Derive (

2 [("out","/nix/store/qya..-gh-from-shoe","","")],
3 [

4 ("/nix/store/ae4..-python-2-7-10.drv",

5 ["out"]),

6 ("/nix/store/78f..-opencv-1-14.drv",

7 ["out"]),

9 ["/nix/store/9kr..-default-builder.sh"],

10 "x86_64-1linux",

11

gh-from-shoe-1-0.drv (generated)
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Steps
1. Describe a package and its dependencies in full

2. Build it in isolation
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gh-from-shoe-1.0$ nix build

1. Pull and build dependencies
(opencv—1—14, python-2-7-10, )
2. Create an isolated environment.

3. Run the builder.
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Steps
1. Describe a package and its dependencies in full
2. Build it in isolation

3. Put the result in the store
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/nix/store (read-only)

L zry66khb4many3yz7wi2wvg4azeaz4o-gh-from-shoe-1.0
— bin
—etc

—lib

—share
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/nix/store (read-only)

> —bin/main.py
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/bin/gh-from-shoe



Steps
1. Describe a package and its dependencies in full
2. Build it in isolation
3. Put the result in the store
4

. Profit: find love!
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= Reproducible

Declarative

= Complete dependencies

» Fearless upgrades: atomic upgrades and rollbacks
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Usage examples

= Nix: package management
= NixOS: declarative system configuration
= Nix shell: project-specific environments

= NixOps: Nix-based cloud deployment
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= Steep learning curve

= Everything has to be "Nixified”
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Purely functional package management

Nix

Pure functional programming

Read-only store

Hash addressing + sharing
Cleaning

Reproducibility

Immutability
Hash consing
Garbage collection

Referential transparency
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Nix expressions




Epilogue

The princess found love and now wants to use Nix for her own projects
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Package as a function

Building a package should be a pure function: use a functional programming language!
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Nix expressions

The Nix language
JSON + X (higher-order functions)
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Nix expressions

~

1 [{python2WithOpenCV, opencv, stdenv}:

6 buildInputs = [ python2WithOpenCV opencv ];

gh-from-shoe/default.nix
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Derivation: Nix object code

N

1 | Derive (

2 [("out","/nix/store/qya..-gh-from-shoe","","")],
3 [

4 ("/nix/store/ae4..-python-2-7-10.drv",

5 ["out"]),

6 ("/nix/store/78f..-opencv-1-14.drv",

7 ["out"]),

9 ["/nix/store/9kr..-default-builder.sh"],

10 "x86_64-1linux",

11

/nix/store/27az7...gh-from-shoe-1-0.drv
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State of affairs

Nix expressions outgrew their initial scope.

In the wild
= Various user-defined abstractions
= Object systems (kind of): overriding
= A module system: NixOS

= Non-trivial algorithms (e.g. topological sort)

All of this without types!
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Nickel




Meet Nickel

A new take
= Gradual typing
= Run-time contracts
= Recursive records merge system

= Stand-alone language: free us from YAML templating! (Terraform, Kubernetes,
build systems, etc.)
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A teaser: contract

~

1 |let Port =

2

3 |let Service = {

4 name | doc "Service name"
5 | Str,

6

7 openPorts | doc "Open ports (firewall)"
8 | List #Port

9 | default = [],
10

11 | }

contracts.ncl
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A teaser: configuration

~

6 openPorts = [80, 443],
.

8 urls = lists.map

9 (portToUrl server)
10 openPorts,

11

12 | #Service

nginx.ncl
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A teaser: result

~

1

2

3

4

5

6

7

8 "urls": [

9 "http://localhost",
10 "https://localhost"
11 ]

12

nginx.json 30



Untyped code

By default, code is untyped:

= Terminating & fixed inputs
= Contracts for validation
= JSON interop

Example
1 | services = [
2 "init",
3 {name = "firewall", bin = "/bin/firewall"},
4 {name = "service", repo = "github.com/johndoe/dns-service"}
5 |1

Heterogeneous values
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Typed code

Library code is statically typed:

= Triggered by annotations

= Scoped
= Type-inference
Example

1 |map : forall a b. (a -> b) -> List a -> List b
2 = fun f list =>
3 if list == [] then []
4 else
5 let head = lists.head list in
6 let tail = lists.tail list in
7 [f head] @ map f tail

Statically typed map 32



Interaction typed/untyped

Problem
Untyped code can sneak in ill-typed parameters

Example .
1 [let add : Num -> Num -> Num
2 = fun x y => x + y in

s add "a" O

-
let add : Num -> Num -> Num = fun x y => x + y

This expression has type Str, expected Num
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Contracts, the invisible glue

Typed code is protected by run-time casts, or contracts.

1 | let safeNum = fun value =>
2 if builtins.isNum value then value
3 else panic! in

s | let addSafe
6 let safeX = safeNum x in

fun x y =>

7 let safeY = safeNum y in
8 safeNum (add safeX safeY)

Generated code for add (simplified)
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Contracts, the invisible glue

error: Blame error: contract broken by the caller.

Num

note:

let add

(generated

y eva

luation):1:1



First-class contracts

1 |[let Url =

10

11 in

13 | let mkUrls | {url: #Url, pattern: Str} -> List #Url =
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First-class contracts

1 |Derivation | doc "A Nix package, in Nickel" = {

2 name | Str,

3 buildInputs | List #NixPackage,

4 },

5

¢ | NixPackage | doc "Interchange format" = {
7 package | Str,

8 input | Str

9 | default = "nixpkgs",

10 _type = "package",

11 },

37



First-class contracts

Perks
= Can check arbitrary properties
= Composable
= Allow safe typed/untyped interactions

= Built-in error reporting

Limits
= Run-time cost

= Untriggered code paths
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Conclusion




= Reproducibility is a concrete and hard problem. Nix helps.
= Nix expressions have shortcomings. We started the Nickel language to overcome
them.

= There is a design space for alternative type systems. Gradual typing and first-class

contracts is an exciting combo explored in Nickel.
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CONFLANG21

Configuration languages are a worthy area of research.

The 1st Workshop on Configuration Languages

Website https://2021.splashcon.org/home/conflang-2021
Deadline Friday 6 August 2021

Duration 1 day
Event October 2021, at SPLASH 2021
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Nickel https://github.com/tweag/nickel/
Nix https://nixos.org/
Tweag’s blog https://www.tweag.io/blog

Contact
= yann.hamdaoui@tweag.io

= hello@tweag.io
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