A Tale of Nix and Nickel
YOW! Lambda Jam

Yann Hamdaoui
May 5, 2021

TWEAG

Introduction

A cautionary tale

Once upon a tine. ..

A cautionary tale

Tlyre was a bedliant peincess

0

Neur
IPS

A cautionary tale

One night, sl ges to th Kingom Aniweesitpy Bal

King Uni
Bal

JJe

A cautionary tale

Pyre sly falls i loe with a mpsterionl gitl

A cautionary tale

But wlpn midnight steikes, the giel sudenlp tums!

A cautionary tale

Sl could onlp get a ploto of fpe shoe

i

A cautionary tale

Meecitullp, there is tly BeepSlpe paper!

DeepShoe

c-derel-a@kinguni.edu

A cautionary tale

Sk wionloads tly repositorp, whidy tequires Pothon

-
]

A cautionary tale

Well, Ppthon2, atuallp

e ,)
$python main.py

Failed to import the shoe
module...

Sinstall python2

_ _ y, :

A cautionary tale

Quv tlp ppthon bimdings to opench as tell

f$python2 main.py h

Failed to import the
opencv module

$pip2 install opencv-pyth
on

\ _ y, :

A cautionary tale

With opench v1.14

f$python2 main.py h

Undefined symbol:
"_ZNreadlmgRawi2"

$pack version opencv
package: OpenCV
version: 2.0

\ _ y, :

A cautionary tale

Sly moles Ipaven amd carth

(o -
$uninstall opencv --force
Sinstall opencv-0.92
No candidate found.

A cautionary tale

@To find a solution

($curl https...opencv-0.92\
$./install.sh
Syntax error....

A cautionary tale

Without success

(- .
$git clone ...opencv.git .
$git checkout rel-0.92
$make install

$python2 main.py
Segmentation fault

" _ y, :

A cautionary tale

Th e

Reproducibility

works on my machine _(YV)_/

Reproducibility

works on my machine _(YV)_/

Reproducibility

Reproducibility

works on my machine _(YV)_/

Reproducibility

1. Concrete and widespread

Reproducibility

works on my machine _(YV)_/

Reproducibility
1. Concrete and widespread

2. Not addressed by mainstream tools

The problem
: |]

[opencv-python]

pip
python 2.7

[main.py]

Looks familiar?

dependencies
(explicit)

Looks familiar?
\/

inputs .
(parameters) unction

Functional approach to reproducibility

all inputs .
(parameters) unction

Nix: the (pure) functional package
manager

works on my machine _(%V)_/

%:é Nix

works
everywhere

What if the princess had access to a version packaged by Nix?

';“/- Nix

Steps

Steps

1. Describe a package and its dependencies in full

~

1 [{python2WithOpenCV, opencv, stdenv}:
> | stdenv.mkDerivation rec {
3 pname = "gh-from-shoe";
4 version = "2021-04-30";

6 buildInputs = [python2WithOpenCV opencv];

8 installPhase = ''

9 mkdir -p $out/bin

10 cp ${./main.py} $out/bin/gh-from-shoe
11 LG

12 | };

gh-from-shoe/default.nix

10

N

1 | Derive (

2 [("out","/nix/store/qya..-gh-from-shoe","","")],
3 [

4 ("/nix/store/ae4..-python-2-7-10.drv",

5 ["out"]),

6 ("/nix/store/78f..-opencv-1-14.drv",

7 ["out"]),

9 ["/nix/store/9kr..-default-builder.sh"],

10 "x86_64-1linux",

11

gh-from-shoe-1-0.drv (generated)

11

Steps
1. Describe a package and its dependencies in full

2. Build it in isolation

12

gh-from-shoe-1.0$ nix build

1. Pull and build dependencies
(opencv—1—14, python-2-7-10,)
2. Create an isolated environment.

3. Run the builder.

13

Steps
1. Describe a package and its dependencies in full
2. Build it in isolation

3. Put the result in the store

14

/nix/store (read-only)

L zry66khb4many3yz7wi2wvg4azeaz4o-gh-from-shoe-1.0
— bin
—etc

—lib

—share

15

/nix/store (read-only)

> —bin/main.py

15

/bin/gh-from-shoe

Steps
1. Describe a package and its dependencies in full
2. Build it in isolation
3. Put the result in the store
4

. Profit: find love!

16

= Reproducible

Declarative

= Complete dependencies

» Fearless upgrades: atomic upgrades and rollbacks

17

Usage examples

= Nix: package management
= NixOS: declarative system configuration
= Nix shell: project-specific environments

= NixOps: Nix-based cloud deployment

18

= Steep learning curve

= Everything has to be "Nixified”

19

Purely functional package management

Nix

Pure functional programming

Read-only store

Hash addressing + sharing
Cleaning

Reproducibility

Immutability
Hash consing
Garbage collection

Referential transparency

20

Nix expressions

Epilogue

The princess found love and now wants to use Nix for her own projects

21

Package as a function

Building a package should be a pure function: use a functional programming language!

22

Nix expressions

The Nix language
JSON + X (higher-order functions)

23

Nix expressions

~

1 [{python2WithOpenCV, opencv, stdenv}:

6 buildInputs = [python2WithOpenCV opencv];

gh-from-shoe/default.nix

24

Derivation: Nix object code

N

1 | Derive (

2 [("out","/nix/store/qya..-gh-from-shoe","","")],
3 [

4 ("/nix/store/ae4..-python-2-7-10.drv",

5 ["out"]),

6 ("/nix/store/78f..-opencv-1-14.drv",

7 ["out"]),

9 ["/nix/store/9kr..-default-builder.sh"],

10 "x86_64-1linux",

11

/nix/store/27az7...gh-from-shoe-1-0.drv

25

State of affairs

Nix expressions outgrew their initial scope.

In the wild
= Various user-defined abstractions
= Object systems (kind of): overriding
= A module system: NixOS

= Non-trivial algorithms (e.g. topological sort)

All of this without types!

26

Nickel

Meet Nickel

A new take
= Gradual typing
= Run-time contracts
= Recursive records merge system

= Stand-alone language: free us from YAML templating! (Terraform, Kubernetes,
build systems, etc.)

27

A teaser: contract

~

1 |let Port =

2

3 |let Service = {

4 name | doc "Service name"
5 | Str,

6

7 openPorts | doc "Open ports (firewall)"
8 | List #Port

9 | default = [],
10

11 | }

contracts.ncl

28

A teaser: configuration

~

6 openPorts = [80, 443],
.

8 urls = lists.map

9 (portToUrl server)
10 openPorts,

11

12 | #Service

nginx.ncl

29

A teaser: result

~

1

2

3

4

5

6

7

8 "urls": [

9 "http://localhost",
10 "https://localhost"
11]

12

nginx.json 30

Untyped code

By default, code is untyped:

= Terminating & fixed inputs
= Contracts for validation
= JSON interop

Example
1 | services = [
2 "init",
3 {name = "firewall", bin = "/bin/firewall"},
4 {name = "service", repo = "github.com/johndoe/dns-service"}
5 |1

Heterogeneous values

31

Typed code

Library code is statically typed:

= Triggered by annotations

= Scoped
= Type-inference
Example

1 |map : forall a b. (a -> b) -> List a -> List b
2 = fun f list =>
3 if list == [] then []
4 else
5 let head = lists.head list in
6 let tail = lists.tail list in
7 [f head] @ map f tail

Statically typed map 32

Interaction typed/untyped

Problem
Untyped code can sneak in ill-typed parameters

Example .
1 [let add : Num -> Num -> Num
2 = fun x y => x + y in

s add "a" O

-
let add : Num -> Num -> Num = fun x y => x + y

This expression has type Str, expected Num

33

Contracts, the invisible glue

Typed code is protected by run-time casts, or contracts.

1 | let safeNum = fun value =>
2 if builtins.isNum value then value
3 else panic! in

s | let addSafe
6 let safeX = safeNum x in

fun x y =>

7 let safeY = safeNum y in
8 safeNum (add safeX safeY)

Generated code for add (simplified)

34

Contracts, the invisible glue

error: Blame error: contract broken by the caller.

Num

note:

let add

(generated

y eva

luation):1:1

First-class contracts

1 |[let Url =

10

11 in

13 | let mkUrls | {url: #Url, pattern: Str} -> List #Url =

36

First-class contracts

1 |Derivation | doc "A Nix package, in Nickel" = {

2 name | Str,

3 buildInputs | List #NixPackage,

4 },

5

¢ | NixPackage | doc "Interchange format" = {
7 package | Str,

8 input | Str

9 | default = "nixpkgs",

10 _type = "package",

11 },

37

First-class contracts

Perks
= Can check arbitrary properties
= Composable
= Allow safe typed/untyped interactions

= Built-in error reporting

Limits
= Run-time cost

= Untriggered code paths

38

Conclusion

= Reproducibility is a concrete and hard problem. Nix helps.
= Nix expressions have shortcomings. We started the Nickel language to overcome
them.

= There is a design space for alternative type systems. Gradual typing and first-class

contracts is an exciting combo explored in Nickel.

39

CONFLANG21

Configuration languages are a worthy area of research.

The 1st Workshop on Configuration Languages

Website https://2021.splashcon.org/home/conflang-2021
Deadline Friday 6 August 2021

Duration 1 day
Event October 2021, at SPLASH 2021

40

Nickel https://github.com/tweag/nickel/
Nix https://nixos.org/
Tweag’s blog https://www.tweag.io/blog

Contact
= yann.hamdaoui@tweag.io

= hello@tweag.io

41

	Introduction
	Cautionary tale
	Reproducibility

	Nix: the (pure) functional package manager
	Nix expressions
	Nickel
	Conclusion

