
Verification of subsets of
RUST
Bas Spitters

Rust London, 28 June

CoBRA

secure distributed systems, zero-knowledge, …

formal verification, smart contracts, high assurance cryptography

Concordium: based in science
DevX concordium/cobra collab

https://cs.au.dk/research/centers/concordium/
https://devxinitiative.org/

Formal verification

Want to avoid bugs:

● Bugs in cryptography allow people to print money
● Bugs in smart contracts allow people to steal millions

Formal methods (RFVIG)

● Type checkers
● Unit tests, property based testing (quickcheck, proptest)
● Formal verification (automatic, interactive)

https://rust-lang.zulipchat.com/#narrow/stream/183875-wg-formal-methods

Interactive formal verification

Automatic tools can proof some properties of software
Advanced proofs need a human to interact with a
computer proof assistant

Examples: compilers, hypervisor, smart contracts, …
State of the art in programming language research

~40% of papers at POPL conference come with a formal proof

E.g. functional correctness, properties of PL:
type safety, preservation of semantics, ...

Coq proof assistant

Functional programming language
Logic/Type theory for specifications

Small kernel of logical rules

Used by 10ks users

Software foundations book

https://softwarefoundations.cis.upenn.edu/

(Biased) State of the art of FV in rust

Unlike C, no precise rust semantics (but ferrocene)

Wasm has a precise and formalized semantics

LLVM (vellvm)

RustBelt (~MIR)

A very long term goal: verified semantics for rust

Rust as an onion

From hacspec to unsafe rust

First steps:

● Hacspec (pure)
● fiat-rust/bedrock (small imperative language with expressions, e.g. for crypto)
● Pure (functional) rust for smart contracts

https://github.com/hacspec/hacspec

HacSpec

HAC (high assurance cryptography)
Functionally correct, cryptographically secure, fast, constant time

● Rust as a specification language:
From IETF pseudocode to rust

● Subset of rust with a precise (operational) semantics, type checker
Not yet blessed by the rust community

● Backends in proof assistants: F*,easycrypt, Coq
E.g. prove group laws for ECC instead of testing them

● Ex: SHA-256, ... , BLS (IETF proposal, Concordium ID-layer)

https://github.com/hacspec/hacspec

Fiat/bedrock

Generating platform independent, correct implementations:
Fiat-cryptography (MIT):
Verified partial evaluation from Coq to a small imperative language
 printed to rust
Straight-line code … constant time

Bedrock adds loops and function calls
WIP generating of efficient rust implementations (w/Diego)
E.g. Field inversion, BLS

https://github.com/mit-plv/fiat-crypto

Protocols: TLS, Noise

Popular verification target after Heartbleed

● Everest: functional correctness C code in F*
● HMAC in Coq: verified C code, cryptographically secure

Modular analysis of TLS1.3 cryptographic security uses State Separating proofs.
Need to connect pseudo-code to code: SSProve.

● Possible building blocks for verification of RustTLS, rust-noise
and other complex protocols

● Sigma-protocols for Zero-Knowledge in SSProve (ID-layer)
● First formal proof of Safety and liveness of Nakamoto consensus

https://project-everest.github.io/
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-beringer.pdf
https://eprint.iacr.org/2021/467
https://github.com/SSProve/ssprove
https://eprint.iacr.org/2020/917

From specification to implementation

pseudocode -> Hacspec -> Coq -> fiat library -> rust

Case study: From the BLS specification,

generate an efficient implementation

Concordium, linux kernel, wireguard, mirageos,

… are using HAC in production

https://www.wireguard.com/formal-verification/

Smart contracts

Small programs on the blockchain. Concordium: wasm on chain, rust to generate
wasm

Can automate simple banking tasks
Examples: deFi: tokens, exchange, escrow, voting, …

Big hacks: DAO, uniswap, burgerswap, dForce,...
 of contracts written in legacy solidity (js) language
Losing 10s of millions due to simple programming errors.
ConCert: Writing a specification, we’ve found bugs using quickcheck.
 Prove adherence to the specification in Coq.
 Player 1 has a winning strategy in TicTacToe.

https://github.com/AU-COBRA/ConCert

ConCert

Mathematical model of a smart contract as interacting pure programs

But there’s more … verified extraction to rust (Coq workshop)

Proving functional programs correct:
Write them in a dependently typed language (Coq)
and erase the complex types, keeping the lambda terms. Cf. refinement types in haskell (liquidhaskell)

Reverse: {l:list | len l =n} -> {l:list | len l =n}

Meta-coq meta-programming

For smart contracts we extract to rust’s Arenas.
Memory is freed after program terminates. Running on concordium stagenet!

https://github.com/AU-COBRA/ConCert

Conclusions

● From specification to implementation in rust
● High assurance cryptography in rust (w/RFVIG, RCIG)
● Verified smart contracts to rust￼

Concordium:

● HAC in production
● Wasm formalized semantics

verified smart contracts on stagenet

