
Scaling Your Architecture
with Services and Events	

Randy Shoup
@randyshoup

Background	

@randyshoup	

Scaling Architecture	
 	 • Architecture Evolution	

 	 • Service Architecture	

 	 • Event-Driven Communication	

• Combining Services + Events	

Scaling Architecture	
 	 • Architecture Evolution	

 	 • Service Architecture	

 	 • Event-Driven Communication	

• Combining Services + Events	

STARTING	 SCALING	 OPTIMIZING	

https://ittybiz.com/s-curve/	@randyshoup	

STARTING	 SCALING	 OPTIMIZING	

https://ittybiz.com/s-curve/	

Single Team

Rapid
iteration

@randyshoup	

Monolithic
architecture

STARTING	 SCALING	 OPTIMIZING	

https://ittybiz.com/s-curve/	

Many Teams

Velocity and
Scalability

@randyshoup	

Microservice
architecture

Single Team

Rapid
iteration

Monolithic
architecture

STARTING	 SCALING	 OPTIMIZING	

https://ittybiz.com/s-curve/	

Fewer Teams

Efficiency and
Sustainability

@randyshoup	

Consolidating
architecture

Many Teams

Velocity and
Scalability

Microservice
architecture

Single Team

Rapid
iteration

Monolithic
architecture

STARTING	 SCALING	 OPTIMIZING	

https://ittybiz.com/s-curve/	

Fewer Teams

Efficiency and
Sustainability

@randyshoup	

Consolidating
architecture

Many Teams

Velocity and
Scalability

Microservice
architecture

Single Team

Rapid
iteration

Monolithic
architecture

STARTING	 SCALING	 OPTIMIZING	

https://ittybiz.com/s-curve/	

Fewer Teams

Efficiency and
Sustainability

@randyshoup	

Consolidating
architecture

Many Teams

Velocity and
Scalability

Microservice
architecture

Single Team

Rapid
iteration

Monolithic
architecture

(~1% of all
applications)	

SCALING	

Architecture Evolution	
•  eBay

•  5th generation today
•  Monolithic Perl à Monolithic C++ à Java à microservices

•  Twitter
•  3rd generation today
•  Monolithic Rails à JS / Rails / Scala à microservices

•  Amazon
•  Nth generation today
•  Monolithic Perl / C à Java / C++ à microservices

No one starts with microservices
…
	Past a certain scale, everyone ends

up with microservices	

@randyshoup	

…	
but most never reach that scale	

Scaling Architecture	
 	 • Architecture Evolution	

 	 • Service Architecture	

 	 • Event-Driven Communication	

• Combining Services + Events	

Many Autonomous Teams	
Idea

Development
Quality

Operations

 	

 	 	

 	Idea
Development

Quality
Operations

Idea
Development

Quality
Operations

 	

 	 	

 	

 	

 	 	

 	

 	

 	 	

 	

 	

 	 	

 	

 	

 	 	

 	

 	

 	 	

 	

 	

 	 	

 	

 	

 	 	

 	

Service Architecture	

•  One domain: One team: One / few service(s)

o  Organization ç reflects è Architecture (“Conway’s Law”)

•  Autonomy and Accountability
o  Team can independently design, develop, deploy, operate its service(s)
o  Team owns its service(s) end to end

@randyshoup	

Service Architecture	

•  Abstraction and Encapsulation

o  Fault isolation
o  Performance optimization
o  Security boundary

•  Strict interface discipline
o  Well-specified interface contract
o  Testable and mockable

@randyshoup	

Service Architecture	

•  All operations through published service interface

o  No backdoor access to database (!)

@randyshoup	

Microservices	
•  Single-purpose
•  Simple, well-defined interface
•  Modular and independent
•  Isolated persistence (!) A	

C	 D	 E	

B	

@randyshoup	

Extracting Microservices	
•  Problem: Monolithic shared DB

•  Clients
•  Shipments
•  Items
•  Styles, SKUs

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

@randyshoup	

Extracting Microservices	
•  Decouple applications / services from shared DB

•  Clients
•  Shipments
•  Items
•  Styles, SKUs

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

@randyshoup	

Extracting Microservices	
•  Decouple applications / services from shared DB

Styling app Warehouse app

core_item

core_sku

core_client

@randyshoup	

Extracting Microservices	
•  Step 1: Create a service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

@randyshoup	

Extracting Microservices	
•  Step 2: Applications use the service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

@randyshoup	

Extracting Microservices	
•  Step 2: Applications use the service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

Do NOT stop here!
①  All the problems of a

distributed system
②  All the problems of a

shared database
③  None of the benefits

of microservices L

@randyshoup	

Extracting Microservices	
•  Step 3: Move data to private database

Styling app Warehouse app

core_item

core_sku

client-service

core_client

@randyshoup	

Extracting Microservices	
•  Step 4: Rinse and Repeat

Styling app Warehouse app

core_sku

client-service

core_client

item-service

core_item

@randyshoup	

Extracting Microservices	
•  Step 4: Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku

@randyshoup	

Extracting Microservices	
•  Step 4: Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku

@randyshoup	

Scaling Architecture	
 	 • Architecture Evolution	

 	 • Service Architecture	

 	 • Event-Driven Communication	

• Combining Services + Events	

Event-Driven Communication	

•  Service publishes an event when state changes
o  Statement that some interesting thing occurred

•  Consumers subscribe to the event

•  Events are a first-class part of a service interface

@randyshoup	

Event-Driven Communication	

•  Decouple domains and teams
o  Abstracted through a well-defined interface
o  Asynchronous from one another

•  Decouple producer and consumer services
o  Decoupled availability
o  Independent scalability

@randyshoup	

Event-Driven Communication	

•  Strict interface discipline
o  Well-specified event schema
o  Testable and mockable

@randyshoup	

Scaling Architecture	
 	 • Architecture Evolution	

 	 • Service Architecture	

 	 • Event-Driven Communication	

• Combining Services + Events	

•  Service as System of Record
o  Every piece of data is owned by a single service
o  That service is the canonical system of record for that data

•  Events as State Changes
o  Every other copy is a read-only, non-authoritative cache

customer-service
styling-service

customer-search

billing-service

Combining Services + Events	

@randyshoup	

Producer “Correctness”	
Option 1: Change Data Capture
•  Write state change to database

o  (Database writes change to its transaction log)

•  “Connector” tails transaction log, sends event

Producer	
Transport	1	 2	

@randyshoup	

Producer “Correctness”	
Option 2: Transactional Outbox
•  State changes and events are stored in the same

system
•  E.g., state and events live in database tables
Producer	

1	 state_table

event_table

2	

@randyshoup	

Shared Data	
•  Monolithic database makes it easy to leverage shared

data

•  Where does shared data go in a microservices world?

@randyshoup	

Shared Data	
Option 1: Synchronous Lookup

o  Customer service owns customer data
o  Fulfillment service calls customer service in real time

fulfillment-service

customer-service

@randyshoup	

Shared Data	
Option 2: Async event + local cache

o  Customer service owns customer data
o  Customer service sends address-updated event when customer address

changes
o  Fulfillment service caches current customer address

fulfillment-service customer-service

@randyshoup	

Joins	
•  Monolithic database makes it easy to join tables

•  Splitting the data across microservices makes joins very
hard

SELECT FROM A INNER JOIN B ON …

@randyshoup	

Joins	
Option 1: Join in Client Application

o  Get a single customer from customer-service
o  Query matching orders for that customer from order-service

Customers

Orders

order-history-page

customer-service order-service

@randyshoup	

Joins	
Option 2: Service that “Materializes the View”

o  Listen to events from item-service, events from order-service
o  Maintain denormalized join of items and orders together in local storage

Items Order Feedback

item-feedback-service
item-service

order-feedback-service

@randyshoup	

Joins	
Many common systems do this
•  “Materialized view” in database systems
•  Most NoSQL systems
•  Search engines
•  Analytic systems

@randyshoup	

Transactions	
•  Monolithic database makes transactions across multiple

entities easy

•  Splitting data across services makes transactions very
hard

BEGIN; INSERT INTO A …; UPDATE B...; COMMIT;

@randyshoup	

“In general, application
developers simply do not
implement large scalable
applications assuming
distributed transactions.”	

-- Pat Helland
Life After Distributed Transactions: An Apostate’s Opinion, 2007

“Grownups don’t use
distributed transactions”	

-- Pat Helland

Workflows and Sagas	
•  Transaction è Saga

o  Model the transaction as a state machine of atomic events

•  Reimplement as a workflow

•  Roll back with compensating operations in reverse

A	 B	 C	

A	 B	 C	
@randyshoup	

Workflows and Sagas	
Many real-world systems work like this
•  Payment processing
•  Expense approval
•  Software development process

@randyshoup	

Intermediate States	
Model intermediate states explicitly
•  Payment started, pending, complete
•  Expense submitted, approved, paid
•  Feature developed, reviewed, deployed, released

@randyshoup	

Serverless in Action	

•  Simple event-driven processing

o  Very lightweight logic
o  Stateless
o  Triggered by an event

•  è Consider Function-as-a-Service (“Serverless”)

A	 B	 C	

A	 B	 C	

ƛ	 ƛ	 ƛ	

ƛ	 ƛ	 ƛ	

@randyshoup	

Scaling Architecture	
 	 • Architecture Evolution	

 	 • Service Architecture	

 	 • Event-Driven Communication	

• Combining Services + Events	

Thank you!	
@randyshoup

linkedin.com/in/randyshoup

medium.com/@randyshoup

