
18:29 © 2005-2021 hello2morrow 1

Software Metrics for Architects

Alexander v. Zitzewitz
a.zitzewitz@hello2morrow.com

blog.hello2morrow.com
@AZ_hello2morrow

mailto:a.zitzewitz@hello2morrow.com

Agenda

The case for using metrics
Fitness function
Some useful code metrics

13.10.21 © 2005-2021, hello2morrow 2

Continuous Improvement

Define Goals

Implement

Verify/Measure

Improve

13.10.21 © 2005-2021, hello2morrow 3

They are the foundation of the crucial “verify/measure” node of

the continuous improvement loop

Free tools like Sonargraph-Explorer already provide a lot of

metrics

Automated measurement in CI builds allows you to discover

harmful trends early enough

You can enforce quality standards by using metrics in quality

gates

13.10.21 © 2005-2021, hello2morrow 4

Why you should use metrics

Why metrics are underutilized

Perceived lack of tools or knowledge about them
Lack of knowledge about metrics and how to read them
Often a single metric does not tell the whole story
Who has time for this?
Metrics are most useful when they are used to trigger actions
Intimidating choices, which metrics should I use?

13.10.21 © 2005-2021, hello2morrow 5

Agenda

The case for using metrics
Fitness function
Some useful code metrics

13.10.21 © 2005-2021, hello2morrow 6

Metrics quantify how well you met your goals

Without measuring you are blind

Trust is good – control is better (Lenin)

But what are the goals?

Maintainability?

Scalability?

Performance?

Evolvability?

Testability?

Many more “ilities”…

13.10.21 © 2005-2021, hello2morrow 7

Prioritize goals

Pick 3 to 4 “-ilities” as your top goals
Maintainability should always be one of them (unless you write code that will never
change)
Define and quantify what it means to achieve a goal

13.10.21 © 2005-2021, hello2morrow 8

Fitness functions

Define how well you achieved your goal
Can be based on

Code metrics derived from static analysis
Operational metrics
Production metrics
Manually collected metrics

Automation is recommended, but not always possible
Here we focus on code metrics

13.10.21 © 2005-2021, hello2morrow 9

A Manual Fitness Function

13.10.21 © 2005-2021, hello2morrow 10

Example Fitness Function

Percentage of time used to develop new features

§ Ratio of total development time spent on new features
§ Measures agility/changeability
§ Can be derived from extracting data from issue tracking systems like Jira
§ Requires developers to properly enter times used on issues (operational maturity)
§ Requires proper issue categorization (operational maturity)
§ Can be automated
§ Indirect measurement of technical debt

13.10.21 © 2005-2020, hello2morrow 11

More about fitness functions

13.10.21 © 2005-2021, hello2morrow 15

Agenda

The case for using metrics
Fitness function
Some useful code metrics

13.10.21 © 2005-2021, hello2morrow 16

This could have been avoided using metrics

13.10.21 © 2005-2021, hello2morrow 17

Architecture of Apache-Cassandra (ML: 9%, PC: 62%)

How can we measure Spaghettization?

13.10.21 © 2005-2021, hello2morrow 18

Attributes of Spaghetti Code?

High coupling

Lots of cyclic dependencies

No clear separation of responsibilities, e.g. features are spread all over the place

Sounds familiar ?! 90% of systems suffer some some variety of this problem

13.10.21 © 2005-2021, hello2morrow 19

Spaghetti Code vs Clean Code

13.10.21 © 2005-2021, hello2morrow 20

Good metrics to identify Spaghetti Code

ACD (Average Component Dependency): measures coupling
Maintainability Level: measures coupling and cyclic dependencies
Relative Cyclicity: focus on cyclic dependencies
Structural Debt Index (SDI): focus on cyclicity

13.10.21 © 2005-2021, hello2morrow 21

18:30 © 2005-2021, hello2morrow 22

ACD – a metric to measure coupling

ACD = Average Component Dependency

Average number of direct and indirect dependencies

rACD = ACD / number of elements

NCCD: normalized cumulated component dependency

6

33

1 1 1

CCD = 15
ACD = 15/6 = 2,5

3

11

2 3 2

Dependency Inversion
ACD = 12/6 = 2

6

66

1 6 1

Cycles

ACD = 26/6 = 4,33

Low level metrics to measure coupling

13.10.21 © 2005-2021, hello2morrow 23

Propagation Cost (MacCormack, Rusnak, Baldwin)

Percentage value to indicate coupling
Smallest value is 1/n*100, indicates no coupling
Biggest value 100 means 100% coupling
Calculated as average fan in (equals average fan out)
Bad values are bad except for small systems
Good values need to be verified by other metrics
Usually shrinks with system size

13.10.21 © 2005-2021, hello2morrow 24

What is a cycle group?

13.10.21 © 2005-2021, hello2morrow 25

Cyclicity

The cyclicity of a cycle group is the square of its size, e.g. a
group with 3 elements has a cyclicity of 9.
System / module cyclicity is the sum of all cycle group cyclicity
values.
Relative cyclicity is defined as:

13.10.21 © 2005-2021, hello2morrow 26

n is the total number of elements

Maintainability Level (ML)

Experimental metric in Sonargraph

Implemented as percentage: 100% means no coupling

Should be stable, when there are no major changes to architecture and design

Measure decoupling and successful verticalization

Reducing coupling and cyclicity will improve metric

One of several indicators of design quality

Recommended value: 75% or more

13.10.21 © 2005-2021, hello2morrow 27

ML Implementation

Fan In (ML): percentage of higher-level components influenced by a
given component
E.g. A influences E, I and J, 3 of 8 higher level components. Its “Fan In
(ML)” value therefore is 3/8 or 37.5%.
Cycle groups are condensed into a single logical node. I the example F,
G and H are condensed into a new node called FGH (weight of 3).
Fan In (FGH) is ¾ = 75% (it influences J, K and L – 3 of 4 nodes in level
3.
Fan-In (ML) of B, C and D is 6/8 = 75%. Cycle groups have a negative
influence.
Fan in of elements in highest level is always 0.

13.10.21 © 2005-2021, hello2morrow 28

ML Example Calculations

13.10.21 © 2005-2021, hello2morrow 29

ML Observations

The more components are in the topmost level, the better. Those components can be
changed without influencing the rest of the system.
Cycle groups have a negative influence, especially when the have more than 5
elements.
Successful verticalization (minimizing dependencies between vertical silos) leads to
better values.
We added an alternative calculation measuring package cyclicity. The ML value of a
module is the minimum of both values.
Does not work very well for small number of nodes. Therefore we introduced a sliding
minimum.

13.10.21 © 2005-2021, hello2morrow 30

Finetuning ML

Penalty for cycle groups with more than 5 elements
Does not work too well for small modules with less than 100
components

Fixed by introducing a sliding minimum value for modules with less than 100
components

Metric is blind regarding package/namespace structure
Fixed by adding an alternative calculation
(1 – relativePackageCyclicity) and then using the minimum value between
this value and ML
Also added a sliding minimum value for modules with less than 20
packages/namespaces

System wide metric is calculated as the weighted average of the
largest modules

13.10.21 © 2005-2021, hello2morrow 31

ML for Nerds

Details can be found on blog.hello2morrow.com

http://blog.hello2morrow.com/2018/12/a-promising-new-metric-to-track-maintainability

13.10.21 © 2005-2021, hello2morrow 32

http://blog.hello2morrow.com/2018/12/a-promising-new-metric-to-track-maintainability

Structural Debt Index (Sonargraph)

This metric focusses on cyclic coupling and how difficult it would be to break the cycles
Cyclic dependencies are a good indicator of structural erosion
For each cycle group two values are computed:

How many links do I have to cut to break the cycle group
Total number of code lines affected by the links to break

SDI = 10 * LinksToBreak + TotalAffectedLines
SDI is then added up for modules and the whole system
Can be computed on component level and on package/namespace level

13.10.21 © 2005-2021, hello2morrow 33

Cyclomatic Complexity

Defined as CC = e – n + 2
e: edges
n: nodes

13.10.21 © 2005-2021, hello2morrow 34

Cyclomatic Complexity Variants

Modified cyclomatic complexity: only adds one per switch statement
Extended cyclomatic complexity: adds one per logical and/or in conditions

13.10.21 © 2005-2021, hello2morrow 35

Average Cyclomatic Complexity

Can be calculated on classes, packages/namespaces or modules

Weighted average of cyclomatic complexity values of methods / classes.

Use “number of statements” as weights

13.10.21 © 2005-2021, hello2morrow 36

Max Indentation Depth

Excellent complexity indicator
Indentation >= 5 is problematic
Average indentation = weighted average of max indentation depth

13.10.21 © 2005-2021, hello2morrow 37

18:30 © 2005-2021, hello2morrow 38

Architecture metrics of Robert C. Martin

D
i
= Number of incoming dependencies

D
o

= Number of outgoing dependencies

Instability I = D
o

/ (D
i
+D

o
)

Build on abstractions, not on implementations

X is „stable“
Y is „instable“

18:30 © 2005-2021, hello2morrow 39

Abstractness (Robert C. Martin)

Nc = Total number of types in a type container

Na = Number of abstract classes and interfaces in a type container

Abstractness A = Na/Nc

18:30 © 2005-2021, hello2morrow 40

D = A + I – 1

Value range [-1 .. +1]

Negative values are in the „Zone of pain“
Positive values belong to the „Zone of uselessness“
Good values are close to zero (e.g. -0,25 to +0,25)
„Distance“ is quite context sensitive

Metric „distance“ (Robert C. Martin)

Component Rank

Is based in Google’s page rank metric
Calculated iteratively until values stabilize
Described in a Wikipedia article

13.10.21 © 2005-2021, hello2morrow 41

Source Code Management Metrics

Very useful to identify useful refactorings
Look for sources with high complexity and high change rate

File Changes (x days): how often was a file committed in the last x days
Code Churn (x days): how many lines have been added and removed from a file in the
last x days
Code Churn Rate (x days): percentage of code lines changed in the last x days based
on total lines
Number of Authors (x days): how many developers have worked on this file in the last
x days

13.10.21 © 2005-2020, hello2morrow 42

Hotspot Map

13.10.21 © 2005-2020, hello2morrow 43

Software City rendered by Sonargraph

Q & A

a.zitzewitz@hello2morrow.com
blog.hello2morrow.com

@AZ_hello2morrow

