
Federico Fregosi - VP of Engineering

Mainframe & Serverless Integration

How to Liberate the Data
and Stay Competitive in the New World!

Federico Fregosi - VP of Engineering

Mainframe & Serverless Integration

Come liberare i dati e rimanere competitivi
nel nuovo mondo!

#WhoAmI

3

Federico Fregosi

Current position: VP of Engineering, EMEA

Past:

federico.fregosi@gmail.com

https://www.linkedin.com/in/federico-fregosi/

mailto:federico.fregosi@contino.io
https://www.linkedin.com/in/federico-fregosi/

44

Large Payments Providers
Are at a Crossroads

From the 90s, the payments industry made billions ($$$!)
off the back of first-class reliability and resilience.

But modern tech is pushing the source of value beyond
just reliability and resilience.

But there is a solution! Payment providers are sitting on a
DATA GOLD MINE in their mainframe.

This data contains insights that will power their product
and customer strategies for years to come.

Getting to that data isn’t easy.

55

Payment Providers Need to Evolve!

You need to shift your business from delivering
resilient, reliable transactions....

...to providing real-time integrated data-driven
services.

66

You can process and stream millions of transactions to the cloud,
where they will then be available for analysis! It’s low risk and high value.

Stream & Use

1. Replicate the information on the mainframe in
the cloud

2. Deploy cloud-native, real time streaming
platforms (Managed Kafka, Data Streams)

3. Define pre or post arrival triggers

4. Separate batch processing where appropriate

5. Make available to use by your teams

By connecting your cloud, data and product programs, you can start delivering business
value from real-time transactions in the cloud in around 6-12 months.

Store & Exploit
1. Ensure: the data is retained in a secure and

flexible store

2. Use the flexibility of the cloud to meet your
requirements

3. Democratize access to your data

4. Generate business value by providing
data-driven evidence

5. Turn data into knowledge and actions

77

The Architecture

Live-Streaming Mainframe Data to the Cloud

9

1. STREAM
THE DATA

2. USE
THE DATA

3. STORE
THE DATA

4. EXPLOIT
THE DATA

Mainframe
to the Cloud

Enhance Existing
Services

Data Store
(Lake, Warehouse, ODS)

Data Science and
Business

Intelligence Team

Insights for
Data-Driven

Marketing and
Business Strategies

User Gets Real-Time
Data-Driven Services

The Architecture (Extremely Simplified)

10

Quick Primer on Some Core AWS Services

AWS Lambda Amazon API
Gateway

Amazon Kinesis
Data Firehose

Amazon Simple
Notification Service

AWS Snowball

Amazon
Elasticsearch Service

AWS Fargate Amazon Kinesis

AWS Step
Functions

Amazon Simple
Queue Service

Amazon RDS Amazon
DynamoDB

The Architecture (Not as Simple)

12

1 3

2

The focus is on providing performance and
accuracy of the transactions stream initiated
by a mainframe process

The priority is to rapidly
surface any updated
transactions to the users
(mobile app) to prove there is
no impact to the UX

The relevant stream
input data is also stored
in one or more suitable
DB

Architecture at a Glance

13

● Serverless/Microservices architecture

● Lambda 80 %, Fargate 20%

● 3 Teams, multiple AWS accounts

● 9 Microservices, tens of functions

● Shared Kernel (lightly versioned / library)

● 120 rps API, latency <100 ms 95th percentile

● Event sourcing pattern with Data lake integration

● CI/CD with AWS services & Serverless
Framework

The Actual
Architecture...here...

https://lucid.app/lucidchart/a804e7ea-f5c8-4e06-a599-25c8214e4713/edit?page=-55V-ltDGQXo#

Microservices Boundaries

15

● First - Domain Model.
Start identifying the aggregates

● Second - Operational needs.
Who’s going to run this?
It had already been decided!

(Inverse Conway’s Manoeuver!)

Architectural
Highlights

Ensuring Correctness

1717

It’s a distributed systems problem.This is financial
transaction data; end users need correct values.

● Acceptable levels of service as SLOs (accuracy,
speed, availability)

● Live End-To-End Testing System

● In-band and Out-of-Band Transaction
Reconciliation System (TRS)

Acceptable Levels of Service (NFRs)

18

Define expected correctness: “99% of Get API calls for transactions, over a minute, will return
correct data at a “certain” moment in time”1

Define expected consistency: “99.99% of Get API calls for transactions, over a minute, will
return correct data not-older-than 30 secs”2

Define expected latency: “99% of Get API calls for transactions,over a minute, will return the
most up-to-date data in less than 100ms”3

End-To-End Testing System

19

● Adopts end-user perspective
● Verifies formal correctness
● Multiple Probes from different vantage

points

● Continuous Testing
● Custom developed system (7)
● Failures trigger notifications
● Separate performance testing (buy)

In-Band

● Uses streaming transactional data

● Idempotency tags

● Retries on AWS side

● Repeats on the mainframe

● Monitoring and alerting enabled

● With High-Water mark

Two Transaction Reconciliation Systems

20

Out-Of-Band

● Complex system with Fargate and AWS

Step Functions

● Uses a different datasource (batch) and

processes transactions in a different way

● With automated and manual resolution

● Monitoring and alerting enabled

● With High-Water mark

20

Transaction Reconciliation System

21

Transaction Reconciliation System

22

UML Sequence Diagrams

:Mainframe :Kinesis/Lambda :Database

Sends reconciliation file

Asks for missing transaction

Replay missing transaction

Sends reconciliation file

Confirm transaction

Store

Checks reconciled message

Transaction Reconciliation System - C4 Model

23

System Context Container Model

Full-Text and Advanced Search

24

● Enables users to search
their transactions

● Multi-Database :
DynamoDB, RDS, Amazon
ElasticSearch

● Uses DynamoDB Streams
to replicate data to ES

● Ultrawarm for
low-frequency data

● With RDS Proxy and
Simple Cache

● Explicitly disregards API
Gateway Velocity
Templates

1

2

4

2

3

NOTE: Simplified diagram

Data Lake Integration

25

● Where value lies: liberating the
data for wider consumption

● Easy “in team” data
exploration

● Used for analytics

● Standardized out-of-team
consumption

● (data stewardship and
governance external)

● Raw and Enriched (clean)
data available

NOTE: Simplified diagram

Event Source

26

● Kinesis-based event source

● Follows financial transaction
lifecycle

● Strong decoupling

● Useful to other live systems

● With idempotency tag

● Does not allow to replay history

● Contract testing with Pact

Serverless Patterns

Circuit Breaker Pattern

28

● Strong requirements for
transaction consistency and
availability

● Automated switch-off on high
number of errors

● Mainframe system as fallback

● Prevents downstream service
flooding

● Reduces resource consumption

Closed Open

Half Open

fail (under threshold)

success

fail

reset timeout

call/raise circuit opensuccess

fail (under threshold)

Controlling Function Scaling and Throttling

29

● Make sure to monitor account
quotas

● Consider Provisioned Concurrency

● Set-up extensive monitoring in
Cloudwatch (Throttles, Invocations,
ExecutionTime)

● Look for tail-latency events

Impact on Downstream Systems

Set Reserved Concurrent Executions

Amazon RDSAmazon API
Gateway

AWS Lambda

MessageAmazon API
Gateway

Amazon RDSAWS Lambda AWS Lambda

Dead-Letter-Queue Pattern on Lambda

31

● Kinesis specific logic:
Bisect-on-failure and multiple
retries

● Aware of Lambda context

● Can have performance impact on the
overall system

● Failures trigger notifications
● Lambda Destinations unsuitable

Developer Experience

● Using AWS Developer Tools

● Monorepo for functions, continuous deployment
multi-branch pipeline

● Backed by build automation tools and integrated
with existing on-prem solutions

● Serverless Framework core tool for Lambda
Functions

● Terraform for infra resources

● Unit & Integrations Tests running in the pipeline
with artefact promotion

● Canary Deployment with gradual traffic rollout

● Supports manual approvals for compliance, where
needed

CI/CD

33

● Used Localstack,

● Integrated with IntelliJ using AWS toolkit to
test/debug Lambda’s

● Make ample use of AWS X-Ray
& AWS Cloudwatch

● Testing in production with feature flags
and Canaries (Serverless framework)

Testing & Debugging Serverless

34

https://docs.google.com/document/d/1ezv9Zes_EnhhvtdVROuuzZ9Jyi4Ae9hWdWwBn9gs15g/edit#heading=h.2gazcsgmxkub

Performances

Results

36

Results

From numbers to percentages

37

● Distributed systems hard to tackle
issue

● Lambda’s NTP servers cannot be
configured

● Lambda should run on Stratum 3 NTP
servers

● Run a small test using Lambda &
Python

● With DC<->AWS RTT at 40 ms, clock
offset < 10ms

● No guarantees are made

Measuring for real

38

Response Time

39

Response time for the system p95 < 100ms , p50 ~60 ms

Cold-Start
● Optimize libraries import

● Use Provisioned Concurrency (> cost,
>complexity, >deployment time)

● X-Ray adds non-negligible latency
(Cloudwatch Embedded Metrics)

● Reduce artifact Size

● Monitor the p99

Example Java Optimizations on

40

Execution
● Tune to the right memory allocation

● Move as much as possible in the init
phase (DynamoDB or 3rd party client)

● Fetch secrets at init time and handle
failures

● Watch your framework

● Monitor the average and tail latency

Performance samples...

Below are the results from our load testing activity, along with the adjustments we made in order to keep response
times as low as possible.

41

28.59ms
avg

37.2ms
p95
2s

max

Mainframe to
Kinesis

● Multiple Kinesis
Shards

● Enhanced
fan-out/stream
consumer enabled

● On-demand
DynamoDB

User to API
Gateway

● Lambda with
Provisioned
Concurrency

● On-demand
DynamoDB

33ms
avg

39.18ms
p95

387ms
max

42

Takeaway System Optimizations

Java can be optimized for low latency application on Lambda1

Enhanced Fan-Out increases throughput and reduces latency2

Use Lambda Destinations (Bisect on Function Error)3

Provisioned Concurrency is a bit expensive but significantly helps controlling the cold-start problem 4

Kinesis batch size tuning had more impact on avg latency than JVM optimizations5

Cloud Operating Model

Serverless

44

Application Application Application Application

Data Data Data Data

Runtime Runtime Runtime Runtime

Middleware Middleware Middleware Middleware

O/S O/S O/S O/S

Virtualization Virtualization Virtualization Virtualization

Servers Servers Servers Servers

Storage Storage Storage Storage

Networking Networking Networking Networking

You Manage

Others Manage

On-Premises laaS
Infrastructure as a Service

PaaS
Platform as a Service

SaaS
Software as a Service

Fully Serverless

Pushing
responsibilities
onto the CSP

Ease of Support

45

4646

Leapfrogging cloud transformation, neglecting the cultural and
organizational changes results in higher risk and more complexity.

 Running before walking

1. Completely different operating model

2. Low levels of engineering maturity

3. Complex technical solution

4. No man’s land of compliance and internal
processes

Switches

47

Technical RoadmapReusability TalentArchitecture

At low levels of engineering
maturity we can’t break the link
between cloud architecture and
operating model

48

“What is our level of engineering maturity ?”

“What operating model are we going to use?”

Two Key Questions

49

Project
B3

50

Mode 2
Support
Team

Mode 1
Support
Team

Project
B1

Project
B2Project

A1
Project

A2
Project

C2 Project
C3

Project
C4

Project
C1

Mode 3
Support
Team

50

Limiting the Support ratio...
Project

C8

Project
C6

Project
C5

Project
C7

Thank You

contino.io continohq contino

London
london@contino.io

New York
newyork@contino.io

Melbourne
melbourne@contino.io

Sydney
sydney@contino.io

Atlanta
atlanta@contino.io

Brisbane
brisbane@contino.io

