3 CONTINO

. 'Malnframe & Serverless Integratlon

and Stay Competltl_v;:» '

_How) leerate the __Da"*la’ e e
in the New World! |

Federico Fregosi - \7_P,- Qf"E»anin er

#WhoAml

Federico Fregosi

Current position: VP of Engineering, EMEA

Past: @ 6

federico.fregosi@gmail.com

https://www.linkedin.com/in/federico-freqosi

CONTINO 3

mailto:federico.fregosi@contino.io
https://www.linkedin.com/in/federico-fregosi/

Large Payments Providers
Are at a Crossroads

From the 90s, the payments industry made billions (SSS!)
off the back of first-class reliability and resilience.

But modern tech is pushing the source of value beyond
just reliability and resilience.

But there is a solution! Payment providers are sitting on a
DATA GOLD MINE in their mainframe.

This data contains insights that will power their product
and customer strategies for years to come.

Getting to that data isn't easy.

CONTINO

Payment Providers Need to Evolve!

You need to shift your business from delivering
resilient, reliable transactions....

...to providing real-time integrated data-driven
services.

CONTINO

You can process and stream millions of transactions to the cloud,
where they will then be available for analysis! It's low risk and high value.

Stream & Use

1. Replicate the information on the mainframe in
the cloud

2. Deploy cloud-native, real time streaming
platforms (Managed Kafka, Data Streams)

3. Define pre or post arrival triggers
4. Separate batch processing where appropriate

Make available to use by your teams

By connecting your cloud, data and product programs, you can start delivering business

value from real-time transactions in the cloud in around 6-12 months.

Store & Exploit

1. Ensure: the data is retained in a secure and
flexible store

2. Use the flexibility of the cloud to meet your
requirements

3. Democratize access to your data

4. Generate business value by providing
data-driven evidence

5. Turn datainto knowledge and actions

-

e
o

The Architecture

Live-Streaming Mainframe Data to the Cloud

1. STREAM 2. USE 3. STORE 4. EXPLOIT
THE DATA THE DATA THE DATA THE DATA

Mainframe Enhance Existing Data Store Data Science and
to the Cloud Services (Lake, Warehouse, ODS) Business
Intelligence Team

- - ————— -

Insights for 0—oO

Data-Driven (x x)
Marketing and

Business Strategies

User Gets Real-Time
Data-Driven Services

O +—0

CONTINO

The Architecture (Extremely Simplified)

nnnnnnnnnn

= p— &

aaaaaa

CONTINO

10

Quick Primer on Some Core AWS Services

AWS Lambda

\/@

Amazon API Amazon Kinesis
Gateway Data Firehose

Amazon Simple AWS Snowball

Notification Service

AWS Step
Functions

AWS Fargate

Amazon Kinesis Amazon
Elasticsearch Service

Amazon RDS Amazon
DynamoDB

Amazon Simple
Queue Service

CONTINO

The Architecture (Not as Simple)

Focusing on High Performance Transaction -
Ingestion from Mainframe

Appicaton Servers

The focus is on providing performance and

accuracy of the transactions stream initiated
by a mainframe process

, .
Q==
,

.

Noblo Appicaton Customer
\

The relevant stream

input data is also stored

in one or more suitable
DB

CONTINO

Stndwasaton converson

The priority is to rapidly
surface any updated
transactions to the users

(mobile app) to prove there is
no impact to the UX

12

Architecture at a Glance

BLOCK DIAGRAY - 90200 CCC axo 9020E DCC
‘www.IBM360.info

2l -
PART OF SAVTHEON
DISPLAY CHANNEL

www.IBM360.info

Serverless/Microservices architecture

Lambda 80 %, Fargate 20%

3 Teams, multiple AWS accounts

9 Microservices, tens of functions

Shared Kernel (lightly versioned / library)

120 rps API, latency <100 ms 95th percentile
Event sourcing pattern with Data lake integration

Cl/CD with AWS services & Serverless
Framework

CONTINO

13

https://lucid.app/lucidchart/a804e7ea-f5c8-4e06-a599-25c8214e4713/edit?page=-55V-ltDGQXo#

Microservices Boundaries

First - Domain Model.
Start identifying the aggregates

Second - Operational needs.
Who's going to run this?
It had already been decided!

(Inverse Conway’s Manoeuver!)

CONTINO

15

Ensuring Correctness

It's a distributed systems problem.This is financial
transaction data; end users need correct values.

Acceptable levels of service as SLOs (accuracy,
speed, availability)

Live End-To-End Testing System

In-band and Out-of-Band Transaction
Reconciliation System (TRS)

CONTINO 07

Acceptable Levels of Service (NFRs)

Define expected correctness: “99% of Get API calls for transactions, over a minute, will return
correct data at a “certain” moment in time”

Define expected consistency: “99.99% of Get API calls for transactions, over a minute, will
return correct data not-older-than 30 secs”

Define expected latency: “99% of Get API calls for transactions,over a minute, will return the
most up-to-date data in less than 100ms”

CONTINO 18

End-To-End Testing System

Corporate Data Center

AWS Cloud

=

n

|

E2E Testing |
Engine Probe #1 |
|

|

¢ i, 5
il
VPN
Connection

=

AmazonKinesis -
Transgctions

E2E Testing
Engine Probe #2

Amazon API| Gateway

Lambda -
Payload Parser

————————— 1 API#1

Lambda -

o
o *_i

Lambda -
API #2

e Adopts end-user perspective

e Verifies formal correctness

e Multiple Probes from different vantage
points

Continuous Testing

Custom developed system (7)
Failures trigger notifications
Separate performance testing (buy)

CONTINO

19

Two Transaction Reconciliation Systems

f

In-Band

e Uses streaming transactional data
e Idempotency tags

e Retries on AWS side

e Repeats on the mainframe

e Monitoring and alerting enabled

e With High-Water mark

CONTINO

Out-Of-Band

e Complex system with Fargate and AWS
Step Functions
Uses a different datasource (batch) and
processes transactions in a different way
e With automated and manual resolution
e Monitoring and alerting enabled
With High-Water mark

Transaction Reconciliation System

Corporate Data Center

Requests transactions
details

I
|
| [sFTP)
|
|
I

r%’
VPN
Connection

nds hourly transactio st

and sends transaction
details
[HTTP]

A Cous

Amazon Simple
Storage Service (53)

F B

AWS Secrets Amazon CloudWatch
| Manager

AWS Step Functions,

Developer Tools

<
<)

AWS CodeComit

Asimple
Notictign Service

Support

CONTINO

21

Transaction Reconciliation System

Sends reconciliation file

Asks for missing transaction

Replay missing transaction Store

\J
A\ 4

Sends reconciliation file .
Checks reconciled message

Confirm transaction

UML Sequence Diagrams

CONTINO

22

Transaction Reconciliation System - C4 Model

System Context Container Model

CONTINO 23

Full-Text and Advanced Search

nnnnnnnnnn

wwwwwwwwww

S S S S v s S S g

uuuuuuuuuuu

Enables users to search
their transactions

Multi-Database :
DynamoDB, RDS, Amazon
ElasticSearch

Uses DynamoDB Streams
to replicate data to ES

Ultrawarm for
low-frequency data

With RDS Proxy and
Simple Cache

Explicitly disregards API
Gateway Velocity
Templates

NOTE: Simplified diagram

CONTINO

24

Data Lake Integration

e Where value lies: liberating the

data for wider consumption
{53 & S
Corporate Data Center Li%""g:“? Awm“ it Lamba- [J Ea Sy N team data
exploration
D §[DE H
& s e Used for analytics
8- m Comesion s
e e Standardized out-of-team
consumption
e (data stewardship and
governance external)
e Raw and Enriched (clean)
é data available
NOTE: Simplified diagram

CONTINO 25

Event Source

aws .
Aecount#1-tiin
<< Batch Source >>
Corpaate e et
¢ 7EX 5
(7]
VPN |
800 Connection |
= B |
noa fr m Transactions - Event
Transactions << Streaming Source > mazon Kinesis | Source |
Mainframe Online transactions | |
| |
| |
! |
! I
¥ !
Legend:
—————————————————— -
Read Request

Kinesis-based event source

Follows financial transaction
lifecycle

Strong decoupling

Useful to other live systems
With idempotency tag

Does not allow to replay history

Contract testing with Pact

CONTINO

26

Serverless Patterns

Circuit Breaker Pattern

success call/raise circuit open

fail (under threshold)

reset timeout

fail

fail (under threshold)

Half Open

success

Strong requirements for
transaction consistency and
availability

Automated switch-off on high
number of errors

Mainframe system as fallback

Prevents downstream service
flooding

Reduces resource consumption

CONTINO

28

Controlling Function Scaling and Throttling

Make sure to monitor account
quotas

Consider Provisioned Concurrency
Set-up extensive monitoring in
Cloudwatch (Throttles, Invocations,

ExecutionTime)

Look for tail-latency events

CONTINO

29

Impact on Downstream Systems

Amazon API > Amazon RDS
Gateway

R\ N !
MY =X

¥

Amazon API AWS Lambda Message AWS Lambda Amazon RDS
Gateway

Set Reserved Concurrent Executions

CONTINO

Dead-Letter-Queue Pattern on Lambda

Lambda / Fargate Dead Letter Queue Logic

I If necessary

Out of Band

< @ > Amazon Simple Processing Amazon Simple

Queue Service Notification Service

On Item Failure
Lambda Function
>

AWS Fargate

C&? OC)I?)O Multiple, dedicated DLQs
_/

can be used for specific

debugging purposes
__ Amazon CloudWatch_ _ __ _ __ _ _ __________________!
e Kinesis specific logic: e Can have performance impact on the
Bisect-on-failure and multiple overall system
retries e Failures trigger notifications
e Aware of Lambda context e Lambda Destinations unsuitable

CONTINO

31

Developer Experience

Cl/CD

CODE CODE SERVERLESS
COMMIT PIPELINE BUILD

e Using AWS Developer Tools

e Monorepo for functions, continuous deployment I %}E
multi-branch pipeline

e Backed by build automation tools and integrated
with existing on-prem solutions V) JavaTESTS

° Serverless Framework core tool for Lambda

Functions G

° Terraform for infra resources

LAMBDA
e Unit & Integrations Tests running in the pipeline FuneTion

with artefact promotion

. Y a—\
e Canary Deployment with gradual traffic rollout H‘ C& @@ e———

Amazon Parameter Store

Jemafom CloudWatch

e Supports manual approvals for compliance, where
needed

CONTINO 33

Testing & Debugging Serverless

e Used Localstack,

e Integrated with IntelliJ using AWS toolkit to
test/debug Lambda’s

e Make ample use of AWS X-Ray
& AWS Cloudwatch

e Testing in production with feature flags
and Canaries (Serverless framework)

LocalStack on
Local Developer
Machine

CONTINO 34

https://docs.google.com/document/d/1ezv9Zes_EnhhvtdVROuuzZ9Jyi4Ae9hWdWwBn9gs15g/edit#heading=h.2gazcsgmxkub

.

Results

410,484 268,109
- n
. Al |

0515 09:30 09:45 1000 1015 1030 1045 1100
® Oniine Kines's PUTs @ Online Lambida Invocations @ Oniine Provisioned Lambda Invocations

115 11:30

145

1200

Database inserts
684,001
DynamoDB PUTs
Offline sync time
Masaconds
e
|
/
| | ‘
19.4k \
A_A L /‘\/ A & A Y
\Q 3 . a7 3 > == s s
——AN : ~7 o . Nz SR .
0
0015 0930 09:45 10:00 05 10:30 10:45 11:00 ns "% 11:45
L] L
Offline AWS sync time
Masaconds.
02
|
\
|
15.0k \
A .
o P AY S | e
1030 10:45 11:45
. po0
Offline sync volume
Count
15,6k
781k
. ao A ARAT r:\\ AA - =
10:30 10:45 1100 nis 130 1145

CONTINO

36

From numbers to percentages

CloudWatch > Lambdalnsights > Performance monitoring
f : th 3h 12h 1d 3d 1w Custom (6h) Add to dashboard E‘j @
Performance monitoring
Analarm 0 @ Insufficient data 0 @oKo
bash-runtime v
Invocations & Errors Duration Throttles
Sum Sum Milliseconds Count
2 1 627 1
CloudWatch Lambda Insights Performance monitoring 15 05 401 05
. a 1Th 3h 12h 1d 3d 1w Custom (6h) Add to dashboard C @
Performance monitoring [c]] 1 o s .
06:00 09:00 05:00 06:00 07:00 08:00 09:00 10:00 05:00 06:00 07:00 08:00 09:00 10:00
Alnalarm 0 @ Insufficient data 0 @oKko @ invocations @ Errors @50 ®p%0 @ pi00 @ Throttles
v
Memory Usage CPU Usage Network Usage
Percent Milliseconds Bytes
Function Cost Duration Invocations a7 420 233K
MB-Ms Milliseconds Count
@ bash-runtime @ bash-runtime @ bash-runtime s ,J_r,_r’JM_l s s
133M - 250k P 4 P r'J,-l 'J_H -
® cpu-intensive I @ cpu-intensive ® cpu-intensive o R
@idle @idle @idle
@ memory-intens... @ memory-intens... @ memory-intens...
66:3M ® network-intens... 30K @ network-intens... = @ network-intens...
@ network-intens... @ network-intens... @ network-intens... Function summary (6)
1
0 164 o 1 @
04:48 10:47 04:48 10:47 04:48 10:47
Function name a Invocations v CPU time v Network 10 v Max. memory v Cold starts v
bash-runtime 360 132.9167ms 4770kB — 7% 3
Errors Memory Usage (Max) Network Usage
cpu-intensive 359 6714.2897ms 4780 kB - 43% 4
Count) %) Bytes)
@ bash-runtime @ bash-runtime @ bash-runtime
4 144 471k idle 359 120.2507ms 4746 kB E— 96% 3
® cpu-intensive Wl by, @ cpu-intensive ® cpu-intensive
®ide @ idle @ idle memory-intensive 358 2385.9497ms 4794kB —4% a
i AT R i -i
® memory-intens... ® memory-intens... . ® memory-intens.. network-intensive 359 781.0585ms 82008 kB — 95% 3
2 @ network-intens... 72 @ network-intens... 256 @ network-intens...
network-intensive-vpc a3 2730,6977ms 95kB — 91% 43

CONTINO 37

Measuring for real

Distributed systems hard to tackle
issue

Lambda’s NTP servers cannot be
configured

Lambda should run on Stratum 3 NTP
servers

Run a small test using Lambda &
Python

With DC<->AWS RTT at 40 ms, clock
offset < 10ms

No guarantees are made

CONTINO

38

Response Time

AWS X-Ray
Getting started 4 Default ¥ || Q Enter service name, annotation, trace ID. Or click the Help icon for additional details.

(2]
Insights [EE)

I All traces in the group @ 48.5K traces in the group. Show in charts @

Complete 100% scanned (found 9.9K traces)
Service map
Traces Retrieved traces 0 Filtered trace set A ®
| Analytics 9.9K traces (20.41% of traces in the group.)

To add afilter, click and drag one of the charts below or click one of the table rows.
B8 Configuration

Sampling
Encryption Response time distribution ©

Click and drag to filter the traces by response time.
Groups (X ¥otra

208 405 605 805
Latency
(@ Response time distribution O Duration distribution
Time series activity ©
Click and drag to filter the traces by time.
Select rows from the following tables to filter traces. Choose the cog icon to explore table configurat
o L
USER ~ COUNT v % v HTTP STATUS CODE ~ COUNT ¥| % 5.0
- 9895 100.00 % 200 9895 100.00 %

Response time for the system p95 < 100ms, p50 ~60 ms

CONTINO

39

Example Java Optimizations on

4)

« Optimize libraries import

« Use Provisioned Concurrency (> cost,
>complexity, >deployment time)

« X-Ray adds non-negligible latency
(Cloudwatch Embedded Metrics)

« Reduce artifact Size

« Monitor the p99

Cold-Start Execution

Tune to the right memory allocation

Move as much as possible in the init
phase (DynamoDB or 3rd party client)

Fetch secrets at init time and handle
failures

Watch your framework

Monitor the average and tail latency

CONTINO

40

Performance samples...

Below are the results from our load testing activity, along with the adjustments we made in order to keep response
times as low as possible.

Mainframe to User to API
33ms Kinesis Gateway
avg
e Multiple Kinesis Lambda with
39 . 1 8ms Shards Provisioned
Concurrenc
p95 e Enhanced g
387ms fan-out/stream
consumer enabled On-demand
max DynamoDB
e On-demand
DynamoDB

CONTINO 41

Takeaway System Optimizations

Java can be optimized for low latency application on Lambda

Enhanced Fan-Out increases throughput and reduces latency

Use Lambda Destinations (Bisect on Function Error)

Provisioned Concurrency is a bit expensive but significantly helps controlling the cold-start problem

Kinesis batch size tuning had more impact on avg latency than JVM optimizations

CONTINO

42

Cloud Operating Model

Serverless
B

On-Premises laaS PaaS SaaS

Infrastructure as a Service Platform as a Service Software as a Service

0
O
©

Application Application Application Application

Others Manage

Middleware Middleware Middleware Middleware

0/S o/s 0/S 0/S

Virtualization Virtualization Virtualization Virtualization

Servers

Storage Storage Storage Storage

CONTINO 44

Fully Serverless

Ease of Support

Pushing
responsibilities
onto the CSP

CONTINO

45

Leapfrogging cloud transformation, neglecting the cultural and
organizational changes results in higher risk and more complexity.

Running before walking

Completely different operating model
Low levels of engineering maturity
Complex technical solution

No man’s land of compliance and internal
processes

CONTINO

Switches

Reusability

CONTINO 47

At low levels of engineering
maturity we can't break the link
between cloud architecture and
operating model

CONTINO

48

Two Key Questions

“What is our level of engineering maturity ?*

“What operating model are we going to use?”

CONTINO

49

Limiting the Support ratio...

Project
Cé

Project
[1:]

Project
c4

Project Project
Project B1 B2
A2

Project

A1l

Project
B3

CONTINO 2

' Tha

‘Lbndpnf

: i '?I—ondon@contir‘ib’.vio
(=) contino.io

newyork@cantino.io

~ Sydney

¢ sydney@con;tino.'io 3

. brisbane@contino.io

- 5 %
. 5
¥
. > .
‘] b
. v :
. . x v
.
s . % ..
5 .
o 5

47 ek
.
. 3

Brisbane’

