
DEEP LEARNING WITH F#

AN EXPERIENCE REPORT

1

Faisal Waris

Data Scientist in Telecom

faisalwaris@yahoo.com

OVERVIEW

Why it all matters Interactive

programming
experience

Machine Learning

with F# experience

Classical Machine Learning

Deep Learning

Key Takeaways

2

WHY DOES IT MATTER: APP-EMBEDDED AI

3

Artificial Intelligence (AI/ML)
is a practical reality

• (classical) Machine Learning / Deep
Learning / Reinforcement Learning
/ Optimization / ..

• No longer just in the lab

AI/ML solves useful problems
for business, government and

other organizations

Deep Learning (DL) performs
well on ‘cognitive tasks’ (e.g.
vision and language)

• Performance comparable to humans
on some tasks

• Classical methods did not do as
well

AI/ML is being embedded in
(regular) applications

• This trend will continue .Net / F# developers need to
take note

WHY DOES IT MATTER:
DL MODELING LANGUAGE

Computational
Graph – Static vs
Dynamic

Static: TensorFlow, CNTK

PyTorch, JAX use
Dynamic
Computation Graphs

Most new research
is in PyTorch!

4

Computation Graph: Transformer Module

Source: “Attention is all you need”, Vaswani et al.

Train

Static Graph model

(Python)

Trained model binary

.Net Application

(runtime)

DL Toolkit runtime wrapper

Trained model

Use model

Static Graph

WHY DOES IT MATTER: DL MODELING LANGUAGE

• Static vs. Dynamic Implications

• Static Graphs

• Trained static graphs can be compiled into

stand alone modules

• These can be called at run-time from any

language

• DL Model language (e.g., Python) is not

required at runtime

5

Train

Dynamic Graph

model (Python)

.Net Application

(runtime)

Runtime wrapper

ONNX / TorchScript

Use model embedded

Dynamic Graph

Trained

model

weights

Model

Code

Remote Service

in Python

Use model service API

Model

Code

Translated

Model Code

(limited)

WHY DOES IT MATTER: DL MODELING LANGUAGE

• Static vs. Dynamic Implications

• Dynamic graphs

• Interplay between DL toolkit (C++) and DL

Model language

• GPU processing interspersed with DL

Model language code invocation

• Affords great flexibility in model design;

model can be dynamic

• Lock-in effect – DL Model language (or

equivalent) required at runtime

6

Loosing battle as

models are

becoming ever

more complex

• Increased cost and

complexity.

• Creates a

‘gravitational’ pull

towards Python

WHY DOES IT MATTER: KEY TAKEAWAYS

Integration of AI/ML with
regular apps

• F# is a great app-dev
language!

• Embedding AI / ML
functionality should be par
for the course

DL model language lock-in

• Consumption of DL models
is becoming harder from
‘other’ languages /
ecosystem

• .Net ecosystem needs
effective DL modeling
capability to stay relevant
over time

7

INTERACTIVE PROGRAMMING [IP]

8

Interactive programming
capability is crucial for Data

Science

It is not clear how to solve a
problem up front

Need to explore - data and
processing approaches

A combinatorial explosion of
methods

• N: Data pre-processing

• P: Feature engineering

• Q: Model structure / methodology

• N * P * Q possibilities

Need to conduct a myriad
small experiments

Tedious and frustrating work

[IP] F# ‘REPLS’ OFFER RICH CAPABILITIES
• F# Script Support

• Visual Studio

• VS Code

• Others (not used)

• Since 2010!

9

Interactive Charting

[IP] NEW F# (AND C#)
INTERACTIVE NOTEBOOKS

• Different interactive experience than F#

REPL

• Similar to Jupyter Notebooks

• Charts and visualizations are in-lined

• Great for collaboration

• New and constantly improving

10

[IP] INTERACTIVELY USE SPARK FROM F#

• Uses .Net for Spark

• JVM JAR + .Net Packages

• Spark → F# integration

• Process 100GB datasets on high-end laptop

• Spark runs as a separate process

• Works from F# REPL and Notebook

• User-defined functions work in Notebook only, for now

• Very large data:

• Develop logic interactively then

• Run on Spark cluster for scalability

open Microsoft.Spark.Sql
open type Microsoft.Spark.Sql.Functions
open Microsoft.Spark.Sql.Types
//create spark context
let spark =
SparkSession.Builder()
.AppName("test_spark")
.GetOrCreate()
//read text data
let df =
spark.Read()
.Option("header","true")
.Option("inferSchema","true")
.Option("delimiter","\t")
.Csv("...<data folder>...")

11

[IP] KEY TAKEAWAYS

12

F# well suited for DS
tasks

• Top class F# REPLs

• Rich set of tools and
capabilities

Notebooks

• Great for
collaboration

• However, I prefer F#
REPL when:

• Code > 200 lines

• Code in multiple
files

Spark for large data
handling

• Use interactively
from F#

• Scale on clusters

• However, complex
transforms need
Scala

• Worthwhile
learning enough
Scala to use Spark
well

MACHINE / DEEP LEARNING WITH F# [ML]

13

TorchSharp

• .Net PyTorch binding

• Now under .Net
Foundation

ML.Net

• classical machine
learning

MathNet.Numerics

• General numerical
routines

Infer.Net

• Bayesian modeling
framework

• Now part of ML.Net

TensorFlow.Net

• TensorFlow binding

• TensorFlow Lite –
Mobile device

OpenCV

• classical machine
learning / computer
vision

• mobile support

Plotly

• Visualization

Algomera

• Hierarchical clustering

Rich ecosystem of toolkits and packages to service most Data Science needs

Others: FSharp.Data; FSharp.Collections.ParallelSeq; KdTree (nearest neighbor); .Net for Spark;

QuikGraph; FSharp.Control.AsyncSeq (stream processing); FsPickler; SimMetrics.Net;

SQLProvider; Fable / SAFE Stack (UI); Z3 (constraint programming)

[ML] DEEP LEARNING WITH F# - PERSONAL HISTORY

14

Started Deep
Learning with F#

in 2015 with
CNTK!

• FsCNTK – a functional
wrapper over CNTK
.Net API

• CNTK heavily used till
2019 (along with
TensorFlow Python)

• CNTK deprecated in
2019

2019 Switched to
TorchSharp /

PyTorch

• Part of .Net
Foundation
(contributor)

• Wraps libtorch (C++)

• TorchSharp.Fun –
created experimental
functional F#
wrapper over
TorchSharp

DiffSharp brief
stint

• F# modeling library
with advanced
Automatic
Differentiation

• Inspired
TorchSharp.Fun

[ML] TorchSharp.Fun EXAMPLES

• TorchSharp exposes an object-

oriented API – similar to PyTorch

Python API

• TorchSharp.Fun enables a functional,

compositional style of modeling

• Model structure is more apparent!

• TorchSharp.Fun is experimental and

not a stable API yet

• TorchSharp may expose a functional

API in future

let model =
Linear(10L,5L)
->> Dropout(0.5)
->> Linear(5L,1L)
->> RelU()

15

[ML] F# AND PYTHON

16

• Translation to F# / TorchSharp required

• Translation sometimes not trivial

• Great way to deeply understand the model!

Most new models
are developed
and released in
Python / PyTorch

• F# pre-processing 7x faster than Python for Graph
Convolutional Network model

• Pipeline (data pre-processing) code often much larger
than model code

• F# type-safety a blessing for large code bases

F# performance
better on non-

model code; same
on model code

[ML] KEY TAKEAWAYS

17

Sufficient set of libraries

• Deep Learning

• Classical ML

• Meet 95% of DS needs

• However, also need to use
Python or R for capabilities
not available in .Net

F# Great for Modeling

• Functional, compositional
style ideal for DL models

• Type safety; performance

• However, most new research
is in Python/PyTorch so new
models will have to be
translated into F# / .Net

F# FOR DEEP LEARNING EXPERIENCE: KEY
TAKEAWAYS

• F# ecosystem offers:

• Excellent tooling

• Large of AI/ML libraries and packages

• To meet most DS needs

• Use F# 90% of the time for my day Data Science job

• Large F# DS application currently in production

• More on the way

• F# is excellent DL modeling language

• F# expressed models more succinct than OO models

• Model structure more apparent

• However, need better adoption of DL with F# to keep the tooling ecosystem current and well-

lubricated
18

19

Q&ATHANK

YOU

