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WHY DOES IT MATTER: APP-EMBEDDED AI

3

Artificial Intelligence (AI/ML) 
is a practical reality 

• (classical) Machine Learning / Deep 
Learning / Reinforcement Learning 
/ Optimization / .. 

• No longer just in the lab

AI/ML solves useful problems 
for business, government and 

other organizations

Deep Learning (DL) performs 
well on ‘cognitive tasks’ (e.g.  
vision and language)

• Performance comparable to humans 
on some tasks

• Classical methods did not do as 
well

AI/ML is being embedded in 
(regular) applications

• This trend will continue .Net / F# developers need to 
take note



WHY DOES IT MATTER: 
DL MODELING LANGUAGE 

Computational 
Graph – Static vs 
Dynamic

Static: TensorFlow, CNTK

PyTorch, JAX use 
Dynamic 
Computation Graphs

Most new research 
is in PyTorch!

4

Computation Graph: Transformer Module

Source: “Attention is all you need”, Vaswani et al.
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WHY DOES IT MATTER: DL MODELING LANGUAGE 

• Static vs. Dynamic Implications

• Static Graphs

• Trained static graphs can be compiled into 

stand alone modules

• These can be called at run-time from any 

language

• DL Model language (e.g., Python) is not 

required at runtime
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WHY DOES IT MATTER: DL MODELING LANGUAGE 

• Static vs. Dynamic Implications

• Dynamic graphs

• Interplay between DL toolkit (C++) and DL 

Model language

• GPU processing interspersed with DL 

Model language code invocation

• Affords great flexibility in model design; 

model can be dynamic

• Lock-in effect – DL Model language (or 

equivalent) required at runtime
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Loosing battle as 

models are 

becoming ever 

more complex

• Increased cost and 

complexity. 

• Creates a 

‘gravitational’ pull 

towards Python



WHY DOES IT MATTER: KEY TAKEAWAYS

Integration of AI/ML with 
regular apps

• F# is a great app-dev 
language!

• Embedding AI / ML 
functionality should be par 
for the course

DL model language lock-in

• Consumption of DL models 
is becoming harder from 
‘other’ languages / 
ecosystem

• .Net ecosystem needs 
effective DL modeling 
capability to stay relevant 
over time
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INTERACTIVE PROGRAMMING [IP]
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Interactive programming 
capability is crucial for Data 

Science

It is not clear how to solve a 
problem up front

Need to explore - data and 
processing approaches

A combinatorial explosion of 
methods 

• N: Data pre-processing  

• P: Feature engineering

• Q: Model structure / methodology 

• N * P * Q possibilities

Need to conduct a myriad 
small experiments 

Tedious and frustrating work



[IP] F# ‘REPLS’ OFFER RICH CAPABILITIES
• F# Script Support

• Visual Studio

• VS Code

• Others (not used)

• Since 2010!
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Interactive Charting



[IP] NEW F# (AND C#) 
INTERACTIVE NOTEBOOKS

• Different interactive experience than F# 

REPL

• Similar to Jupyter Notebooks

• Charts and visualizations are in-lined

• Great for collaboration

• New and constantly improving
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[IP] INTERACTIVELY USE SPARK FROM F#

• Uses .Net for Spark

• JVM JAR + .Net Packages 

• Spark → F# integration

• Process 100GB datasets on high-end laptop

• Spark runs as a separate process

• Works from F# REPL and Notebook

• User-defined functions work in Notebook only, for now

• Very large data:

• Develop logic interactively then

• Run on Spark cluster for scalability

open Microsoft.Spark.Sql
open type Microsoft.Spark.Sql.Functions
open Microsoft.Spark.Sql.Types
//create spark context
let spark =
SparkSession.Builder()
.AppName("test_spark")
.GetOrCreate()
//read text data
let df =
spark.Read()
.Option("header","true")
.Option("inferSchema","true")
.Option("delimiter","\t")
.Csv("...<data folder>...")
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[IP] KEY TAKEAWAYS
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F# well suited for DS 
tasks

• Top class F# REPLs 

• Rich set of tools and 
capabilities

Notebooks

• Great for 
collaboration

• However, I prefer F# 
REPL when:

• Code > 200 lines

• Code in multiple 
files

Spark for large data 
handling

• Use interactively 
from F#

• Scale on clusters

• However, complex 
transforms need 
Scala

• Worthwhile 
learning enough 
Scala to use Spark 
well



MACHINE / DEEP LEARNING WITH F# [ML]
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TorchSharp

• .Net PyTorch binding

• Now under .Net
Foundation

ML.Net

• classical machine 
learning

MathNet.Numerics

• General numerical 
routines

Infer.Net

• Bayesian modeling 
framework

• Now part of ML.Net

TensorFlow.Net 

• TensorFlow binding

• TensorFlow Lite –
Mobile device 

OpenCV

• classical machine 
learning  / computer 
vision

• mobile support

Plotly

• Visualization

Algomera

• Hierarchical clustering

Rich ecosystem of toolkits and packages to service most Data Science needs

Others: FSharp.Data; FSharp.Collections.ParallelSeq; KdTree (nearest neighbor); .Net for Spark; 

QuikGraph; FSharp.Control.AsyncSeq (stream processing); FsPickler; SimMetrics.Net; 

SQLProvider; Fable / SAFE Stack (UI); Z3 (constraint programming)



[ML] DEEP LEARNING WITH F# - PERSONAL HISTORY 
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Started Deep 
Learning with F# 

in 2015 with 
CNTK!

• FsCNTK – a functional 
wrapper over CNTK 
.Net API

• CNTK heavily used till 
2019 (along with 
TensorFlow Python)

• CNTK deprecated in 
2019

2019 Switched to 
TorchSharp / 

PyTorch

• Part of .Net 
Foundation 
(contributor)

• Wraps libtorch (C++) 

• TorchSharp.Fun –
created experimental 
functional F# 
wrapper over 
TorchSharp

DiffSharp brief 
stint 

• F# modeling library 
with advanced 
Automatic 
Differentiation

• Inspired 
TorchSharp.Fun



[ML] TorchSharp.Fun EXAMPLES

• TorchSharp exposes an object-

oriented API – similar to PyTorch 

Python API

• TorchSharp.Fun enables a functional, 

compositional style of modeling

• Model structure is more apparent!

• TorchSharp.Fun is experimental and 

not a stable API yet

• TorchSharp may expose a functional 

API in future

let model =
Linear(10L,5L)
->> Dropout(0.5)
->> Linear(5L,1L)
->> RelU()
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[ML] F# AND PYTHON
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• Translation to F# / TorchSharp required

• Translation sometimes not trivial

• Great way to deeply understand the model!

Most new models 
are developed 
and released in 
Python / PyTorch

• F# pre-processing 7x faster than Python for Graph 
Convolutional Network model

• Pipeline (data pre-processing) code often much larger 
than model code

• F# type-safety a blessing for large code bases

F# performance 
better on non-

model code; same 
on model code



[ML] KEY TAKEAWAYS
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Sufficient set of libraries

• Deep Learning

• Classical ML

• Meet 95% of DS needs

• However, also need to use 
Python or R for capabilities 
not available in .Net

F# Great for Modeling

• Functional, compositional 
style ideal for DL models

• Type safety; performance

• However, most new research 
is in Python/PyTorch so new 
models will have to be 
translated into F# / .Net



F# FOR DEEP LEARNING EXPERIENCE: KEY 
TAKEAWAYS

• F# ecosystem offers:

• Excellent tooling

• Large of AI/ML libraries and packages

• To meet most DS needs

• Use F# 90% of the time for my day Data Science job

• Large F# DS application currently in production

• More on the way

• F# is excellent DL modeling language

• F# expressed models more succinct than OO models

• Model structure more apparent

• However, need better adoption of DL with F# to keep the tooling ecosystem current and well-

lubricated
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