A Beginner's Guide to Haskell
and its Ecosystem

Alejandro Serrano @ Haskell eXchange 2021
O @trupill - & 47 Degrees (Academy)

Learning a new programming environment
Involves many things:

e The language itself

The build tools

Where to find dependencies
Good idioms and practices

1/ 4

Learning a new programming environment
Involves many things:

o Thetaretagettsetf too much focus on this
The build tools

Where to find dependencies
Good idioms and practices

A bird’s eye view of design and ecosystem

2/ 41

&) What makes Haskell #a+d special

%) Getting started
& Projects in Haskell
= Extensions and the Type Level

® Community

3/ 4

& What makes Haskell
katd special

%) A different beast

Haskell (and FP) have brought many ideas to
the table: (list not complete)

Higher-order functions

o Higher-rank and impredicativity
Algebraic data types and pattern matching
Purity and laziness

Type-directed contexts with type classes

o Functors and monads everywhere
Working with and manipulating types

5/ &

Haskell's Manifesto (about design)

Define data in a simple way

e Enforce invariants at compile-time
o Powerful pattern matching

Use types to guide your program

e Be explicit about your constraints
e Compiler-based DI

Think about side effects

e No tag = no side effects (pure)

6/ 41

Haskell data is mainstream

Some ideas are nowadays In
Scala / Kotlin / Java / C# / Swift:

e Higher-order functions

e Algebraic data types
o Records / data classes
o Sealed hierarchies

Learn concepts in a familiar setting

7/ |

Anything outside computation (side effects) is
marked in the type:

(++) :: String -> String -> String
readContents :: String -> I0 String
This restricts composition:

e Forces a pure core | effectful edges design
e Drawing the line Is difficult at first

8/ &

Laziness

This function is short-circuiting:

and :: Bool -> Bool -> Bool
and False _ = False
and _ X = X

In Haskell computations are executed:

e Only when needed
e As much as they are needed

9/

Laziness

In Haskell computations are executed:

e Only when needed
e As much as they are needed

This is hard!

e Debugging follows weird paths
e [t works in the small, it leaks in the large

10 / 41

& Getting started

Our tool manager: ghcup

Easiest way to get a working environment

Similar to SDKMAN, Coursier, rustup...

ghcup install ghc recommended
ghcup install cabal recommended
ghcup install stack recommended
ghcup install hls recommended

vV V V V

& Don't worry about versions for now

12 /1

Our editor integration: HLS

Based on Language Server Protocol

e Support from VS Code to Emacs
e In VS Code, just install the Haskell plug-in

L. Sometimes HLS support lags behind

e You can check support with ghcup 1list

x ghc 8.10.6 base-4.14.3.0 hls-powered
vww ghc 8.10.7 recommended,base-4.14.3.0 hls-powered
v ghc 9.0.1 base-4.15.0.0 hls-powered
x ghc 9.2.1 latest,base-4.16.0.0

13/ 4

Start a new project

Not one, but two choices: why, in just a second)

> cd cool_project && cabal new
> stack new cool_project

14 [41

Start a new project

Not one, but two choices: why, in just a second)

> cd cool_project && cabal new
> stack new cool_project

Another good tool is ® Summoner

e Good set of default warnings
e Additons like GH Actions integration

15/ 4

< Projects in Haskell

Cabal vs. cabal vs. .cabal

Haskell’s build tool story is messy

e Packages are the unit of distribution

o Package = set of modules

o Module = source file = thing you import
e Each package comes with a build file

o Dependencies, exposed modules, flags

o |n the <package-name>.cabal file
o Often called the Cabal file

17 [41

Simple Cabal file

Not JSON, not YAML, something in between

Fach stanza defines libraries or executables

name : haskell-exchange
version: 0.1.0.0
author: Alejandro Serrano

executable talk

main-is: Main.hs
build-depends: base A>= 4.12, aeson A>= 2
hs-source-dirs: app

test-suite talk-tests

18 [41

Build tools: Cabal and Stack

You can build such package in two ways:

1. Cabal: cabal build
2. Stack: stack build
o May require stack init

19 [41

Build tools: Cabal and Stack

You can build such package in two ways:

1. Cabal: cabal build
2. Stack: stack build

The choice I1s nuanced, but in general terms:

e Stack focuses on reproducibility by default

e Cabal supports reproducible tools via freeze
e Stack tracks your toolchain (installs GHC)

e Cabal doesn't, but we have ghcup now

20 [&1

Dependencies: Stackage and Hackage

Stacks requires an additional stack.yaml file

resolver: 1ts-18.14 # package set

packages:
= . # your project

A resolver defines a set of fixed packages and
their versions known to build together

e Haskell packages are built from source
e Because of strong typing, this is a huge deal

21/ 41

Stackage - stackage.org

LTS targets the "recommended" GHC version

e new minor version of LTS only updates
minor version of the packages

Nightly targets one version more

e more recent version of packages

e at some point, they "graduate" to LTS

What about the most recent version?

22 [41

Hackage - hackage.haskell.org

The repository for Haskell packages

All version of packages + their documentation

23/ 1

Hackage - hackage.haskell.org

The repository for Haskell packages
All version of packages + their documentation

You can add Hackage packages to Stack

resolver: 1ts-18.14
packages:

extra-deps:
- nice-dependency-0.24.5

24 | 41

e Packages are defined in .cabal files
e Cabal and Stack are used to build them
e We have two sources for dependencies:
o Stackage for curated sets
o Hackage for everything
e Stack leans towards Stackage

25 | 41

= Extensions and the Type Level

Haskell-the-language

The language itself vs. the compilers

There is more than one Haskell compiler:

e GHC, from Glasgow

e Helium and UHC, from Utrecht
e Mu, used internally

e LHC, JHC, ...

27 | 1

Haskell-the-language

The language itself vs. the compilers

There is more than one Haskell compiler:

o GHC is de facto the standard
e Helium, In research, and UHC
e Mu, used internally

e LHC, JHC, ..., not maintained

28 [41

Haskell-the-language

The language itself vs. the compilers

Report = Haskell "standard"

e Current: Haskell 2010
e Previously: Haskell 98

29 [41

Haskell-the-language

The language itself vs. the compilers

Report = Haskell "standard"

e Current: Haskell 2010
e Previously: Haskell 98

You sometimes hear people saying they write
"Haskell 2010” (or 98) code to mean code
without GHC extensions

30 / 4

Extensions

Anything outside the Report

Syntactical goodies
Type classes with multiple parameters
Type families

More ways to use deriving
And other 20+ things

& Extension /= unsupported or bad style

31/ 41

Extensions

Anything outside the Report

To enable one, you write first thing in the file

{-# language MultiParamTypeClasses #-}
-- this also works, but no need to shout %
{-# LANGUAGE DeriveFunctor #-}

Usual joke: a Haskell file is 20 lines extensions,
30 lines type definitions, and 3 lines of code

32 [41

Type level

Working with types as easy as with values

{-# language TypeFamilies #-}

type family MakeOpt (t :: Type) :: Type where

MakeOpt (Maybe a) = Maybe a -- already optional
MakeOpt (Either e a) = Maybe a -- simplify
MakeOpt t = Maybe t -- other cases

{-# language GADTs, DataKinds #-}

data SafeString (escaped :: Bool) where
Unsafe :: String -> SafeString 'False
Escaped :: String -> SafeString 'True

33/ 41

Type level

Working with types as easy as with values
How to use types to check more invariants

This Is advanced Haskell

e But we love to talk about it! ¥
e Lots of exploration and research

The Stitch paper by Eisenberg is awesome W

34 [41

GHC2021

Many extensions have been stable for decades
.. yet they won't make into a new Report

GHC2021 Is the standard "language version"
since (the recently released) 9.2

Stemming from the GHC Steering Committee

e Oversee new extensions to the language
e Similar to processes in other communities

35/ 41

® Community

Main players

e GHC Team, builds the compiler
e Haskell Foundation
e Haskell Language Server team
e Several working groups
o Haskell.org
o Core Libraries Committee
o GHC Steering Committee
o Moving towards Foundation umbrella ™

37 | w1

Means of communication

Old school: IRC and mailing lists

e haskell-cafe

e haskell-beginners

Reddit /r/haskell

Quite focused and active

Discourse

38 /41

Category Theory

A branch of mathematics talking about the

abstract structure of things

There's a lot of cross-pollination w

e Functor or monad come from there
e Type theories are influenced by PL research

39 [41

Category Theory

A branch of mathematics talking about the

abstract structure of things

There's a lot of cross-pollination w

ofo

However, it's a scary topic for many %

e Not really needed to start with Haskell
e But nevertheless really interesting

40 [41

< It's been a pleasure

Enjoy the rest of Haskell eXxchange!

Let this be the start of a long and exciting
journey in Haskell!

