
A Beginner's Guide to Haskell

and its Ecosystem
Alejandro Serrano @ Haskell eXchange 2021

🐦 @trupill - 👨‍💻 47 Degrees (Academy)

Goal

Learning a new programming environment
involves many things:

The language itself
The build tools
Where to find dependencies
Good idioms and practices
...

1 / 41

Goal

Learning a new programming environment
involves many things:

The language itself too much focus on this
The build tools
Where to find dependencies
Good idioms and practices
...

A bird's eye view of design and ecosystem

2 / 41

Contents

🧐 What makes Haskell hard special

⏫ Getting started

🧱 Projects in Haskell

⚗️ Extensions and the Type Level

🗣️ Community

3 / 41

🧐 What makes Haskell

 hard special

 🐉 A different beast

Haskell (and FP) have brought many ideas to
the table: (list not complete)

Higher-order functions
Higher-rank and impredicativity

Algebraic data types and pattern matching
Purity and laziness
Type-directed contexts with type classes

Functors and monads everywhere
Working with and manipulating types

5 / 41

 Haskell's Manifesto (about design)

Define data in a simple way
Enforce invariants at compile-time
Powerful pattern matching

Use types to guide your program
Be explicit about your constraints
Compiler-based DI

Think about side effects

No tag = no side effects (pure)
6 / 41

 Haskell data is mainstream

Some ideas are nowadays in

Scala / Kotlin / Java / C# / Swift:

Higher-order functions
Algebraic data types

Records / data classes
Sealed hierarchies

Learn concepts in a familiar setting

7 / 41

Purity

Anything outside computation (side effects) is
marked in the type:

(++) :: String -> String -> String
readContents :: String -> IO String

This restricts composition:

Forces a pure core / effectful edges design
Drawing the line is difficult at first

8 / 41

 Laziness

This function is short-circuiting:

and :: Bool -> Bool -> Bool
and False _ = False
and _ x = x

In Haskell computations are executed:

Only when needed
As much as they are needed

9 / 41

 Laziness

In Haskell computations are executed:

Only when needed
As much as they are needed

 This is hard!

Debugging follows weird paths
It works in the small, it leaks in the large

10 / 41

⏫ Getting started

Our tool manager: ghcup

Easiest way to get a working environment

Similar to SDKMAN, Coursier, rustup ...

> ghcup install ghc recommended
> ghcup install cabal recommended
> ghcup install stack recommended
> ghcup install hls recommended

ℹ️ Don't worry about versions for now

12 / 41

Our editor integration: HLS

Based on Language Server Protocol

Support from VS Code to Emacs
In VS Code, just install the Haskell plug-in

⚠️ Sometimes HLS support lags behind

You can check support with ghcup list

✗ ghc 8.10.6 base-4.14.3.0 hls-powered
✔✔ ghc 8.10.7 recommended,base-4.14.3.0 hls-powered
✓ ghc 9.0.1 base-4.15.0.0 hls-powered
✗ ghc 9.2.1 latest,base-4.16.0.0

13 / 41

Start a new project

Not one, but two choices: (why, in just a second)

> cd cool_project && cabal new
> stack new cool_project

14 / 41

Start a new project

Not one, but two choices: (why, in just a second)

> cd cool_project && cabal new
> stack new cool_project

Another good tool is 🔮 Summoner

Good set of default warnings
Additons like GH Actions integration

15 / 41

🧱 Projects in Haskell

Cabal vs. cabal vs. .cabal

Haskell's build tool story is messy

Packages are the unit of distribution
Package = set of modules
Module = source file = thing you import

Each package comes with a build file
Dependencies, exposed modules, flags
In the <package-name>.cabal file
Often called the Cabal file

17 / 41

Simple Cabal file
Not JSON, not YAML, something in between

Each stanza defines libraries or executables

name: haskell-exchange
version: 0.1.0.0
author: Alejandro Serrano

executable talk
 main-is: Main.hs
 build-depends: base ^>= 4.12, aeson ^>= 2
 hs-source-dirs: app

test-suite talk-tests
 ...

18 / 41

 Build tools: Cabal and Stack

You can build such package in two ways:

1. Cabal: cabal build
2. Stack: stack build

May require stack init

19 / 41

 Build tools: Cabal and Stack

You can build such package in two ways:

1. Cabal: cabal build
2. Stack: stack build

The choice is nuanced, but in general terms:
Stack focuses on reproducibility by default
Cabal supports reproducible tools via freeze
Stack tracks your toolchain (installs GHC)
Cabal doesn't, but we have ghcup now

20 / 41

Dependencies: Stackage and Hackage

Stacks requires an additional stack.yaml file

resolver: lts-18.14 # package set
packages:
 - . # your project

A resolver defines a set of fixed packages and
their versions known to build together

Haskell packages are built from source
Because of strong typing, this is a huge deal

21 / 41

Stackage - stackage.org

LTS targets the "recommended" GHC version

new minor version of LTS only updates
minor version of the packages

Nightly targets one version more

more recent version of packages
at some point, they "graduate" to LTS

What about the most recent version?

22 / 41

Hackage - hackage.haskell.org

The repository for Haskell packages

All version of packages + their documentation

23 / 41

Hackage - hackage.haskell.org

The repository for Haskell packages

All version of packages + their documentation

You can add Hackage packages to Stack

resolver: lts-18.14
packages:
 - .
extra-deps:
 - nice-dependency-0.24.5

24 / 41

🧱 Summary

Packages are defined in .cabal files
Cabal and Stack are used to build them
We have two sources for dependencies:

Stackage for curated sets
Hackage for everything

Stack leans towards Stackage

25 / 41

⚗️ Extensions and the Type Level

Haskell-the-language

The language itself vs. the compilers

There is more than one Haskell compiler:

GHC, from Glasgow
Helium and UHC, from Utrecht
Mu, used internally
LHC, JHC, ...

27 / 41

Haskell-the-language

The language itself vs. the compilers

There is more than one Haskell compiler:

GHC is de facto the standard
Helium, in research, and UHC
Mu, used internally
LHC, JHC, ..., not maintained

28 / 41

Haskell-the-language

The language itself vs. the compilers

Report = Haskell "standard"

Current: Haskell 2010
Previously: Haskell 98

29 / 41

Haskell-the-language

The language itself vs. the compilers

Report = Haskell "standard"

Current: Haskell 2010
Previously: Haskell 98

You sometimes hear people saying they write
"Haskell 2010" (or 98) code to mean code
without GHC extensions

30 / 41

Extensions

Anything outside the Report

Syntactical goodies
Type classes with multiple parameters
Type families
More ways to use deriving
And other 20+ things

ℹ️ Extension /= unsupported or bad style

31 / 41

Extensions

Anything outside the Report

To enable one, you write first thing in the file

{-# language MultiParamTypeClasses #-}
-- this also works, but no need to shout 🗣️
{-# LANGUAGE DeriveFunctor #-}

Usual joke: a Haskell file is 20 lines extensions,
30 lines type definitions, and 3 lines of code

32 / 41

Type level

Working with types as easy as with values

{-# language TypeFamilies #-}

type family MakeOpt (t :: Type) :: Type where
 MakeOpt (Maybe a) = Maybe a -- already optional
 MakeOpt (Either e a) = Maybe a -- simplify
 MakeOpt t = Maybe t -- other cases

{-# language GADTs, DataKinds #-}

data SafeString (escaped :: Bool) where
 Unsafe :: String -> SafeString 'False
 Escaped :: String -> SafeString 'True

33 / 41

Type level

Working with types as easy as with values

How to use types to check more invariants

This is advanced Haskell

But we love to talk about it! 💜
Lots of exploration and research

The Stitch paper by Eisenberg is awesome 💎

34 / 41

GHC2021

Many extensions have been stable for decades

... yet they won't make into a new Report

GHC2021 is the standard "language version"
since (the recently released) 9.2

Stemming from the GHC Steering Committee

Oversee new extensions to the language
Similar to processes in other communities

35 / 41

🗣️ Community

Main players

GHC Team, builds the compiler
Haskell Foundation
Haskell Language Server team
Several working groups

Haskell.org
Core Libraries Committee
GHC Steering Committee
Moving towards Foundation umbrella ☂️

37 / 41

Means of communication

 Old school: IRC and mailing lists

haskell-cafe
haskell-beginners

Reddit /r/haskell

Quite focused and active

Discourse

38 / 41

Category Theory

A branch of mathematics talking about the
abstract structure of things

There's a lot of cross-pollination 🐝

Functor or monad come from there
Type theories are influenced by PL research

39 / 41

Category Theory

A branch of mathematics talking about the
abstract structure of things

There's a lot of cross-pollination 🐝

However, it's a scary topic for many 👻

Not really needed to start with Haskell
But nevertheless really interesting

40 / 41

🤩 It's been a pleasure
Enjoy the rest of Haskell eXchange!

Let this be the start of a long and exciting
journey in Haskell!

