
GHC’s constraint solver
Haskell eXchange

Sam Derbyshire, Well-Typed

November 16th, 2021

The French approach to type inference

Solve

Haskell
source

program

Large
syntax, with
many many

constructors

Constraints

Small syntax,
with few

constructors

Constraint
generation

Residual constraint

Elaborated
program

with “holes”

Report
errors

Elaborated
source

program

Substitution

Apply
substitution

The essence of ML type inference, Pottier & Remy,
In ATAPL, Pierce, 2005.

Type inference as constraint solving
Simon Peyton Jones, Zurihac 2019

Damas–Hindley–Milner

foo xs = [listToMaybe xs, Just (length xs)]

Work list

Inert set

foo :: γ

xs :: α

(:) :: δ -> [δ] -> [δ]

listToMaybe :: [ε] -> Maybe ε

Just :: ζ -> Maybe ζ

length :: [η] -> Int

δ ~ Maybe ζ

[η] ~ α

Maybe ε ~ Maybe ζ

[η] ~ [ε]

γ ~ α -> β

β ~ [δ]

α ~ [ε]

δ ~ Maybe ε

This is Algorithm W from Damas–Hindley–Milner

type theory.

It always infers the most general type.

ζ ~ Int

ε ~ ζ

η ~ ε
Elaboration

foo xs = [listToMaybe xs, Just (length xs)]

foo :: Int -> [Maybe Int]

foo (xs :: [Int])

 = listToMaybe @Int xs

 : @(Maybe Int)

 Just @Int (length @Int xs)

 : @(Maybe Int)

 [] @(Maybe Int)

Scaling up to Haskell
type family F a where { F (Maybe a) = a }

g :: F a -> a -> a

f x y = [g x y, Just (not x)]

Work list

Inert set

f :: α -> β -> γ

(:) :: δ -> [δ] -> [δ]

g :: F ε -> ε -> ε
α ~ Bool

δ ~ Maybe Bool

α ~ F ε

γ ~ [δ]

α ~ F ε

β ~ ε

ε ~ δ

α ~ Bool

δ ~ Maybe Bool
Typeclasses, implications

palindrome :: Eq a => [a] -> Bool

palindrome ds = ds == reverse ds

palindrome :: Eq a => [a] -> Bool

palindrome = \ @a ($dEq_a :: Eq a) ->

 let

 $dEq_List_a :: Eq [a]

 $dEq_List_a = $fEq_List @a $dEq_a

 in \ (ds :: [a]) -> (==) @[a] $dEq_List_a ds (reverse @a ds)

Given: Eq a

Wanted: Eq [a]

Solve the implication [G] Eq a ⊢ [W] Eq [a] using the dictionary

function $fEq_List :: Eq a -> Eq [a] .

Nested implications
type family F a where { F Int = Int; F (f a) = a }

data G a where

 MkG1 :: Int -> G Int

 MkG2 :: Integral b => Maybe c -> b -> G (Maybe c)

foo :: Num (F a) => G a -> F a

foo x = case x of

 MkG1 i -> i

 MkG2 m b -> fromMaybe (fromIntegral b) m

[G] Num (F a) ⊢

 [[G] a ~ Int ⊢ [W] F a ~ Int

 , ∀ b c. [G] Integral b, [G] a ~ Maybe c

 ⊢ [W] Integral b, [W] Num c]

Part II: constraint solving

Predicates
Different kinds of constraints have different kinds of evidence:

typeclass constraints have a dictionary of the methods,

an equality is witnessed by a coercion (proof term).

Predicate Examples Evidence

Typeclass Ord a , Num a , (c1, c2) , () , a ~

b

Dictionary

Equality a ~# b , a ~R# b Coercion

Quantified ∀ a. Eq a => Eq (f a) Function

Irreducible c a , F x y Not yet

known

Solving flat constraints

Canonicalise

Inert reactions

Top-level reactions

Stop

Continue

Stop

Continue

Stop

Continue

+
Work list

Inert set

Pick new work item
Work item

Rewriting
When we add a new equality co :: old_ty ~ new_ty to the inert

set, we kick out constraints that can be rewritten using co , adding them

back to the work list to be processed again.

[W] a ~ Maybe b

[W] Eq a

[W] $dEq :: Eq a

[W] $dNum :: Num b

[W] co :: a ~ Maybe b

[W] $dEq |> Eq co :: Eq (Maybe b)

Decomposition
(a -> (b,c)) ~ (x -> (y,z))

 ⇝ a ~ x, (b,c) ~ (y,z)

 ⇝ a ~ x, b ~ y, c ~ z

Nt a ~R# b

 ⇝ a ~R# b -- if the newtype constructor for Nt is in scope

Canonicalisation
A canonical constraint is one that is in atomic form: it can’t be

decomposed or rewritten in any way.
type TyFamCt :: Type -> Constraint

type family TyFamCt ty where

 TyFamCt Bool = ()

 TyFamCt (a,b) = a ~ b

TyFamCt (f a, g b)

 ⇝ f a ~ g b

 ⇝ f a ~# g b

 ⇝ f ~# g, a ~# b

Solving implications

Inert set

Save outer inerts

Solve simple Wanteds

Solve implications

Restore outer inerts

Implication

G W

G W

(recursive)

Simplified implication

Simplify Givens

⊢ ⊢ ⊢

⊢

Work list

type family F a where { F Int = Int, F (f a) = a }

[G] Num (F a) ⊢

 [[G] a ~ Int ⊢ [W] F a ~ Int

 , ∀ b c. [G] Integral b, [G] a ~ Maybe c

 ⊢ [W] Integral b, [W] Num c]

[G] co :: a ~ Int

[W] F a ~ Int

[G] $dNum :: Num (F a)

[W] (F co ; F[0]) :: F a ~ Int

[G] $dIntegral :: Integral b

[G] co :: a ~ Maybe c

[W] Integral b

Inert set

[W] Num c

[G] $dNum :: Num (F a)

[G] $dNum :: Num (F a)

[G] co :: a ~ Int

[G] ($dNum |> Num co) :: Num Int

[G] $dNum :: Num (F a)

[G] $dIntegral :: Integral b

[G] co :: a ~ Maybe c

[W] Num c

[G] ($dNum |> Num (F co ; F[1])) :: Num c

Questions?

Slides

available

online:

 sheaf.github.io/ghc-constraint-solver

https://sheaf.github.io/ghc-constraint-solver

