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foo xs = [ listToMaybe xs, Just (length xs) ]

Work list

Inert set

foo :: γ 


xs :: α 


(:) :: δ -> [δ] -> [δ] 


listToMaybe :: [ε] -> Maybe ε

Just :: ζ -> Maybe ζ 


length :: [η] -> Int

δ ~ Maybe ζ 


[η] ~ α 


Maybe ε ~ Maybe ζ 


[η] ~ [ε]

γ ~ α -> β 


β ~ [δ] 


α ~ [ε] 


δ ~ Maybe ε 


This is Algorithm W from Damas–Hindley–Milner

type theory.


It always infers the most general type.



ζ ~ Int 


ε ~ ζ 


η ~ ε
Elaboration

foo xs = [ listToMaybe xs, Just (length xs) ]

foo :: Int -> [Maybe Int] 

foo (xs :: [Int]) 

  = listToMaybe @Int xs 

  : @(Maybe Int) 

    Just @Int ( length @Int xs ) 

  : @(Maybe Int) 

    [] @(Maybe Int)



Scaling up to Haskell
type family F a where { F (Maybe a) = a } 


g :: F a -> a -> a 




f x y = [ g x y, Just (not x) ]

Work list

Inert set

f :: α -> β -> γ 


(:) :: δ -> [δ] -> [δ] 


g :: F ε -> ε -> ε
α ~ Bool 


δ ~ Maybe Bool 


α ~ F ε

γ ~ [δ] 


α ~ F ε 


β ~ ε 




ε ~ δ 


α ~ Bool 


δ ~ Maybe Bool
Typeclasses, implications

palindrome :: Eq a => [a] -> Bool

palindrome ds = ds == reverse ds

palindrome :: Eq a => [a] -> Bool

palindrome = \ @a ($dEq_a :: Eq a) ->

  let 

    $dEq_List_a :: Eq [a] 

    $dEq_List_a = $fEq_List @a $dEq_a 

  in \ (ds :: [a]) -> (==) @[a] $dEq_List_a ds (reverse @a ds)

Given: Eq a 


Wanted: Eq [a] 


Solve the implication [G] Eq a ⊢ [W] Eq [a]  using the dictionary

function $fEq_List :: Eq a -> Eq [a] .



Nested implications
type family F a where { F Int = Int; F (f a) = a } 




data G a where 

  MkG1 :: Int -> G Int 

  MkG2 :: Integral b => Maybe c -> b -> G (Maybe c) 




foo :: Num (F a) => G a -> F a 

foo x = case x of 

  MkG1 i   -> i 

  MkG2 m b -> fromMaybe (fromIntegral b) m

[G] Num (F a) ⊢ 

    [ [G] a ~ Int ⊢ [W] F a ~ Int 

    , ∀ b c. [G] Integral b, [G] a ~ Maybe c

           ⊢ [W] Integral b, [W] Num c ]



Part II: constraint solving



Predicates
Different kinds of constraints have different kinds of evidence:

typeclass constraints have a dictionary of the methods,

an equality is witnessed by a coercion (proof term).




Predicate Examples Evidence

Typeclass Ord a , Num a , (c1, c2) , () , a ~ 

b

Dictionary

Equality a ~# b , a ~R# b Coercion

Quantified ∀ a. Eq a => Eq (f a) Function

Irreducible c a , F x y Not yet

known



Solving flat constraints
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Rewriting
When we add a new equality co :: old_ty ~ new_ty  to the inert

set, we kick out constraints that can be rewritten using co , adding them

back to the work list to be processed again.







[W] a ~ Maybe b 


[W] Eq a 


[W] $dEq :: Eq a 


[W] $dNum :: Num b 


[W] co :: a ~ Maybe b 


[W] $dEq |> Eq co :: Eq (Maybe b) 




Decomposition
(a -> (b,c)) ~ (x -> (y,z)) 


  ⇝ a ~ x, (b,c) ~ (y,z) 

  ⇝ a ~ x, b ~ y, c ~ z

Nt a ~R# b 

  ⇝ a ~R# b -- if the newtype constructor for Nt is in scope



Canonicalisation
A canonical constraint is one that is in atomic form: it can’t be

decomposed or rewritten in any way.
type TyFamCt :: Type -> Constraint 


type family TyFamCt ty where 

  TyFamCt Bool  = () 

  TyFamCt (a,b) = a ~ b

TyFamCt (f a, g b) 

  ⇝ f a ~ g b 

  ⇝ f a ~# g b 

  ⇝ f ~# g, a ~# b



Solving implications

Inert set

Save outer inerts

Solve simple Wanteds

Solve implications
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Work list

type family F a where { F Int = Int, F (f a) = a }

[G] Num (F a) ⊢ 

    [ [G] a ~ Int ⊢ [W] F a ~ Int 

    , ∀ b c. [G] Integral b, [G] a ~ Maybe c

           ⊢ [W] Integral b, [W] Num c ]

[G] co :: a ~ Int 


[W] F a ~ Int 


[G] $dNum :: Num (F a) 


[W] (F co ; F[0]) :: F a ~ Int 


[G] $dIntegral :: Integral b 


[G] co :: a ~ Maybe c 


[W] Integral b 




Inert set

[W] Num c 


[G] $dNum :: Num (F a)

[G] $dNum :: Num (F a) 


[G] co :: a ~ Int 


[G] ($dNum |> Num co) :: Num Int 


[G] $dNum :: Num (F a) 


[G] $dIntegral :: Integral b 


[G] co :: a ~ Maybe c 


[W] Num c 


[G] ($dNum |> Num (F co ; F[1])) :: Num c

Questions?

Slides

available

online:


  sheaf.github.io/ghc-constraint-solver

https://sheaf.github.io/ghc-constraint-solver

