GHC's constraint solver

Haskell eXchange Sam Derbyshire, Well-Typed November 16th, 2021

Damas-Hindley-Milner

foo xs = [listToMaybe xs, Just (length xs)] foo :: γ Work list xs :: a δ ~ Maybe ζ (:) :: $\delta \to [\delta] \to [\delta]$ [η] ~ α listToMaybe :: $[\mathcal{E}] \rightarrow Maybe \mathcal{E}$ Maybe ε ~ Maybe ζ Just :: $\zeta \rightarrow \text{Maybe } \zeta$ [η] ~ [ε] length :: $[\eta] \rightarrow$ Int Inert set This is **Algorithm W** from Damas–Hindley–Milner type theory. It always infers the most general type. δ ~ Maybe ϵ

Elaboration

Scaling up to Haskell

```
+ { F (Maybe a) = a }
-> a -> a
```


ε ~ δ α ~ Bool Typeclasses, implications 1 palindrome ds = ds == reverse ds = \ @a (\$dEq_a :: Eq a) -> · - · in $\langle (ds :: [a]) \rightarrow (==) @[a] $dEq List a ds (reverse @a ds)$ Given: Eq a Wanted: Eq [a] Solve the implication [G] Eq $a \vdash [W]$ Eq [a] using the dictionary function fEq List :: Eq a -> Eq [a].

Nested implications

- · · ·

mily F a where { F Int = Int; F (f a) = a }

: Integral b => Maybe c -> b -> G (Maybe c)

G a −> **F** a

MkG2 m b -> fromMaybe (fromIntegral b) m

Part II: constraint solving

Predicates

Different kinds of constraints have different kinds of evidence:

- typeclass constraints have a dictionary of the methods,
- an equality is witnessed by a coercion (proof term).

Predicate	Examples	Evidence
Typeclass	Ord a, Num a, (c1, c2), (), a ~	Dictionary
	b	
Equality	a ~# b, a ~R# b	Coercion
Quantified	∀ a. Eq a => Eq (f a)	Function
Irreducible	са, Ғху	Not yet
		known

Solving flat constraints

Rewriting

When we add a new equality co :: old_ty ~ new_ty to the inert set, we kick out constraints that can be rewritten using co, adding them back to the work list to be processed again.

[W] a ~ Maybe b

[W] Eq a

[W] \$dEq :: Eq a
[W] \$dNum :: Num b
[W] co :: a ~ Maybe b
[W] \$dEq |> Eq co :: Eq (Maybe b)

Decomposition

- → a ~ x, b ~ y, c ~ z
 - ·· -
- \twoheadrightarrow a ${\sim}R\#$ b -- if the newtype constructor for Nt is in scope

))

Canonicalisation

A **canonical** constraint is one that is in **atomic** form: it can't be decomposed or rewritten in any way.

Solving implications

type family F a where { F Int = Int, F (f a) = a }

```
....
                                  - C
        \vdash [W] Integral b, [W] Num c ]
Work list
[G] co :: a ~ Int
[W] F a ~ Int
[G] $dNum :: Num (F a)
[W] (F co ; F[0]) :: F a ~ Int
[G] $dIntegral :: Integral b
[G] co :: a ~ Maybe c
[W] Integral b
```

```
[W] Num C
   [G] $dNum :: Num (F a)
                                    Questions?
Slides
              Inert set
available
               [G] $dNum :: Num (F a)
online:
               [G] co :: a ~ Int
               [G] ($dNum |> Num co) :: Num Int
               [G] $dNum :: Num (F a)
               [G] $dIntegral :: Integral b
               [G] co :: a ~ Maybe c
               [W] Num C
               [G] ($dNum |> Num (F co ; F[1])) :: Num c
```

sheaf.github.io/ghc-constraint-solver