GHC(C's constraint solver
Haskell eXchange

Sam Derbyshire, Well-Typed
November 16th, 2021



The French approach to type inference

Haskell Elaborated
source program

rogram with “holes”
Prog Constraint

generation _
Large Constraints

syntax, with
many many Small syntax,

constructors with few
constructors

The essence of ML type inference, Pottier & Remy,
In ATAPL, Pierce, 2005.

Apply Elaborated
substitution source

program
I Residual constraint

Report
errors

Type inference as constraint solving
Simon Peyton Jones, Zurihac 2019




Damas-Hindley-Milner

foo xs = [ listToMaybe xs, Just (length xs) ]
foo :: Yy )
Work list
Xs :: Q
® ~ Maybe (

(:) =2 0 => [0] -> [O]
[n] ~ a

Maybe € ~ Maybe (

[(N] ~ [€]

‘ Inert set .

listToMaybe :: [€] -> Maybe &€
Just :: ( -> Maybe (

length :: [Nn] -> Int

This is Algorithm W from Damas-Hindley-Milner
type theory.

It always infers the most general type.

‘ ® ~ Maybe €




( ~ Int

Elaboration e~ 6
foo xs = [ listToMaybe xs, Just (length xs) ]
e Int]
@Int xs )

[] @(Maybe Int)



Scaling up to Haskell

» { F (Maybe a) = a }
-> a -> a
fxy=1[] g x vy, Just (not x) ]
f ::a->pB ->y .
Work list

) 22 O => [O0] -> [O
() [O] [O] a4 - Bool
g s F &g ->¢€ ->¢
® ~ Maybe Bool

a ~ F &g




e ~ 0O

Typeclasses, implications a ~ Bool
1
palindrome ds = ds == reverse ds
= \ @a (SdEq a :: Eg a) ->
in \ (ds :: [a]) -> (==) @[a] $SdEq List a ds (reverse (a ds)

Given: Eq a
Wanted: Eq [a]
Solve the implication [G] Eq a + [W] Eg [a] usingthe dictionary

function $fEq List :: Eq a -> Eq [a].



Nested implications

mily F a where { F Int = Int; F (f a) = a }

Integral b => Maybe ¢ -> b -> G (Maybe c)
G a->F a

MkG2 m b -> fromMaybe (fromIntegral b) m

F [W] Integral b, [W] Num c ]



Part Il: constraint solving



Predicates

Different kinds of constraints have different kinds of evidence:
e typeclass constraints have a dictionary of the methods,

e an equality is witnessed by a coercion (proof term).

Predicate Examples Evidence
Typeclass Oord a, Num a, (cl, c2), (), a ~ Dictionary
b
Equality a ~# b, a~R# b Coercion
Quantified | V a. Eq a => Eq (f a) Function
Irreducible | ¢ a, F x vy Not yet
known



Solving flat constraints

Pick new work item
Work item g yy

\ /

Canonicalise

Sop A

Continue

\ 4
Inert reactions

Stop

Continue

Top-level reactions

Stop Y,

Continue

Inert set

{0







Rewriting
When we add a new equality co :: old ty ~ new ty totheinert
set, we kick out constraints that can be rewritten using co, adding them

back to the work list to be processed again.

[W] a ~ Maybe b [W] SdEq :: Eq a
[W] Eq a [W] SdNum :: Num b

[W] co :: a ~ Maybe b

[W] SdEq |> Eq co :: Eq (Maybe b)




Decomposition

» a -~ X, b~-vy, c~z

~» a ~R# b -- if the newtype constructor for Nt is in scope



Canonicalisation

A canonical constraint is one that is in atomic form: it can't be

decomposed or rewritten in any way.

int
re

TyFamCt (a,b) = a - b

. ngb)

~» £ ~# g, a ~# Db



Solving implications

( Implication
=
Save outer inerts [i] W] [1]
A \
Simplify Givens
\ \ /

Solve simple Wanteds

N EL

Solve implications

/ (recursive)

Restore outer inerts

Simplified implication







type family F a where { F Int = Int, F (f a) = a }

F [W] Integral b, [W] Num c ]

Work list

[G] co :: a ~ Int

[W] F a ~ Int

[G] SANum :: Num (F a)

[W] (F co ; F[O0]) :: F a ~ Int
[G] SdIntegral :: Integral b
[G] co :: a ~ Maybe c

[W] Integral b



[W] Num c

[G] $dNum :: Num (F a) Questions?
Slides
Inert set
available
[G] $dNum :: Num (F a)
online:

[G] co :: a ~ Int

[G] ($dNum |> Num co) :: Num Int
[G] SdNum :: Num (F a)

[G] SdIntegral :: Integral b

[G] co :: a ~ Maybe c

[W] Num c

[G] ($dNum |> Num (F co ; F[1]))

sheaf.github.io/ghc-constraint-solver



https://sheaf.github.io/ghc-constraint-solver

