
A conceptual
introduction to Nix

Krzysztof Gogolewski

This talk

Nix explained.

This is not a tutorial on how to accomplish things with nix.

Why Nix?

Adds structure to your workflow.

nix repl: ghci

nix-repl> "a" + "b"

"ab"

nix-repl> map (x: x * 10) [2 3]

[20 30]

nix-repl> { a = true; b = 10; }.a

true

nix-repl> builtins.currentSystem

"x86_64-linux"

Something more interesting

Imperative languages:

Something more interesting

Imperative languages: side effect.

Something more interesting

Imperative languages: side effect.

Haskell: value of type IO a.

Something more interesting

Imperative languages: side effect.

Haskell: value of type IO a.

Nix: a derivation.

Derivation example

derivation {
 builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
}

Derivation example

nix-repl> derivation {
 builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
}

Derivation example: instantiation

nix-repl> derivation {
 builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
}
«derivation /nix/store/sbvd...s5kyz7pj9j05zx-write-hello.drv»

Derivation example: building

nix-repl> :b derivation {
 builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
}
this derivation produced the following outputs:

 out -> /nix/store/zs7nnwyzpy4...05qgw48v3k7xm5-write-hello

derivation { builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

Derive([("out","/nix/store/zs7nnwyzpy46b4677805qgw48v3k7xm5-write-
hello","","")],[],[],"x86_64-linux","/bin/sh",["-c","echo hello >
$out"],[("builder","/bin/sh"),("name","write-hello"),("out","/nix/
store/zs7nnwyzpy46b4677805qgw48v3k7xm5-write-hello"),("system","x8
6_64-linux")])

hello

Derivation example

nix expression

.drv file

build output

d = derivation { builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

d.drvPath -> "/nix/store/sbvd...s5kyz7pj9j05zx-write-hello.drv"

"${d}" -> "/nix/store/zs7n...4677805qgw48v3k7xm5-write-hello"

Derivation example

nix expression

.drv file

build output

The output path

d = derivation { builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

"${d}"

The output path

d = derivation { builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

"${d}"

The output path

d = derivation { builder = "/bin/sh";
 args = ["-c" "echo hello > ${d}"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

"${d}"

The output path

d = derivation { builder = "/bin/sh";
 args = ["-c" "echo hello > ${d}"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

"${d}"

Infinite recursion

External script

derivation { builder = "/bin/sh";
 args = ["-c" "echo hello > $out"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

External script
Create a file builder.sh:
echo "hello" > $out

derivation { builder = "/bin/sh";
 args = ["${./builder.sh}"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

External script
Create a file builder.sh:
echo "hello" > $out

derivation { builder = "/bin/sh";
 args = ["${./builder.sh}"];
 name = "write-hello";
 system = builtins.currentSystem;
 }

nix-repl> "${./builder.sh}"

"/nix/store/iidz0av5c24qhx3m4a1h9pzl25xwf03s-builder.sh"

Splicing
Splicing a derivation returns the path to the build output.

Splicing a path copies the file to the Nix store and returns its location.

let ghc = derivation ...; in
derivation {
 builder = "${ghc}/bin/ghc";
 args = ["${./Main.hs}"];
 name = "my-program";
 system = builtins.currentSystem;
}

my-program.drv

ghc.drvMain.hs ghc

Splicing
Splicing a derivation returns the path to the build output.

Splicing a path copies the file to the Nix store and returns its location.

derivation {
 builder = "/nix/store/m26...ig5dm2z6z-ghc-8.10.4/bin/ghc";
 args = ["/nix/store/ayx...h2sf46x252vf5rrv9c-Main.hs"];
 name = "my-program";
 system = builtins.currentSystem;
}

Splicing
Splicing a derivation returns the path to the build output.

Splicing a path copies the file to the Nix store and returns its location.

let ghc = derivation ...; in
derivation {
 builder = "${ghc}/bin/ghc";
 args = ["${./Main.hs}"];
 name = "my-program";
 system = builtins.currentSystem;
}

my-program.drv

ghc.drvMain.hs

inputSrc inputDrv

ghc

builder

Sandboxing
Derivations are built in a sandbox.

You can access only /bin/sh, files that were declared using a path
"${./path}" or a derivation "${d}"

"The name Nix is derived from the Dutch word niks, meaning nothing; build
actions do not see anything that has not been explicitly declared as an input."

-- Nix: A Safe and Policy-Free System for Software Deployment (2004)

Derivations as Haskell values
type Path = String
data Derivation = Derivation {
 builder :: Path,
 args :: [String],
 inputSrcs :: [Path],
 inputDrvs :: [Path]
 }

drvHash :: Derivation -> Hash
outHash :: Derivation -> Hash
instantiate :: Derivation -> IO Path
build :: Path -> IO ()

Let's organise this

Let's organise this

{ gcc = derivation { ... };

 coreutils = derivation { ... };

 python = derivation { ... };

 ...
}

This is a repository.

We can also store metainformation

{ gcc = {
 d = derivation { ... };

 description = "GNU Compiler Collection";
 version = "10.3";
 license = "GPL";
 homepage = "https://gcc.gnu.org";
 };
 ...
}

This is a package.

We can also store metainformation

{ gcc = {
 d = derivation { ... };

 description = "GNU Compiler Collection";
 version = "10.3";
 license = "GPL";
 homepage = "https://gcc.gnu.org";
 };
 ...
}

This is a package.

We can also store build scripts

{ gcc = myDerivation {
 url = "https://ftp.gnu.org/gnu/...";
 sha256 = "0i6378ig6h397zkhd7...";

 buildScript = ''
./configure --out-path=$out
make
make install
 '';
 };
 ...
}

We can also store build scripts

{ gcc = myDerivation {
 url = "https://ftp.gnu.org/gnu/...";
 sha256 = "0i6378ig6h397zkhd7...";

 buildScript = ''
./configure --out-path=$out
make
make install
make test
 '';
 };
 ...
}

Result: nixpkgs

Nixpkgs is a huge repository of packages.

You're not supposed to use the derivation function - stdenv.mkDerivation
builds on top of it.

How do we use a repository?

How do we use a repository?

repo: [repo.gcc repo.firefox]

This starts to look like configuration management.

Configuration management

repo: {
 packages = [repo.gcc repo.firefox]

 resolvconf = "nameserver 8.8.8.8";

}

A derivation can only modify Nix store.

Configuration management

repo: {
 packages = [repo.gcc repo.firefox]

 resolvconf = "nameserver 8.8.8.8";

}

A derivation can only modify Nix store.
But it can create a script
echo "nameserver 8.8.8.8" > /etc/resolv.conf
and return a path to this script.

Activation script
For declarative configuration: copy files, centralize everything.

build_script ''echo "$(resolv_conf)" > /etc/resolv.conf''

Activation script
For stateful configuration: convert the desired state to instructions.

build_script (if sshd_enabled
 then "systemctl start sshd"
 else "systemctl stop sshd")

Activation script
You can access passwords from a script, without putting them in the Nix store.

build_script "cp /root/my_password /etc/shadow"

Activation script
/nix/store/xiwgya4ck...ffajjrf9r014h9-sudo-1.9.6

Activation script
/nix/store/xiwgya4ck...ffajjrf9r014h9-sudo-1.9.6
/nix/store/yl2mzyayk...vfy248icd72p13-sudo-1.9.7

Activation script
Create a wrapper for the suid bit.

build_script ''

rm -f /run/suid_wrappers/*

cp ${sudo}/bin/sudo /run/suid_wrappers/

chmod u+s /run/suid_wrappers/sudo

''

Activation script

Add a bootloader entry if it does not exist.

Adding everything together, you get "git checkout" for your system.

Infrastructure

Using just derivations + Nix language, we get

● Packages
● Repositories
● Checking for licenses
● System configuration
● Operating system

Not hardwired to Nix.
And much more: modules, types.

Layers

Derivations

Nix language

Nix store

nixpkgs NixOS

Layers

Derivations

Nix language

Nix store

nixpkgs NixOS

Nix language Nix libraries

Profiles

Every time you build a new system configuration, Nix creates a generation.

A profile is a collection of generations.

Generations are garbage collection roots, and the current generation is in the
PATH.

Profiles can be used without NixOS.

Channels

A channel is like a git remote.

You can pull from a channel with nix-channel --update.

Updating NixOS:
1) Updates the channels
2) Updates nix
3) Builds a new derivation describing the
4) Runs the activation script
5) Adds a new generation

Import from derivation

nix-repl> derivation {
 builder = "/bin/sh";
 args = ["-c" "echo 2+2 > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
}

Import from derivation

nix-repl> import (derivation {
 builder = "/bin/sh";
 args = ["-c" "echo 2+2 > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
})
4

Import from derivation

nix-repl> import (derivation {
 builder = "/bin/sh";
 args = ["-c" "echo 2+2 > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
})
4

unsafePerformIO :: IO a -> a

Import from derivation

nix-repl> import (derivation {
 builder = "/bin/sh";
 args = ["-c" "echo 2+2 > $out"];

 name = "write-hello";
 system = builtins.currentSystem;
})
4

join :: IO (IO a) -> IO a

References

nix-dev https://nix.dev/

Nix Shorts https://github.com/justinwoo/nix-shorts/

https://nix.dev/
https://github.com/justinwoo/nix-shorts/

References

nix-dev https://nix.dev/

Nix Shorts https://github.com/justinwoo/nix-shorts/

https://nix.dev/
https://github.com/justinwoo/nix-shorts/

Get your hands dirty!

- Install Nix locally.
Try nix-shell -p "haskell.packages.ghc8104.ghcWithPackages
(p: [p.aeson p.pandoc])"

- Build ghc with https://github.com/alpmestan/ghc.nix
- Go through Nix Pills https://nixos.org/guides/nix-pills/index.html

- Try out NixOS in a VM
- Use a USB stick and boot from it
- If you like it, install NixOS

https://github.com/alpmestan/ghc.nix
https://nixos.org/guides/nix-pills/index.html

