
Directed Acyclic Graph?
Or Distributed Architecture Guidepost!

Causally related decisions, and

how they relate to application design
Michael L Perry

Improving

@MICHAELLPERRY #YOW21

UniversityProfessor Student

Drop Fail Complete

Teach

Offering

Course Semester

Register

Hire Enroll

@MICHAELLPERRY #YOW21

Professor

publicKey "RtCGgkCX5KOVz/9GaZxzxA=="

University

institutionId "39-3976250"

Course

identifier “MATH-314"

Semester

year 2021

season “spring"

Offering

createdDate “2020-11-01T17:20:12.000Z"

Teach

createdDate “2021-01-14T22:18:45.000Z"

Hire

hireDate "2020-12-14T03:42:28.000Z"

Offering

createdDate “2020-11-01T17:20:16.000Z"

Teach

createdDate “2021-01-14T22:18:45.000Z"

@MICHAELLPERRY #YOW21

University

institutionId "39-3976250"

Course

identifier “MATH-314"

Semester

year 2021

season “spring"

Offering

createdDate “2020-11-01T17:20:12.000Z"

Offering

createdDate “2020-11-01T17:20:16.000Z"

Student

publicKey "yBlFvOv94gZKCMyYxCc6ug=="

Register

registrationDate "2020-11-18T10:44:39.000Z"

Enroll

enrollmentDate "2018-07-18T10:44:39.000Z"

Student

publicKey "9N2Fz84e4tExcWUJOKvStw=="

Register

registrationDate "2020-11-19T22:05:23.000Z"

Enroll

enrollmentDate "2019-01-16T12:20:45.000Z"

Student

publicKey "nVYFqQfb4zpjoDInUKSjvQ=="

Register

registrationDate "2020-11-19T17:02:04.000Z"

Enroll

enrollmentDate "2018-10-08T01:23:56.000Z"

Drop Fail

grade 45.0

Complete

grade 87.2

@MICHAELLPERRY #YOW21

Professor

publicKey "RtCGgkCX5KOVz/9GaZxzxA=="

University

institutionId "39-3976250"

Course

identifier “MATH-314"

Semester

year 2021

season “spring"

Offering

createdDate “2020-11-01T17:20:12.000Z"

Teach

createdDate “2021-01-14T22:18:45.000Z"

Hire

hireDate "2020-12-14T03:42:28.000Z"

Offering

createdDate “2020-11-01T17:20:16.000Z"

Teach

createdDate “2021-01-14T22:18:45.000Z"

Semester

year 2021

season “fall"

Offering

createdDate “2021-04-16T23:01:57.000Z"

Offering

createdDate “2020-04-05T16:53:19.000Z"

Teach

createdDate “2021-04-17T01:41:58.000Z"

Teach

createdDate “2021-04-05T17:03:34.000Z"

Causal Past

Directed
Acyclic
Graph

Fact

Predecessor

Successor

Immutable

Each decision points back to its

immediate causal predecessors

@MICHAELLPERRY #YOW21

University Software

@MICHAELLPERRY #YOW21

Staff
Hire faculty

Faculty
Teach courses

Students
Register for courses

Staff Application

Subset of types required for making hiring decisions

Desktop app for hiring faculty

@MICHAELLPERRY #YOW21

UniversityProfessor

Hire

Faculty
Application

Subset of types required for managing course catalogs

and offerings

Web app for managing course load

@MICHAELLPERRY #YOW21

UniversityProfessor

Teach

Offering

Course SemesterHire

Student
Application

Subset of types required for registering for courses

Mobile app for course registration

@MICHAELLPERRY #YOW21

University Student

Drop Fail Complete

Offering

Course Semester

Register

Enroll

@MICHAELLPERRY #YOW21

University

institutionId "39-3976250"

Course

identifier “MATH-314"

Semester

year 2021

season “spring"

Offering

createdDate “2020-11-01T17:20:12.000Z"

Offering

createdDate “2020-11-01T17:20:16.000Z"

Student

publicKey "yBlFvOv94gZKCMyYxCc6ug=="

Register

registrationDate "2020-11-18T10:44:39.000Z"

Enroll

enrollmentDate "2018-07-18T10:44:39.000Z"

Register

registrationDate "2020-11-19T22:05:23.000Z"

Register

registrationDate "2020-11-19T17:02:04.000Z"

Drop Fail

grade 45.0

Complete

grade 87.2

Semester

year 2021

season “summer"

Semester

year 2021

season “summer"

Course

identifier “CPSC-310"

Course

identifier “CPSC-310"

Course

identifier “PHIL-210"

Offering

createdDate “2020-11-01T17:20:16.000Z"

Offering

createdDate “2020-11-01T17:20:16.000Z"

Register

registrationDate "2020-11-19T17:02:04.000Z"

Complete

grade 94.7

(1) (1)

(usually 1)
(about 12)(in degree plan)

SQL Table Design

@MICHAELLPERRY #YOW21

Professor

PK ProfessorId

AK PublicKey

University

PK UniversityId

AK InstitutionId

Hire

PK HireId

AK, FK ProfessorId

AK, FK UniversityId

AK HireDate

Add a primary key.

All other columns are in the alternate key.

Define foreign keys for predecessors.

Foreign keys are in the alternate key too.

Terminate

PK TerminateId

AK, FK HireId

Deletion is not allowed.

Instead, insert a tombstone record.

Insert if Not Exists

@MICHAELLPERRY #YOW21

SELECT ProfessorId
FROM Professor
WHERE PublicKey = $1

INSERT INTO Professor
(PublicKey)
VALUES (%1)

ON CONFLICT DO NOTHING

If none

Select the primary key using the alternate key.

If it is not found, insert using the alternate key.

Iterate over this operation to merge DAGs.

If most inserts will be new, reverse the order.

Query the DAG

@MICHAELLPERRY #YOW21

SELECT p.ProfessorId
FROM Professor p
JOIN Hire h
ON h.ProfessorId = p.ProfessorId

JOIN University u
ON u.UniversityId = h.UniversityId

WHERE u.InstitutionId = %1
AND NOT EXISTS (
SELECT TerminateId
FROM Terminate t
WHERE t.HireId = h.HireId

)

Use an existential condition to filter out

entities that should be deleted.

If most entities are eventually deleted,

optimize with a materialized view.

Transitive
Closure

Minimal set required to make sense of a fact

A subset that includes all

predecessors of facts that are in

the graph

@MICHAELLPERRY #YOW21

University

institutionId "39-3976250"

Student

publicKey "yBlFvOv94gZKCMyYxCc6ug=="

Enroll

enrollmentDate "2018-07-18T10:44:39.000Z"

Semester

year 2021

season “summer"

Course

identifier “PHIL-210"

Offering

createdDate “2020-11-01T17:20:16.000Z"

Register

registrationDate "2020-11-19T17:02:04.000Z"

Message Design

@MICHAELLPERRY #YOW21

A message contains the

transitive closure of a fact.

{
"register": {

"registrationDate": "2021-11-19T17:02:04.000Z"
},
"offering": {

"createdDate": "2020-11-01T17:20:16.000Z"
},
"course": {

"identifier": "PHIL-210"
},
"semester": {

"year": 2021,
"season": "summer"

},
"enroll": {

"enrollmentDate": "2018-07-18T10:44:39.000Z"
},
"university": {

"institutionId": "39-3976250"
},
"student": {

"publicKey": "yBlFvOv94gZKCMyYxCc6ug=="
}

}

Guarantees consistency when

messages are delivered out of

order.

Assumes that DAG can be

correctly inferred from structures.

Merkle Tree

@MICHAELLPERRY #YOW21

Compute the hash of a fact in canonical form.

$ echo -n '{"institutionId":"39-3976250"}' | openssl dgst -sha256 -binary | base64
sGoLdnSOB7dtTEabz8u8WxLthxbDVaIxSisWgIVdY4I=

Reference the hash in place of the predecessor.

{
"enrollmentDate": "2018-07-18T10:44:39.000Z",
"student": {

"ref": "qvSCdGo6PjZ2mSG08xI6UFBO0HEbULXzvpZNW+WxVP8="
},
"university": {

"ref": "sGoLdnSOB7dtTEabz8u8WxLthxbDVaIxSisWgIVdY4I="
}

}

Merkle Tree

@MICHAELLPERRY #YOW21

Include all facts by reference in the message.

{
"sGoLdnSOB7dtTEabz8u8WxLthxbDVaIxSisWgIVdY4I=": {

"institutionId":"39-3976250"
},
"qvSCdGo6PjZ2mSG08xI6UFBO0HEbULXzvpZNW+WxVP8=": {

"publicKey": "yBlFvOv94gZKCMyYxCc6ug=="
},
"RXNLfyirFx1BMHXqGMc/SzyVGaN6Qul2hIPCuP0jgfk=": {

"enrollmentDate": "2018-07-18T10:44:39.000Z",
"student": {

"ref": "qvSCdGo6PjZ2mSG08xI6UFBO0HEbULXzvpZNW+WxVP8="
},
"university": {

"ref": "sGoLdnSOB7dtTEabz8u8WxLthxbDVaIxSisWgIVdY4I="
}

}
}

Eventual
Consistency

Idempotent

◦ Receiving a message twice does not duplicate the effect.

◦ Recognize duplicate messages by their hash.

◦ “Insert if not exists” will prevent duplicates.

Commutative

◦ Messages contain their predecessors.

◦ If order matters, then the earlier message is delivered

with the later one.

◦ If there is no causal relationship, then order doesn’t

matter.

Associative

◦ A merge between two DAGs computes the least upper

bound.

◦ This is a general-purpose CRDT.

Ensure that all nodes reach the

same state after receiving the

same information

@MICHAELLPERRY #YOW21

API Design

@MICHAELLPERRY #YOW21

Every API request includes the transitive closure.

Different parts of the graph are stored in different parts of the request.

University Student

Offering

Course Semester

Register

Enroll

Domain

Path

Claims

Body

API Design

@MICHAELLPERRY #YOW21

POST fairviewcollege.edu/courses/2021/summer/PHIL-210/2020-11-01T17:20:16.000Z

{
"registrationDate": "2020-11-19T17:02:04.000Z"

}

claims:
"publicKey": "yBlFvOv94gZKCMyYxCc6ug==",
"enrollmentDate": "2018-07-18T10:44:39.000Z"

The registration identifier is generated on the client side, where the decision is made.

This guarantees that registration is idempotent.

Directed
Acyclic
Graphs

Model a problem domain as a set of causally related

decisions.

The key to domain modeling and

distributed systems design

@MICHAELLPERRY #YOW21

Directed
Acyclic
Graphs

Model a problem domain as a set of causally related

decisions.

Identify subsets for different applications, processes,

and microservices.

The key to domain modeling and

distributed systems design

@MICHAELLPERRY #YOW21

Directed
Acyclic
Graphs

Model a problem domain as a set of causally related

decisions.

Identify subsets for different applications, processes,

and microservices.

Create a table per fact type, using foreign keys to refer

to predecessors.
The key to domain modeling and

distributed systems design

@MICHAELLPERRY #YOW21

Directed
Acyclic
Graphs

Model a problem domain as a set of causally related

decisions.

Identify subsets for different applications, processes,

and microservices.

Create a table per fact type, using foreign keys to refer

to predecessors.

Insert if not exists to merge into the DAG.

The key to domain modeling and

distributed systems design

@MICHAELLPERRY #YOW21

Directed
Acyclic
Graphs

Model a problem domain as a set of causally related

decisions.

Identify subsets for different applications, processes,

and microservices.

Create a table per fact type, using foreign keys to refer

to predecessors.

Insert if not exists to merge into the DAG.

Compute the transitive closure to determine the

information that should be included in a message.

The key to domain modeling and

distributed systems design

@MICHAELLPERRY #YOW21

Directed
Acyclic
Graphs

Model a problem domain as a set of causally related

decisions.

Identify subsets for different applications, processes,

and microservices.

Create a table per fact type, using foreign keys to refer

to predecessors.

Insert if not exists to merge into the DAG.

Compute the transitive closure to determine the

information that should be included in a message.

Allocate different parts of the transitive closure to

different parts of each API request.

The key to domain modeling and

distributed systems design

@MICHAELLPERRY #YOW21

Directed
Acyclic
Graphs

Model a problem domain as a set of causally related

decisions.

Identify subsets for different applications, processes,

and microservices.

Create a table per fact type, using foreign keys to refer

to predecessors.

Insert if not exists to merge into the DAG.

Compute the transitive closure to determine the

information that should be included in a message.

Allocate different parts of the transitive closure to

different parts of each API request.

Generate identifiers where decisions are made.

The key to domain modeling and

distributed systems design

@MICHAELLPERRY #YOW21

Learn More

@MICHAELLPERRY #YOW21

ImmutableArchitecture.com

@MichaelLPerry

Michael.Perry@Improving.com

