
@Randommood

Iterative system evolution at hyperscale

Sign O’ The Times

@Randommood



Play in the Sunshine
Dearly Beloved



Hello!

@randommood

I’m Ines



@Randommood

What is Fastly?



@Randommood

General Disclaimer 

Most advice is contextual: 
mileage will vary  

Approaches & patterns 
observed and tried 

throughout the years  

Reflective of where I am in 
my own career & evolution

Before
We

Begin

It’s Gonna Be A Beautiful Night



Sign O’ The Times
On System Architecture



@Randommood

A System’s shape or structure 

❖ Language 
❖ Abstractions 
❖ Interfaces  
❖ Operability & limits 
❖ Singleton vs multi-node 
❖ Stateful vs stateless 
❖ Monolith vs service-oriented 
❖ Relationship to its dependencies

System Architecture



@Randommood

System architecture reflects the history and 
evolution of its 

❖ People - designers, engineers, managers 
❖ Organizations - leaders, team structure, 

team focus (full stack, specialized, product-
focused) 

❖ And their needs & constraints

A sign and a point in time



System architecture is 
contextual



@Randommood

Balancing Needs & Limitations

REQUIREMENTS CONSTRAINTS

Availability 

Performance 

Scale 

Cost

Time 

Cost 

Team staffing 

Organizational structure  

Compliance requirements



@Randommood

They encode & frame a system’s adaptability   

❖ If we are right we can support 1-2 orders of 
magnitude growth without changes 

❖ If growth is sustained it will stress our 
systems 

❖ How this stress will manifest is architecture 
dependent and may be hard to predict

We make choices



Strange Relationship
Sustained Growth & Systems



@Randommood

Growth & Scale
An arguably good problem to have 

❖ Your architecture will determine where and 
how your system behaves under load (resource 
starvation, degraded performance, plain 
process death) 

❖ This can be difficult to reason about or predict



@Randommood

Growth & Scale
❖ Sustained load also impacts a system’s 

environment, needs, and constraints 
❖ Architectural changes are even more 

burdensome for hyperscale systems - lower 
tolerances for errors & performance 
regressions 

❖ Your edge cases change too!



@Randommood

Two Examples
Maintenance and evolution of two critical 
data pipelines 

❖ Logging pipeline 
❖ Metrics pipeline 
❖ Different architectures, teams, needs, 

constraints, and compliance scopes 
❖ Both have large sustained YoY growth



Caches Aggregators Endpoints

s3

syslog

gcs

sumologic

bigquery

ftp

papertrail

…

Logging Architecture



@Randommood

Architecture: Logging
❖ Best Effort - we try our best to send logs to your 

defined endpoint 
❖ Horizontally scalable - more aggregators, more work 
❖ Stateless - we have minimal buffering 
❖ Distributed - send to whomever is available 
❖ Pipeline optimized for log streaming speed 



@Randommood

Growth: Logging (2014-2015)

😳

~430K LPS ~1.2K endpoints ~ 2GB/s



@Randommood

Growth: Logging (2017-2018)
~3M LPS ~8.6K endpoints ~4GB/s



@Randommood

Growth: Logging (2017-2018)
~3M LPS ~8.6K endpoints ~4GB/s



@Randommood

Growth: Logging (2021)
~18M LPS ~60.K endpoints ~19.5 GB/s



@Randommood

Growth: Endpoints (2018-2021)



@Randommood

Challenges of Logging at Scale
❖ No hard limits to what you can log - this can be 

challenging 
❖ System is multi-tenant - noisy neighbors can affect 

delivery 
❖ Language introduction in the ecosystem complicates 

user experience (Varnish vs Rust) 
❖ Connectivity is critical - can’t ship where we can’t 

reach



@Randommood

Challenges of Logging at Scale
❖ Difficult to infer if an endpoint is working or not 

(Hard to test setup too) 
❖ Classic integrations challenges - each endpoint is a 

murky downstream dependency 
❖ Evolving our clients is challenging & takes time too 

- example: new region support, 2018 ~20K LP/s BQ 
limits 



@Randommood

Evolution of Logging
What we are currently working on 

❖ Per endpoint metric emission to facilitate debugging 
❖ Decoupling intent from log line structure for better 

user experience & language support 
❖ Dynamic cache-side configurations for ease of 

operability 
❖ Aggregator affinity & regionality efficiencies 



Emitters Data pipelines More

EastEast Historical API

Real time API

Graphite

Archives

Storage

West Historical API

Real time API

Graphite

Archives

Storage

Home

$$$$$

Observability

Metrics Architecture



@Randommood

Architecture: Metrics
Another critical pipeline  

❖ Guarantees needed - metrics == observability + $$$  
❖ Mixed-scaling - multiple independent regions pattern 
❖ Stateful - storage, aggregation, archival, presentation 
❖ Replicated & verified - needs continuous data 

verification processes 
❖ Pipeline optimized for metric aggregation & availability



@Randommood

Growth: Metrics
What drives this pipeline’s growth? 

❖ New emitter types - 1 msg/sec each * number nodes 
❖ New streams types - Varnish, C@E, more! 
❖ Network growth - New POPs & caches 
❖ New metrics -  200 and counting (we started w/ 

around 40)



@Randommood

Growth: Metrics (2020-2021)
Metrics pipeline has grown ~6x YoY 

❖ Message count - 3k msg/sec > 15k msgs/sec  
❖ Message size - 150 MiB/sec > 900 MiB/sec 
❖ Emitter growth - ~4 new emitter types 
❖ Storage growth - way more, just trust me*



@Randommood

Challenges of Metrics at Scale
❖ Coupling of billing & observability metrics - pipeline 

likely needs folding into two  
❖ Connectivity is critical - can’t observe or monetize 

what we don’t have 
❖ Legacy serialization formats take time to replace 
❖ Retention & presentation - APIs needed evolving to 

adjust for larger data volumes



@Randommood

Evolution of Metrics
What we are currently working on 

❖ We evolved our retention policies to reduce cost  
❖ Reworked & lowered emitter cost to bolster growth 
❖ Gave up on pipeline unification - unify emitters & APIs 

instead 
❖ Moving aggregation closer to emission to reduce 

bandwidth 
❖ ABS (Always be Scaling)



Infinity is folly



@Randommood

Important things to be aware of 

❖ Scaling limits - Are we aware of what they are?  
❖ Operational ergonomics - Do they set us up for errors? 
❖ Teams & Organization - How much work can we do? Do 

we have organizational alignment? 
❖ Cost & budget - Can you trade money for speed? 
❖ Dependency relationships - who needs priority? Can you 

degrade or prioritize specific workloads?

Know your limits 
!



@Randommood

Your perspective will evolve, get comfortable with  

❖ A shortened time to rewrite - yesterday’s peak is 
today’s baseline 

❖ New operational needs - load shedding, failover, 
unified ergonomics, more consistency 

❖ Thinking about your emitters - paved roads, 
organizational processes for workload onboarding 

❖ Knowing you’ll never be done 

Hyperscale changes things

"

#

$

%



U Got The Look
When re-architecture is unavoidable

Photo: Jeff Katz



@Randommood

When?
Evolution is unavoidable when you start facing 

❖ Availability issues 
❖ Performance regressions 
❖ Scalability limitations - of your system or its 

dependencies 
❖ Slower growth / evolution - of your system 

components, dependencies, team, or company



Constraints frame 
 your scaling approach



@Randommood

How?
Things that help you when re-architecting 

❖ Foundational components, pipelines, systems  
❖ Fewer dependencies 
❖ Flexibility over scope & error tolerance 
❖ Degraded modes of operation 
❖ Flexibility over client behavior



@Randommood

How?
Helpful to rethink your approach to your system, 
people, team interactions, needs, & constraints 

❖ Means setting up and supporting decoupling 
mechanisms between orgs 

❖ Encouraging iterative improvements 
❖ Paying for performance and cost increases with 

other improvements



@Randommood

Where?
You have choices here too! 

❖ Emitter tier 
❖ Transport tier 
❖ Processing tier 
❖ Storage tier 
❖ Presentation tier 
❖ Team / Org processes

&

"

'

(

)

*

+
&

,

&

-.

/



Forever In My Life
Reflections & Takeaways



@Randommood

Design your evolutionary feature-set
Best approaches for a re-architecture are iterative 

❖ Stalling during rapid growth is very hard and 
expensive  

❖ Do you really have to do the whole thing at once? 
❖ Can new features be used to validate abstractions? 
❖ What architectural levels are in your control?



@Randommood

Ergonomics of evolution

❖ Always worth trying to evolve things in place  
❖ Get comfortable with diversity - homogeneity 

makes evolution harder 
❖ Mixed mode as common - new things should 

be backwards compatible 
❖ Flexibility & control over your configuration 

helps  



Always pick the shortest 
path to Customer Value



@Randommood

Mind unknown constraints
You’re charting new territories 

❖ Compliance & Governance 
❖ Staffing & Cost 
❖ Organizational changes 
❖ Unknown dependency limits  
❖ Regulatory changes



@Randommood

ARCHITECTURE SCALE EVOLUTION

tl;dr

All architecture is 
contextual 
It reflects history 
& evolution of 
people, 
organizations, 
needs, and 
constraints

Scale / hyperscale 
means growth! 

Nothing is 
infinitely scalable 

The only control 
you have is how 
you deal with it 
w/o making too 
many mistakes

Best approach is 
iterative 

Shortest path to 
customer value is 
ideal 

Constraints 
frame your 
scaling approach



Thank you
Photo: Jeff Katz

github.com/Randommood/SignOtheTimes


