! §ign 0’ The Times

[terative system evolution at hyperscale

@Randommood

s’
-

b

g

m Ines

@randommood

What Is Fastly?

% O
) O o
e® o0
® . o9 ¥
® 0 .
[&
€
® o
.
o

Single POP
Multiple POPs
Planned new POP

Planned upgrade

o

IS Gonna Be A Beautiiul Night

General Disclaimer

Most advice Is contextual:
mMileage will vary

Approaches & patterns
observed and tried
throughout the years

Reflective of where | am In
my own career & evolution

’ The Times

ystem Architecture

n

yystem Architecture

A System’s shape or structure

* Language

* Abstractions

* |nterfaces

+ Operabllity & lImits

+ Singleton vs multi-node

+ Stateful vs stateless

* Monolith vs service-oriented

+* Relationship to Its dependencies

A sigh and a point In fime

System architecture reflects the history and
evolution of its

+ People - designers, engineers, managers &
+ Organizations - leaders, team structure,

team focus (full stack, specialized, product-
focused)

“ ANnd thelr needs & constraints

yystem architecture IS

Balancing Needs & Limitations

REQUIREMENTS CONSTRAINTS

Availability Time

Performance Cost

Scale Team staffing

Cost Organizational structure

Compliance requirements

__

We make choices

They encode & frame a system's adaptability

*|f we are right we can support 1-2 orders of
magnitude growth without changes

*|f growth Is sustained it will stress our
systems

*How this stress will manifest is architecture
dependent and may be hard to predict

MACHENSIR AT NN

e e A A b e

SR SSOLOMNERARD © BRI AL S

"\ KD D

oo ST D s e a S e R R

IR TRA AID 7

N AR

SEORTATEE L S LR e

®
-
2
3
i
-

Growth & Scale

An arguably good problem to have

+Your architecture will determine where and
NOW your system behaves under load (resource
starvation, degraded performance, plain
process death)

+This can be difficult to reason about or predict

Growth & Scale

* Sustalined load also iImpacts a system'’s
environment, needs, and constraints

* Architectural changes are even more
burdensome for hyperscale systems - lower
tolerances for errors & performance
regressions

*Your edge cases change too!

1WO0 kExamples

Maintenance and evolution of two critical
data pipelines

+ Logging pipeline

+ Metrics pipeline

+ Different architectures, teams, needs,
constraints, and compliance scopes

“ Both have large sustained YoY growth

Lo2gIng Architecture

/—
@ @'

@ mpp——
—

b|gq uery

@

sssssssssssss

Architecture: Logging

+~ Best Effort - we try our best to send logs to your
defined endpoint

+ Horizontally scalable - more aggregators, more work
+ Stateless - we have minimal buffering
<+ Distributed - send to whomever is available

* Pipeline optimized for log streaming speead

Growth: Logging (2014-2015)

~430K LPS ~1.2K endpoints ~ 2GB/s

500 k T
450 k
400 k
350 k
300 k-
250 k-
200 k
150 k

100 k

@Randommood

Growth: Logging (2017-2018)

3.4
3.2
3.0
2.8
2.6
2.4
2.2

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

(@Randommood

~35M LPS ~8.6K endpoints ~4G

’

~ 4
" |

-

VIR TA W A -‘-lzlr.\f.!.'n n'

-
E
-
-
—
“

r—
—
—_
..

TR

LA :

.
-
-

. |-|..{‘...‘.

Growth: Logging (2017-2018)

DS ~8.0K endpoints ~4G

3.4
3.2
3.0
2.8
2.6
2.4
2.2

2.0
1.8
1.6
1.4
1.2
1.0
0.8

0.6
0.4
0.2
0.0

(@Randommood

~5M L

’

:
-
-
.
.
-

"o.t.o
“
.

- -

". "

.

ol
»

Ay

.

lr...‘N".‘

o
]
"+

Growth: Logging (2021)

~18M LPS ~60.K endpoints ~19.5 GB/s

=

Growth: Endpoints (2018-2021)

2021-11-29 11:01:00

- g3: 8.34 GB/s
2018-05-14 09:16:49 gcs: 4.54 GB/s

s3; 1.817 GBps - syslog: 1.90 GB/s
== gCS: 1.027 GBps

sumologic: 374 MBps = https: 901 MB/s

syslog: 302 MBps = bigquery: 887 MB/s
— bigquery: 3/ MBps - azureblob: 696 MB/s
- ftp: 13 MBps .

s3_canary: 7 MBps newrelic: 690 MB/s

logshuttle: 2 MBps = splunk: 606 MB/s

= sumologic: 419 MB/s

= http: 558 kBps
- sftp: 74 kBps
openstack: 13 kBps - datadoqg: 174 MB/s

pubsub: 0 Bps elasticsearch: 74.9 MB/s

kafka: 55.2 MB/s
logentries: 37.6 MB/s
kinesis: 28.3 MB/s
= pubsub: 26.8 MB/s
= sftp: 22.5 MB/s

Challenges oI Log2ing al Scale

+No hard limits to what you can log - this can be
challenging

+ System is multi-tenant - noisy neighbors can affect
dellvery

*Language Introduction in the ecosystem complicates
user experience (Varnish vs Rust)

+ Connectivity iIs critical - can't ship where we can't

reach

Challenges oI Log2ing al Scale

+ Difficult to infer If an endpoint is working or not
(Hard to test setup too)

+ Classic integrations challenges - each endpointis a
Murky downstream dependency

* Evolving our clients Is challenging & takes time too
- example: new region support, 2018 ~20K LP/s BQ
[IMIits

Evolution of Logging

VWhat we are currently working on

+ Per endpoint metric emission to facilitate debugging

+ Decoupling intent from log line structure for better
user experience & language support

* Dynamic cache-side configurations for ease of
operability
* Aggregator affinity & regionality efficiencies

Melrics Architecture

Architecture: Merrics

Another critical pipeline

» Guarantees needed - metrics == observability + $$$
+ Mixed-scaling - multiple independent regions pattern
+ Stateful - storage, aggregation, archival, presentation

+ Replicated & verified - needs continuous data
verification processes

* Plpeline optimized for metric aggregation & availability

Growth: Meirics

What drives this pipeline's growth?

+ New emitter types - 1 msg/sec each * number nodes
* New streams types - Varnish, C@QE, more!

+ Network growth - New POPs & caches

+ New metrics - 200 and counting (we started w/
around 40)

Growth: Metrics (2020-2021)

Metrics pipeline has grown ~6x YoY

+Message count - 3k msg/sec > 15k msgs/sec
+Message size - 150 MiB/sec > 900 MiB/sec
+ Emitter growth - ~4 new emitter types

+ Storage growth - way more, just trust me~

Challenges ol Melrics at Scale

* Coupling of billing & observability metrics - pipeline
lIkely needs folding Into two

+ Connectivity Is critical - can’t observe or monetize
what we don't have

* Legacy serialization formats take time to replace

+ Retention & presentation - APls needed evolving to
adjust for larger data volumes

Evolution of Melrics

What we are currently working on

*We evolved our retention policies to reduce cost
+ Reworked & lowered emitter cost to bolster growth

+ Gave up on pipeline unification - unify emitters & APIs
INnstead

*Moving aggregation closer to emission to reduce
bandwidth

+ ABS (Always be Scaling)

Iniinity I

Know your Iimits

Important things to be aware of

+ Scaling limits - Are we aware of what they are?
+ Qperational ergonomics - Do they set us up for errors?

+ Teams & Organization - How much work can we do? Do
we have organizational alignment?

+ Cost & budget - Can you trade money for speed?

+ Dependency relationships - who needs priority? Can you
degrade or prioritize specific workloads?

Hyperscale changes things

Your perspective will evolve, get comfortable with
1

+ A shortened time to rewrite - yesterday’'s peak is
today's baseline

+ New operational needs - load shedding, failover,
unified ergonomics, more consistency

+ Thinking about your emitters - paved roads,
organizational processes tor workload onboarding

+ Knowing you'’ll never be done

Photo: Jeff KatA

e

When?

Evolution Is unavoidable when you start facing

+ Avallability issues
+ Performance regressions

+Scalability limitations - of your system or its
dependencies

+ Slower growth / evolution - of your system
components, dependencies, team, or company

constraints Irame

HOW?

Things that help you when re-architecting

* Foundational components, pipelines, systems
* Fewer dependencies

+ Flexibllity over scope & error tolerance

+ Degraded modes of operation

* Flexiblility over client behavior

HOW?

Helpful to rethink your approach to your system,
people, team Interactions, needs, & constraints

* Means setting up and supporting decoupling
mechanisms between orgs

* Encouraging iterative improvements

+ Paying for performance and cost increases with
other Improvements

Where?

You have choices here too!

* Emitter tier

* Transport tier
* Processing tier
+* Storage tler

“ Presentation tier

+Team / Org processes

@Randommoo d

* Forever In My Life

Reflections & Takeaways

Design your evolutionary eature-set

Best approaches for a re-architecture are iterative

+ Stalling during rapid growth Is very hard and
expensive

+ Do you really have to do the whole thing at once?

“ Can new features be used to validate abstractions?

*What architectural levels are in your control? %

Ergonomics of evolution

& +Always worth trying to evolve things in place

4 + Get comfortable with diversity - homogeneity
Mmakes evolution harder
+ Mixed mode as common - new things should
oe backwards compatible
L + Flexibility & control over your configuration

nelps

Always pick the shortest
path (0

Mind unknown constraints

You're charting new territories

+ Compliance & Governance
+Staffing & Cost
+Qrganizational changes

+ Unknown dependency limits

* Reqgulatory changes

t:dr

ARCHITECTURE

EVOLUTION

All architecture Is Scale / hyperscale Best approach 1s
contextual means growth! Iterative
't reflects history Nothing is Shortest path to
& evolution of iNnfinitely scalable custormer value is
people, ~ The only control ideal
organizations, ~ you haveishow |

o Constraints
needs, anc - you deal with it fea oLy
constraints w/o making too Y

. ia r N
many mistakes >Caling approdac

O O O O e e e e o e — o o — e =

e e T e e =

YA

)
@

4=
)
-
Q
)
©
By
[

