Not Your Grandma’s

Distributed Programming
Heather Miller

Carnegie
Mellon
University

Everything is now distributed.

Maybe you don't think about it that way, but if you
are making requests to external APIs, you are
working with a distributed system.

If you make an HTTP request
somewhere, you're writing a
distributed program.

Therefore, you might do a lot of
distributed programming,

even if you don't think of yourself as a hardcore
distributed systems engineer.

what are things you
need to think about
when you are building
a distributed system?

e Concurrency e Partial Failure

Concurrent processes need to work the unavailability of one or more
together in order to achieve the dependent
goals of the system they comprise. systems/services/processes can
render an entire application
unusable.
A concurrent system may be: l
an operating sy.stém, _ Partial failures are difficult to deal
- a subsystem within an operating with. Fundamentally, this is because
system, or systems/services/processes may S m
- an application-level service running be uncertain about the state of o e
above an operating system. failed ones. Operational ones may
become blocked, unable to
complete their task, until this Answe rs
In all cases, a concurrent system uncertainty is resolved.

may be distributed across a

number of computers rather than

centralized in a single computer. (in contrast, a total failure is when all
systems/services/process are down.)

a quick aside on
concurrency

a quick aside on
partial failure

than objects. Most programmers use pointers as references
for many different kinds of entities. These pointers must
either be replaced with something that can be used in
cross-address space calls or the programmer will need to
be aware of the difference between such calls (which will
either not allow pointers to such entities, or do something
special with those pointers) and local calls. Again, while
this could be done, it does violate the doctrine of complete
unity between local and remote calls. Because of memory
access constraints, the two have to differ.

The danger lies in promoting the myth that “remote access
and local access are exactly the same” and not enforcing
the myth. An underlying mechanism that does not unify all
memory accesses while still promoting this myth is both
misleading and prone to etror. Programmers buying into
the myth may believe that they do not have to change the
way they think about programming. The programmer is
therefore quite likely to make the mistake of using a
pointer in the wrong context, producing incorrect results.
“Remote is just like local,” such programmers think, “so
we have just one unified programming model.” Seemingly,
programmers need not change their style of programming,.
In an incomplete implementation of the underlying mech-
anism, or one that allows an implementation language that
in turn allows direct access to local memory, the system
does not take care of all memory accesses, and errors are
bound to occur. These errors occur because the program-
mer is not aware of the difference between local and
remote access and what is actually happening “under the
covers.”

The alternative is to explain the difference between local
and remote access, making the programmer aware that
remote address space access is very different from local
access. Even if some of the pain is taken away by using an
interface definition language like that specified in [1] and
having it generate an intelligent language mapping for
operation invocation on distributed objects, the program-
mer aware of the difference will not make the mistake of
using pointers for cross-address space access. The pro-
grammer will know it is incorrect. By not masking the dif-
ference, the programmer is able to learn when to use one
method of access and when to use the other.

Just as with latency, it is logically possible that the differ-
ence between local and remote memory access could be
completely papered over and a single model of both pre-
sented to the programmer. When we turn to the problems

introduced to distributed computing by partial failure and
concurrency, however, it is not clear that such a unification
is even conceptually possible.

4.3 Partial failure and concurrency

‘While unlikely, it is at least logically possible that the dif-
ferences in latency and memory access between local
computing and distributed computing could be masked. It
is not clear that such a masking could be done in such a
way that the local computing paradigm could be used to
produce distributed applications, but it might still be possi-
ble to allow some new programming technique to be used
for both activities. Such a masking does not even seem to
be logically possible, however, in the case of partial failure
and concurrency. These aspects appear to be different in
kind in the case of distributed and local computing.2

Partial failure is a central reality of distributed computing.
Both the local and the distributed world contain compo-
nents that are subject to periodic failure. In the case of
local computing, such failures are either total, affecting all
of the entities that are working together in an application,
or detectable by some central resource allocator (such as
the operating system on the local machine).

This is not the case in distributed computing, where one
component (machine, network link) can fail while the oth-
ers continue. Not only is the failure of the distributed com-
ponents independent, but there is no common agent that is
able to determine what component has failed and inform
the other components of that failure, no global state that
canbe examined that allows determination of exactly what
error has occurred. In a distributed system, the failure of a
network link is indistinguishable from the failure of a pro-
cessor on the other side of that link.

These sorts of failures are not the same as mere exception
raising or the inability to complete a task, which can occur
in the case of local computing. This type of failure is
caused when a machine crashes during the execution of an
object invocation or a network link goes down, occur-
rences that cause the target object to simply disappear
rather than return control to the caller. A central problem
in distributed computing is insuring that the state of the

2. In fact, authors such as Schroeder [12] and Hadzilacos and
Toueg [13] take partial failure and concurrency to be the defining
problems of distributed computing.

WALDO ET AL, 1994

Note on Distributed
Computing

Partial failure is described nicely in Waldo et al's
1994 paper...

In particular, it contrasts what partial failure
means in a single-machine versus distributed
scenario.

whole system is consistent after such a failure; this is a
problem that simply does not occur in local computing.

The reality of partial failure has a profound effect on how
one designs interfaces and on the semantics of the opera-
tions in an interface. Partial failure requires that programs
deal with indeterminacy. When a local component fails, it
is possible to know the state of the system that caused the
failure and the state of the system after the failure. No such
determination can be made in the case of a distributed sys-
tem. Instead, the interfaces that are used for the communi-
cation must be designed in such a way that it is possible
for the objects to react in a consi ‘way to possible par-
tial failures.

Being robust in the face of partial failure requires some
expression at the interface level. Merely improving the
implementation of one component is not sufficient. The
interfaces that connect the components must be able to
state whenever possible the cause of failure, and there
must be interfaces that allow reconstruction of a reason-
able state when failure occurs and the cause cannot be
determined.

If an object is coresident in an address space with its
caller, partial failure is not possible. A function may not
complete normally, but it always completes. There is no
indeterminism about how much of the computation com-
pleted. Partial completion can occur only as a result of cir-
cumstances that will cause the other components to fail.

The addition of partial failure as a possibility in the case of
distributed computing does not mean that a single object
model cannot be used for both distributed computing and
local computing. The question is not “can you make
remote method invocation look like local method invoca-
tion?” but rather “what is the price of making remote
method invocation identical to local method invocation?”
One of two paths must be chosen if one is going to have a
unified model.

The first path is to treat all objects as if they were local and
design all interfaces as if the objects calling them, and
being called by them, were local. The result of choosing
this path is that the resulting model, when used to produce
distributed systems, is essentially indeterministic in the
face of partial failure and consequently fragile and non-
robust. This path essentially requires ignoring the extra
failure modes of distributed computing. Since one can’t

get rid of those failures, the price of adopting the model is
to require that such failures are unhandled and cata-
strophic.

The other path is to design all interfaces as if they were
remote. That is, the semantics and operations are all
designed to be deterministic in the face of failure, both
total and partial. However, this introduces unnecessary
guarantees and semantics for objects that are never
intended to be used remotely. Like the approach to mem-
ory access that attempts to require that all access is
through system-defined references instead of pointers, this
approach must also either rely on the discipline of the pro-
grammers using the system or change the implementation
language so that all of the forms of distributed indetermi-
nacy are forced to be dealt with on all object invocations.

This approach would also defeat the overall purpose of
unifying the object models. The real reason for attempting
such a unification is to make distributed computing more
like local computing and thus make distributed computing
casier. This second approach to unifying the models makes
local computing as complex as distributed computing.
Rather than encouraging the production of distributed
applications, such a model will discourage its own adop-
tion by making all object-based computing more difficult.

Similar arguments hold for concurrency. Distributed
objects by their nature must handle concurrent method
invocations. The same dichotomy applies if one insists on
a unified programming model. Either all objects must bear
the weight of concurrency semantics, or all objects must
ignore the problem and hope for the best when distributed.
Again, this is an interface issue and not solely an imple-
mentation issue, since dealing with concurrency can take
place only by passing information from one object to
another through the agency of the interface. So either the
overall programming model must ignore significant modes
of failure, resulting in a fragile system; or the overall pro-
gramming model must assume a worst-case complexity
model for all objects within a program, making the pro-
duction of any program, distributed or not, more difficult.

One might argue that a multi-threaded application needs to
deal with these same issues. However, there is a subtle dif-
ference. In a multi-threaded application, there is no real

source of indeterminacy of invocations of operations. The
application programmer has complete control over invoca-
tion order when desired. A distributed system by its nature

WALDO ET AL, 1994

Note on Distributed
Computing

Partial failure is described nicely in Waldo et al's
1994 paper...

In particular, it contrasts what partial failure
means in a single-machine versus distributed
scenario.

e Concurrency e Partial Failure

Concurrent processes need to work the unavailability of one or more
together in order to achieve the dependent
goals of the system they comprise. systems/services/processes can
render an entire application
unusable.
A concurrent system may be: l
an operating sy.stém, _ Partial failures are difficult to deal
- a subsystem within an operating with. Fundamentally, this is because
system, or systems/services/processes may S m
- an application-level service running be uncertain about the state of o e
above an operating system. failed ones. Operational ones may
become blocked, unable to
complete their task, until this Answe rs
In all cases, a concurrent system uncertainty is resolved.

may be distributed across a

number of computers rather than

centralized in a single computer. (in contrast, a total failure is when all
systems/services/process are down.)

when you sit down to debug
your request, are you typically

worrying about concurrency
and partial failure?

(it's okay, you shouldn't have to.)

What are examples of distributed
programming people do every day?

Microservices

Microservices are teams of people organized around a component
with a singular responsibility. That team of people write that
component in whatever language they want and publish an
internal API for it for teams of others in the org to make requests
to in their own components.

OpenAPlIs

Think about frontend development. Many frontend developers are
given API endpoints and instructed to pull from them and create
an interactive UX. What's more, Uls tend to be extremely complex
state machines integrating stateful actions from user interaction.
Frontend developers are doing distributed programming with the
human-in-the-loop.

Lots of stuff that's ...aS

Lots of “as-a-service” companies offer APIs that do some kind of
work for you. For example, you might send an image and get back
textual annotations of what might be contained in the image.
What happens if that API that you're using changes, changes
behavior, is shut down, etc?

d OFEM EMMTORE 1 UNSavED
5 utils. s
K5 index
® 5 blog-post.ps

i GATSBY-GRAPHOL-APP

W @ < D Do

4 OUTLIHE

e

Fmaster* S041t @O KD

15 15

TERKINA

5 bh

jterarmat

ehieg
b
erndalIR T

eepdeURTCempar

— a f |
3 (e deta tS5tatu
Juk] i

L] O LEEF LEKE

Remember when you
just needed Java, a good
IDE, and some tests?

Thesis
argument
for this
entire
talk...

These are things that our tools and
frameworks should help us with.

).\

Better Tooling

e Where are our debuggers, autocomplete,
and testing frameworks for these things!?

Better Abstractions

e Abstractions should always make the
Correct Thing(TM) the path of least
resistance.

o The programming abstraction that you
are using should guide you to do the
right thing, whatever that is, without
adding extra complexity to your
business logic.

The Future of Distributed Programming Needs
Better....

.ﬁnnnmw“—'

Find errors before you ship.

See your whole application.

Things we have in a “regular” single-machine
programming environment that we should have in this
brave new world of distribution everywhere...

See new functionality.

Debug with a debugger.

Distributed Analogues to:
Testing, Debugging, “Autocomplete”

So how close are we to having this development experience? What kind of approaches
are out there that can take us a step closer to this vision?

™

Testing

Tools like Filibuster.
Figure out how your
program behaves
when other programs
that it calls
misbehave. Do you
crash completely?
What fallback
behaviors are in
place? Do those
fallback behaviors
even work?

A

Debugging

Someone please

invent one! Right now,

there are disparate
services that together
could be used to
debug... For example,
Lightstep for
distributed tracing
(kind of like having a
stack? Sort of?)

“Autocomplete”

Tools like Akita. A tool
should keep track of
what other “functions”
(yes, yes, APIs) exist
that are available to
you. Also, do they
change?

%
\

{1}

Filibuster

FILIBUSTER Testing for applications that are distributed. (e.g., microservices.)

P

Chris Meiklejohn,
CMU

Service-level Fault Injection Testing is a technique for
identifying issues between distributed components,
during development, before code ships to production.

Filibuster has been designed to be easy to use,
lightweight, and able to be integrated into a continuous
integration environment, like GitHub Actions or
Amazon’s CodeBuild CI/CD environment.

Basic idea:

Automatically generate mocks at points when remote
calls are made.

Assuming that we already have functional tests, we
know how the software is supposed to behave.

Chris of Filibuster
working on a Java application, check it out!

ACM SoCC'21 ()

Service-Level Fault Injection Testing

Christopher S. Meiklejohn Andrea Estrada Yiwen Song

Carnegie Mellon University
Pittsburgh, PA, United States
cmeiklej@cs.cmu.edu

Heather Miller
Carnegie Mellon University
Pittsburgh, PA, United States
heather.miller@cs.cmu.edu

Abstract

Companies today increasingly rely on microservice architec-
tures to deliver service for their large-scale mobile or web
applications. However, not all developers working on these
applications are distributed systems engineers and there-
fore do not anticipate partial failure: where one or more of
the dependencies of their service might be unavailable once
deployed into production. Therefore, it is paramount that
these issues be raised early and often, ideally in a testing
environment or before the code ships to production.

In this paper, we present an approach called service-level
fault injection testing and a prototype implementation called
FILIBUSTER, that can be used to systematically identify re-
silience issues early in the development of microservice ap-
plications. FILIBUSTER combines static analysis and concolic-
style execution with a novel dynamic reduction algorithm
to extend existing functional test suites to cover failure sce-
narios with minimal developer effort. To demonstrate the
applicability of our tool, we present a corpus of 4 real-world
industrial microservice applications containing bugs. These
applications and bugs are taken from publicly available in-
formation of chaos engineering experiments run by large
companies in production. We then demonstrate how all of
these chaos experiments could have been run during devel-
opment instead, and the bugs they discovered detected long
before they ended up in production.

CCS Concepts: » Computer systems organization — Re-
liability.

Keywords: fault tolerance, fault injection, verification

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or ial ad ge and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SoCC 21, November 1-4, 2021, Seattle, WA, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8638-8/21/11.

Carnegie Mellon University
Pittsburgh, PA, United States
arestrad@andrew.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, United States
yiwenson@andrew.cmu.edu

Rohan Padhye
Carnegie Mellon University
Pittsburgh, PA, United States
rohanpadhye@cmu.edu

ACM Reference Format:

Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather
Miller, and Rohan Padhye. 2021. Service-Level Fault Injection Test-
ing. In ACM Symposium on Cloud Computing (SoCC ’21), November
1-4, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3472883.3487005

1 Introduction

Nowadays, large-scale web applications with significant user
bases are typically built using a microservice architecture.
All companies listed in the Fortune 50 are either hiring for, or
have publicly discussed, their use of a microservice architec-
ture to deliver service to their users. The recent popularity
of microservice architectures is a direct result of the benefits
that this architectural style brings to the organizations that
adopt it-smaller teams can focus on individual services writ-
ten in the best programming language to solve their problem,
and are thus able to more rapidly deliver software at scale.
However, while microservice architectures help reduce the
burden of coordinating changes between teams to the same
application, they are known to increase software complexity.

The harsh reality of microservices is that they suddenly
force every developer to become a cloud/distributed systems
engineer, dealing with the complexity that is inherent in
distributed systems [38]. Specifically, partial failure, where
the unavailability of one or more services can adversely
impact the system in unknown ways.

This paper presents the service-level fault injection test-
ing (SFIT) technique, as well as FILIBUSTER, a corresponding
tool for automatically testing microservice applications for
resilience issues related to partial failure. FILIBUSTER can
extend an existing functional test suite to cover failure sce-
narios automatically.

To demonstrate the additional complexity a developer
faces when moving from a monolithic architecture to a mi-
croservice architecture, consider an application that lets you
stream audiobooks. One decomposition [43] of this appli-
cation into components could look like the following, with
one component for each user functionality; storage of audio
files, storage of audiobook metadata, storage of user per-

https://christophermeiklejohn.com/publications/filibuster-socc-2021.pdf
http://filibuster.cloud/
http://filibuster.cloud/
http://filibuster.cloud/
https://www.youtube.com/watch?v=BhZLHpxQ7mI
https://www.youtube.com/watch?v=BhZLHpxQ7mI
https://www.youtube.com/watch?v=BhZLHpxQ7mI
https://www.youtube.com/watch?v=BhZLHpxQ7mI
https://www.youtube.com/watch?v=BhZLHpxQ7mI

Lightstep

Distributed tracing. Basically, as close as we can get to a stack in a distributed world.

@ Lightstep

from ServiceNow

Span Details X
Trace Assembled o ——————————————————
6 spans e Service
— Critical path —aa krakend-api-gateway-server
Duration (ms) 0 30 Operation
: lapilget-pr%&le Query

° /api/get-profile auth-server

|
105ms T, \-atency Contribution
N . . 15.8ms
° /api/get-profile krakend-api-gateway-server 15.0%
83.2ms S
° /api/get-profile krakend-api-gateway: auth client Logs Tags Details Workflow Links
51.5ms e
°/api/get-proﬂle auth server 9us

20.7ms user ID 'nzvlvev2k5avi43m' is authorized

. [api[get-profile auth: mysq| client for resource ID ‘wenyfw3jtle7sptz’

|

6.94ms
5us
°/apilget-profile krakend-api-gateway client user ID 'nzvlvev2k5avi43m' is authorized
31.7ms

for resource ID 'wcnyfw3jtle7sptz’

/api/get-profile profile server
1618

Kind of the beginnings of a debugger, if you consider distributed traces to be something of a stack

https://lightstep.com/distributed-tracing
https://lightstep.com/distributed-tracing
https://lightstep.com/distributed-tracing

Honeycomb

Query all of the info you're collecting, including logs and traces, and try to answer
higher-level insights about what's going on between pieces of your application.

honeycomMb.io

Microservices Latency

Configure Alerts Delete

@ Michael Sickles created Jun 22, 2021

99% of eligible events from the @ microservices-demo column Exhausiion time Status
s1i_duration will succeed over a period of 7 days. 4hours @ Normal Dimensions
24 hours @ Normal Tryto (3 GRoUPBY columns that look most different between the B successful and 1 failed Showing 1-15 of 40
Budget Burndown Historical SLO Compliance [«] http.target (o] http.method (] userid v
How much of the error budget remains after the last 7 days. Starts at 100% and burns For each day of the past 7, how often this SLI has sucg

down

foart oo/ feart. fser msd GET PosT

num_products b] net.host. name v http.user_ag.. (]

s frantend prtonrequests. EL6 Healthchec frontend 10021 10011 10031
Make Default Lot 2 hours &) net.peer.ip [«] (&) http.status_.. [¢] http. flavor [¢] &) http. scheme [+]
1002 1002 1001 1003 check 200 0 £ 1 ™
http.server_.. [+] net.transport o] (=) Library.name [e]

frontans P [r—— 5o opentelemetr

Measures

Tryasking 57 WHERE the @ successful and W failed are most different Showing 1-2 of 2
() duration_ms (] (i) cart_total 0

Kind of like a super smart dashboard over logging (and tracing!). Also sort of the beginning of a debugger!

https://www.honeycomb.io/product-overview/

Always be up-to-date on APIs. Find out when breaking changes are made to APIs.

Akrta

[T —

< C @ appstagingakitasoftware/servic

akita-prod

. 1054 77
Al Services
Dashboard
() werseecs & reces © wsins
New Service
Services Awspes CONTINUOUS INTEGRATION ~ STAGING/PRODUCTION
Filters
Integrations
x-akita-created-by -
Settings
Name Start Time End Time Deployment
nard-crow-ObfEcgeb 71212021, 70000 AM 713/2021, 700:00 A production
71212021, 100:00AM 713/2021, 10000 AM production
7M/2021,70000PM 712/2021, 700:00PM production
712021, 10000PM 7112/2021,100:00PM production
oney-serpent-0009108; 712021, 70000 AM 7/12/2021,70000 AM production
712021, 100:00AM 7/12/2021,100:00 AM production

ungle-hoof-c718a90: 71012021, 7:00:00 PM

7112021, 7:00:00 PM

production

State

DONE
DONE
DoNE
DoNE
DoNE
DoNE

DONE

21191815

Endpoints

144309 / 158689

173942

137374 / 164244

143966 /187259

149708 /195953

151934 /196267

152985

Version

@ Lo X MeRGE - oFF

Events

Kind of the beginnings of something like autocomplete :D

~

shore-centaur-2b9e3ac3

Breaking Changes

Formats

BREAKING

-}

OPERATION

GET

QO breaking changes

O backwards-compatible changes

O new endpoints or fields with sensitive data formats

ENDPOINT

/api /users

Locations

r\

DIFFERENCE

cancen

O

FIELDS

DATA FORMATS

2

Diff Kinds

Targets

juniper-drifter-774a4ds2

SENSITIVE DATA FORMATS

https://www.akitasoftware.com/blog-posts/towards-one-click-observability-with-api-models

The Future of Distributed Programming Needs Better....

Abstractions

shared nothing architecture. Of course, latency has been addressed a little bit by
being able to replicate data. You can reduce that delta a little bit, but of course, not a
totally solved problem. Partial failures is the thing we're going to dig into the most
throughout. According to Martin Kleppmann, | think a good summary of these
challenges is modern distributed systems look like this. You have a lot of different
machines. They're running different processes. They only have message parsing via
unreliable networks with variable delays, and the system may suffer from a host of
partial failures, unreliable clocks, and process pauses.

Distributed computing is really hard to reason about. We've known this since the
early '90s. We've probably always known this. This was on the radar of people
building computer based systems in the '90s, a different group of people at Sun
Microsystems came up with. Originally, it was seven, but number eight was added by
the Java guy, James Gosling later on, but eight fallacies of distributed computing. We
know today that networks are not reliable. We know today that latency is not zero.
That bandwidth is not infinite, of course. That the network cannot be assumed to be
secure. That topology should be assumed. We should assume that that will change.

il

IN SCHOOL...

in Distributed Systems

..we are led to believe that the way one must
reason in a distributed system is to focus on
different processes on different machines, with
message-passing as the main modality for
making things interact.

Sure, somebody should think at that level (e.g., if
you're maintaining Zookeeper). But not everyone
should be forced to reason about all of this.

Especially not when almost all programming has
become distributed programming.

Data-centric abstractions

In many cases, we simply want to interact with a piece of data elsewhere. And the tools
that we're given to do this is either message-passing or request-response.

This is too low-level.

Instead, why can't most end-users use data structures with
built-in replication & (strong) eventual consistency?

That is, the distributed systems expert figures out how to implement some

provable semantics (e.g., strong eventual consistency), and we wrap those
up under a declarative abstraction.

Most importantly, the abstraction should be general and composable!

Enter: Collaborative Data Structures

Collabs are a composable abstraction backed by CRDTs at their core.

CRDTs alone cannot be combined like normal data structures.

"Eventual con-mystery”: Concurrent operations combined somehow, but might not be

reasonable.
Collabs take care of this problem. You can define Carrlt
Collabs containing other Collabs and their o+ ytext.insert(4,"o");
operations will correctly compose in the face of Carrolt
concurrency and distribution.
(;Fj / \
A 2 £ Carrlt Carrlt
Matthew Weidner, Carm|t Carro|t

CMU

https://collabs.readthedocs.io/en/latest/

@collabs/collabs

0.6.0 = Public ¢ Published 13 days ago

B Readme B Explore & 3 Dependencies

Collabs

A collections library for collaborative data structures
https://www.npmjs.com/package/@collabs/collabs

Collabs is a library for building and using collaborative data structures. These are data structures
that look like Set, Map, Array , etc., except they are synchronized between multiple users:
when one user changes a collaborative data structure, their changes show up for every other
user. You can use them to quickly build collaborative apps along the lines of Google

Docs/Sheets/Slides, shared whiteboards, etc.
Quick Start

Live demos (source)

Getting Started Guide

Principles

Local-first: Each user always keeps a full copy of the state on their own device and sees their own changes
immediately, even when offline. They can then sync up with other users in the background. All users see the
same state once they sync up, even if they made simultaneous changes (e.g., two users typing at once).

Network-agnostic: collabs generates messages that you must eventually broadcast to all users, but

how is completely up to you and your users: your own server, WebRTC, encrypted Matrix room, etc.

Flexible and extensible: At its core, collabs isa library forcollaborative data structures, not just a
library ofthem (although we provide plenty of those too). So if our data types don't meet your needs, you
can create your own or get them from third-party libraries.

Composable: In particular, we provide techniques to create new types by composing existing ones.
Correctness properties compose too!

Keep your data model and type safety: A core feature of Collabs is that you can organize your collaborative
state using reusable, strongly-typed classes. In particular, you can make a single-user app collaborative
while preserving its data model and type safety, by directly replacing its frontend data types with
collaborative versions.

Demos!

https://compoventuals-tests.herokuapp.com/

For example, try the collaborative whiteboard app.

lear

https://compoventuals-tests.herokuapp.com/
https://compoventuals-tests.herokuapp.com/
https://compoventuals-tests.herokuapp.com/
https://compoventuals-tests.herokuapp.com/
https://compoventuals-tests.herokuapp.com/
https://compoventuals-tests.herokuapp.com/
https://compoventuals-tests.herokuapp.com/

What a Collabs app looks like

class SlideElementCRDT extends CRDTObject { class MovableListEntry<C> extends CRDTObject {

left: LWWRegister<number>; value: C;

top: LWWRegister<number>; positionReg: LWWRegister<ImmutablePosition>;

width: LWWRegister<number>; }

height: LWWRegister<number>;

// Rotation, borders, ... class MovableListOfCRDTs<C> extends CRDTObject
} {

state: UniqueSetOfCRDTs<MovableListEntry<C>>;

class TextBoxCRDT extends SlideElementCRDT { }

text: TextCRDT;
} appState: MovableListOfCRDTs<S1lideCRDT>;

// Other slide elements...

class S1ideCRDT extends CRDTObject {
elements: UniqueSetOfCRDTs<SlideElementCRDT>;
bgColor: LWWRegister<string>;

}

No message passing! You program with Collabs like regular data structures!

’

Collabs/CRDTs aren't everything,

But they're one example of turning how you think about building a distributed
application completely upside-down. We need more of these.

Looking forward from here...

The experience of developing an application that makes calls over the
network needs to improve. (And it is. Just piecemeal.)

If you're responsible for an engineering org, then at first it will look like a slew
of random open-source tools and startups “coming to the rescue” with a new
tool or technique that they promise will help with the complexity of
microservices/etc.

Key piece of advice: be open to this stuff.

| think, realistically, these disparate pieces will come together in some way. At
minimum, build/configuration (pulling all of these pieces together) will
become easier. Surely though, there will be effort to pull many of these goals
under the umbrella of a single platform or tool.

But the main thing to remember is we are moving towards a better
development experience, and the component pieces are being fervently
developed by individuals, companies, and groups of researchers worldwide.

People/Projects to watch

®®M. Christopher
Meiklejohn
CMU/DoorDash
. Ink & Switch
Al Ink & Switch)
~ Industrial

research lab

’,,_, 5‘) Matthew
% - Weidner

P ?A CMU

Akita Akita

Startup

Geoffrey Litt
MIT

Martin
Kleppmann

University of
Cambridge

Unison

Distributed
programming
language

Peter van
Hardenberg

Ink & Switch

http://christophermeiklejohn.com/
http://christophermeiklejohn.com/
http://christophermeiklejohn.com/
https://mattweidner.com/
https://mattweidner.com/
https://mattweidner.com/
https://www.geoffreylitt.com/
https://www.geoffreylitt.com/
https://www.geoffreylitt.com/
https://unison-lang.org/
https://inkandswitch.com/
https://inkandswitch.com/
https://inkandswitch.com/
https://inkandswitch.com/
https://inkandswitch.com/
https://www.akitasoftware.com/
https://martin.kleppmann.com/
https://martin.kleppmann.com/
https://martin.kleppmann.com/
https://www.pvh.ca/
https://www.pvh.ca/
https://www.pvh.ca/
https://www.pvh.ca/
https://www.pvh.ca/

Questions?

Thank you!
@heathercmiller

https://twitter.com/heathercmiller
https://twitter.com/heathercmiller

