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This talk

Improving implementations of elliptic curves in Rust

1. A quick background on curves and pairings
2. Faster algorithms for constant-time scalar multiplication
3. Some experimental results and comparison to C
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Background and definitions



Background

Cryptography
Practice and study of techniques for secure communication in the
presence of adversaries.

Security goals: confidentiality, origin authentication, data integrity,
non-repudiation.

Cryptography is everywhere. Modern banking, e-commerce,
multimedia, voting and messaging systems all use cryptography.
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Motivation

Figure 1: The lifetime of an application of cryptography:
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Groups

Definition
A group G is a set equipped with a binary operation with the
following properties: closure, identity, inverse, associativity.

When G is a finite group, we denote the number of elements the
order of G. A group is said to be abelian if it is commutative.

Examples: Rubik cube, (Z,+), (R∗,×).
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Fields

Definition
A field F is composed of elements and with two binary operations
(addition and multiplication).

Both operations respect the usual properties, and they also
distribute with each other.

Examples: R,C.

In cryptography we care about prime fields Fp formed by the
integers {0, 1, . . . , p− 1}, with prime p and operations modp.
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Elliptic curves

Elliptic curves provide efficient public key cryptography:

• Underlying problem conjectured to be fully exponential
• Small parameters, fast and compact implementations
• Standardized in major protocols (TLS/SSL, SSH)

Security level
Algorithm 80 128 256
Integer Factoring (RSA) 1024 3072 15360
Elliptic curves (ECC) 160 256 512
Table 1: Key sizes in bits for public-key cryptosystems. 6



Elliptic curves

An elliptic curve is the set of solutions (x, y) ∈ Fp × Fp that
satisfy the Weierstrass equation:

E : y2 = x3 + ax + b

where a, b ∈ Fp and a point at infinity ∞.

Group law: Points under the operation ⊕ (chord and tangent)
forms an additive group of order q with ∞ as the identity.

Coordinate system: We represent a point in affine coordinates
(x, y) using projective (X,Y,Z) such that x = X/Z, y = Y/Z.
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Elliptic curves

(a) Point addition R = P⊕Q (b) Point doubling R = [2]P
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Elliptic curves

Figure 3: Point addition over the curve y2 = x3 − x + 3 over GF(127), with
P = (16, 20) and Q = (41, 120). Note how line y = 4x + 83 behaves modp. 9



Elliptic curves

Let a point P in an elliptic curve and an integer k, the operation
[k]P, called scalar multiplication, is defined as:

[k]P = P⊕ P⊕ . . .⊕ P.︸ ︷︷ ︸
k times

Assumption: Recover k from (P, [k]P) is hard!

Example: Public key in ECC is defined as Q = [sk]G for fixed G.
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Bilinear pairings

e(P+R,Q) = e(P,Q) · e(R,Q) and e(P,Q+ S) = e(P,Q) · e(P, S)
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Bilinear pairings

Inputs come from curves G1 and G2.

Applications: most zero-knowledge proofs needs pairings.
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Pairing implementations

Protocols

Low-level backend
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Side-channel analysis



Side-channel analysis

Side-channel attacks gather leakage during the execution of an
implementation of a cryptographic algorithm to compromise its
security properties:

• Timing: variance in execution time
• Power: variance in energy consumption
• Electromagnetic and acoustic: emanations from a device
• Remanescence: recovery of stored data from RAM or Flash
• Fault injection: corruption of execution flow

Note: Increasing order of intrusiveness.
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Side-channel attacks
Timing attacks
If the execution time varies with bits from the key, timing
information can be used to recover parts of the key.

int pwdcmp(const void *str, const void *pwd, size_t size) {
int v = 0;
char *_a = (char *)str, *_b = (char *)pwd;

while(size-- > 0 && v == 0)
v = *(a++) - *(b++);

return v;
} 15



Secure implementation

int util_cmp_const(const void *str, const void *pwd, size_t size) {
char *_a = (const char *) str, *_b = (const char *) pwd;
unsigned char result = 0;
size_t i;

for (i = 0; i < size; i++)
result |= _a[i] ^ _b[i];

return result; /* returns 0 if equal, nonzero otherwise. */
}

Important: Noise is not enough to prevent leakage! 16



Cache-timing attacks

Modern CPUs have instructions (cflush) that can reveal secrets
through cache data eviction, i.e. Flush+Reload.
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Secure scalar multiplication



Timing attacks in scalar multiplication

Algorithm 1 Left-to-right Binary
Input: P = (x, y), k = (kt−1, . . . , k0)

Output: Q = [k]P
1: R←∞
2: for i← t− 1 downto 0 do
3: R← 2R
4: if ki = 1 then
5: R← R⊕ P
6: return R

For security:
• Fix number of

iterations
• Remove branch
• Point addition in

constant time.
• Coordinate systems
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Constant-time scalar multiplication

Algorithm 2 Left-to-right Binary
Input: P = (x, y), k = (kt−1, . . . , k0)

Output: Q = [k]P
1: R←∞
2: for i← t− 1 downto 0 do
3: R← 2R
4: R← R⊕ P if ki = 1
5: return R

Ideas applied:
• Double-and-

always-add
• Conditional copy

(compilers....)
• Performance loss

due to extra
additions
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Constant-time scalar multiplication

We can recode integers in a different representation, where
non-zero odd digits are separated by w spaces:

k = (dℓ, 0, 0, dℓ−1, 0, 0, dℓ−2, 0, 0, . . . , d1, 0, 0, d0)

Advantage: Representation is regular! The JT algorithm does this
and produces a fixed-length expansion (ℓ = ⌈ len(q)

w−1 ⌉).
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Constant-time scalar multiplication

Algorithm 3 Left-to-right w-ary
Input: P = (x, y), k =

∑ℓ
i=0 di · 2i

Output: Q = [k]P
1: R←∞
2: Tj = [j]P, j ∈ [1, 2w−1)

3: for i← ℓ downto 0 do
4: R← 2w−1R
5: Q← Tdi ← {T}
6: R← R⊕Q
7: return R

Ideas applied:
• Fixed length ℓ
• Linear pass in T
• Fewer point

additions (⌈ 1
w−1⌉)
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The role of endomorphisms

Many curves in cryptography have an extra efficient map
ψ(P) = [λ]P for λ ≈ √q.

[k]P = [k1]P + [k2]ψ(P)

Advantage: We can convert k in (k1, k2) with each having half the
length of k.
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Constant-time scalar multiplication

Algorithm 4 LtR w-ary with ψ
Input: P = (x, y), k =

∑ℓ
i=0 di · 2i

Output: Q = [k]P
1: R←∞, k = k1 + λ · k2 mod r
2: Tj = [j]P, j ∈ {1, 2w−1)

3: for i← ⌈ℓ/2⌉ downto 0 do
4: R← 2w−1R
5: Q1,Q2 ← Td1,i,Td2,i ← {T}
6: R← R⊕Q1 ⊕ ψ(Q2)

7: return R

Ideas applied:
• Endomorphism
• Fewer point

doublings
• For w = 5, we now

have ≈ 1/2 point
doublings and
≈ 1/4 point
additions
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Experimental setup

Target platforms:

• Intel Haswell Core i7-4770K (at 3.4GHz)
• TurboBoost disabled for reducing noise

Tooling:

• bls12_381 for curve arithmetic
• ff for finite field arithmetic
• criterion for benchmarking
• subtle for sensitive code
• Rust 1.60 nightly version 24



Experimental Results I – Curve G1

Implementation
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Experimental Results II – Curve G2

Implementation
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Main takeaways

• (Probably not very idiomatic) Code available at
https://github.com/dfaranha/bls12_381

• Finally getting competitive with hand-optimized C for
public-key crypto.

• Good idea of how efficient algorithm looks, now formalize it.

• Join the Rust Cryptography Interest Group to contribute!
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Questions?
D. F. Aranha

dfaranha@cs.au.dk
@dfaranha
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