
Experimenting with Faster Elliptic Curves in Rust

Diego F. Aranha1,2

1Dept. of CS and DIGIT, Aarhus University, Denmark

2Concordium Blockchain Research Center (COBRA)

This talk

Improving implementations of elliptic curves in Rust

1. A quick background on curves and pairings
2. Faster algorithms for constant-time scalar multiplication
3. Some experimental results and comparison to C

1

Background and definitions

Background

Cryptography
Practice and study of techniques for secure communication in the
presence of adversaries.

Security goals: confidentiality, origin authentication, data integrity,
non-repudiation.

Cryptography is everywhere. Modern banking, e-commerce,
multimedia, voting and messaging systems all use cryptography.

2

Motivation

Figure 1: The lifetime of an application of cryptography:

CRYPTOGRAPHIC ENGINEERING

CRYPTOGRAPHIC THEORY

Hardness
assumptions

Algorithms
and protocols

Formal security
analysis

Key distributionSecure and efficient
implementationDeployment

3

Groups

Definition
A group G is a set equipped with a binary operation with the
following properties: closure, identity, inverse, associativity.

When G is a finite group, we denote the number of elements the
order of G. A group is said to be abelian if it is commutative.

Examples: Rubik cube, (Z,+), (R∗,×).

4

Fields

Definition
A field F is composed of elements and with two binary operations
(addition and multiplication).

Both operations respect the usual properties, and they also
distribute with each other.

Examples: R,C.

In cryptography we care about prime fields Fp formed by the
integers {0, 1, . . . , p− 1}, with prime p and operations modp.

5

Elliptic curves

Elliptic curves provide efficient public key cryptography:

• Underlying problem conjectured to be fully exponential
• Small parameters, fast and compact implementations
• Standardized in major protocols (TLS/SSL, SSH)

Security level
Algorithm 80 128 256
Integer Factoring (RSA) 1024 3072 15360
Elliptic curves (ECC) 160 256 512
Table 1: Key sizes in bits for public-key cryptosystems. 6

Elliptic curves

An elliptic curve is the set of solutions (x, y) ∈ Fp × Fp that
satisfy the Weierstrass equation:

E : y2 = x3 + ax + b

where a, b ∈ Fp and a point at infinity ∞.

Group law: Points under the operation ⊕ (chord and tangent)
forms an additive group of order q with ∞ as the identity.

Coordinate system: We represent a point in affine coordinates
(x, y) using projective (X,Y,Z) such that x = X/Z, y = Y/Z.

7

Elliptic curves

An elliptic curve is the set of solutions (x, y) ∈ Fp × Fp that
satisfy the Weierstrass equation:

E : y2 = x3 + ax + b

where a, b ∈ Fp and a point at infinity ∞.

Group law: Points under the operation ⊕ (chord and tangent)
forms an additive group of order q with ∞ as the identity.

Coordinate system: We represent a point in affine coordinates
(x, y) using projective (X,Y,Z) such that x = X/Z, y = Y/Z. 7

Elliptic curves

(a) Point addition R = P⊕Q (b) Point doubling R = [2]P
8

Elliptic curves

Figure 3: Point addition over the curve y2 = x3 − x + 3 over GF(127), with
P = (16, 20) and Q = (41, 120). Note how line y = 4x + 83 behaves modp. 9

Elliptic curves

Let a point P in an elliptic curve and an integer k, the operation
[k]P, called scalar multiplication, is defined as:

[k]P = P⊕ P⊕ . . .⊕ P.︸ ︷︷ ︸
k times

Assumption: Recover k from (P, [k]P) is hard!

Example: Public key in ECC is defined as Q = [sk]G for fixed G.
10

Bilinear pairings

e(P+R,Q) = e(P,Q) · e(R,Q) and e(P,Q+ S) = e(P,Q) · e(P, S)

11

Bilinear pairings

Inputs come from curves G1 and G2.

Applications: most zero-knowledge proofs needs pairings.
12

Pairing implementations

Protocols

Low-level backend
13

Side-channel analysis

Side-channel analysis

Side-channel attacks gather leakage during the execution of an
implementation of a cryptographic algorithm to compromise its
security properties:

• Timing: variance in execution time
• Power: variance in energy consumption
• Electromagnetic and acoustic: emanations from a device
• Remanescence: recovery of stored data from RAM or Flash
• Fault injection: corruption of execution flow

Note: Increasing order of intrusiveness.
14

Side-channel attacks
Timing attacks
If the execution time varies with bits from the key, timing
information can be used to recover parts of the key.

int pwdcmp(const void *str, const void *pwd, size_t size) {
int v = 0;
char *_a = (char *)str, *_b = (char *)pwd;

while(size-- > 0 && v == 0)
v = *(a++) - *(b++);

return v;
} 15

Secure implementation

int util_cmp_const(const void *str, const void *pwd, size_t size) {
char *_a = (const char *) str, *_b = (const char *) pwd;
unsigned char result = 0;
size_t i;

for (i = 0; i < size; i++)
result |= _a[i] ^ _b[i];

return result; /* returns 0 if equal, nonzero otherwise. */
}

Important: Noise is not enough to prevent leakage! 16

Cache-timing attacks

Modern CPUs have instructions (cflush) that can reveal secrets
through cache data eviction, i.e. Flush+Reload.

17

Secure scalar multiplication

Timing attacks in scalar multiplication

Algorithm 1 Left-to-right Binary
Input: P = (x, y), k = (kt−1, . . . , k0)

Output: Q = [k]P
1: R←∞
2: for i← t− 1 downto 0 do
3: R← 2R
4: if ki = 1 then
5: R← R⊕ P
6: return R

For security:
• Fix number of

iterations
• Remove branch
• Point addition in

constant time.
• Coordinate systems

18

Constant-time scalar multiplication

Algorithm 2 Left-to-right Binary
Input: P = (x, y), k = (kt−1, . . . , k0)

Output: Q = [k]P
1: R←∞
2: for i← t− 1 downto 0 do
3: R← 2R
4: R← R⊕ P if ki = 1
5: return R

Ideas applied:
• Double-and-

always-add
• Conditional copy

(compilers....)
• Performance loss

due to extra
additions

19

Constant-time scalar multiplication

We can recode integers in a different representation, where
non-zero odd digits are separated by w spaces:

k = (dℓ, 0, 0, dℓ−1, 0, 0, dℓ−2, 0, 0, . . . , d1, 0, 0, d0)

Advantage: Representation is regular! The JT algorithm does this
and produces a fixed-length expansion (ℓ = ⌈ len(q)

w−1 ⌉).

20

Constant-time scalar multiplication

Algorithm 3 Left-to-right w-ary
Input: P = (x, y), k =

∑ℓ
i=0 di · 2i

Output: Q = [k]P
1: R←∞
2: Tj = [j]P, j ∈ [1, 2w−1)

3: for i← ℓ downto 0 do
4: R← 2w−1R
5: Q← Tdi ← {T}
6: R← R⊕Q
7: return R

Ideas applied:
• Fixed length ℓ
• Linear pass in T
• Fewer point

additions (⌈ 1
w−1⌉)

21

The role of endomorphisms

Many curves in cryptography have an extra efficient map
ψ(P) = [λ]P for λ ≈ √q.

[k]P = [k1]P + [k2]ψ(P)

Advantage: We can convert k in (k1, k2) with each having half the
length of k.

22

Constant-time scalar multiplication

Algorithm 4 LtR w-ary with ψ
Input: P = (x, y), k =

∑ℓ
i=0 di · 2i

Output: Q = [k]P
1: R←∞, k = k1 + λ · k2 mod r
2: Tj = [j]P, j ∈ {1, 2w−1)

3: for i← ⌈ℓ/2⌉ downto 0 do
4: R← 2w−1R
5: Q1,Q2 ← Td1,i,Td2,i ← {T}
6: R← R⊕Q1 ⊕ ψ(Q2)

7: return R

Ideas applied:
• Endomorphism
• Fewer point

doublings
• For w = 5, we now

have ≈ 1/2 point
doublings and
≈ 1/4 point
additions

23

Experimental setup

Target platforms:

• Intel Haswell Core i7-4770K (at 3.4GHz)
• TurboBoost disabled for reducing noise

Tooling:

• bls12_381 for curve arithmetic
• ff for finite field arithmetic
• criterion for benchmarking
• subtle for sensitive code
• Rust 1.60 nightly version 24

Experimental Results I – Curve G1

Implementation

0

500000

1000000

1500000

2000000

This (w = 3) This (w = 4) This (w = 5) This (w = 6) Original bls12_381 C+ASM (RELIC)

Cycles for scalar multiplication in G1

25

Experimental Results II – Curve G2

Implementation

0

2000000

4000000

6000000

This (w = 3) This (w = 4) This (w = 5) This (w = 6) Original bls12_381 C+ASM (RELIC)

Cycles for scalar multiplication in G2

26

Main takeaways

• (Probably not very idiomatic) Code available at
https://github.com/dfaranha/bls12_381

• Finally getting competitive with hand-optimized C for
public-key crypto.

• Good idea of how efficient algorithm looks, now formalize it.

• Join the Rust Cryptography Interest Group to contribute!

27

https://github.com/dfaranha/bls12_381

Questions?
D. F. Aranha

dfaranha@cs.au.dk
@dfaranha

27

	Background and definitions
	Side-channel analysis
	Secure scalar multiplication

