
Rust 2024

by Nicholas MatsakisView slides at https://github.com/nikomatsakis/skillsmatter2022/

https://github.com/nikomatsakis/skillsmatter2022/

Who is this guy

� Hi!

1

Me

Been working on Rust since 2011

Co-lead of the Rust language design team

2

Rust sprouting up all over

... and those are just the foundation platinum sponsors.

3

What are people doing with Rust?
All kinds of things...

Networking

Embedded development

Kernels, kernel modules

Blockchain

CLI apps (ripgrep, just, tokei, ...)

...and much more

4

Why work on Rust?

5

Why work on Rust?

5

Why work on Rust?

6

Why work on Rust?

6

What's Rust's secret sauce?

7

What's Rust's secret sauce?
A strict and unforgiving type system!

7

What's Rust's secret sauce?
A strict and unforgiving type system!

7

Rust's type system == spinach

Image credit: Clyde Robinson

8

https://flickr.com/photos/crobj/3184283013/

Rust's type system == POPEYE spinach

Image credit: Mike Mozart

9

https://flickr.com/photos/jeepersmedia/17331456031/

Example: Mozilla and Stylo

10

Example: Mozilla and Stylo

10

Example: Mozilla and Stylo

10

Example: Tenable's metrics

Tenable blog post from 2021-05-06

11

https://nikomatsakis.github.io/skillsmatter2022/(https://medium.com/tenable-techblog/optimizing-700-cpus-away-with-rust-dc7a000dbdb2

Example: Tenable's metrics

12

Example: Tenable's metrics

“

With this small change, we were able to optimize away over

700 CPU and 300GB of memory. This was all implemented,

tested and deployed in a single sprint (two weeks). Once the

new �lter was deployed, we were able to con�rm the resource

reduction in Datadog metrics.

13

Design goals for Rust

⚙ Reliable "If it compiles, it works"

🐎 Performant "idiomatic code runs e�ciently"

🥰 Supportive "the language, tools, and community are here to help"

🧩 Productive "a little e�ort does a lot of work"

🔧

Transparent
"you can predict and control low-level details"

🤸 Versatile "you can do anything with Rust"

Caveat: These are goals that some of us drafted, not o�cial design goals of the Rust project.

14

Example: Discord's "read states" service

Discord blogpost from 2022-02-04

15

https://discord.com/blog/why-discord-is-switching-from-go-to-rust

Example: Discord's "read states" service

16

Example: Discord's "read states" service

‘

We no longer had to deal with garbage collection, so we

�gured we could raise the cap of the cache and get even better

performance. (...) The results below speak for themselves.

Notice the average time is now measured in microseconds

and max @mention is measured in milliseconds.

17

Hack without fear
Rust lets you build (and maintain!) the systems you want to build.

18

Rust 2024
So where do we go from here?

19

Rust at the start

Artist: Daphne Matsakis

20

Rust 1.0 released in 2015

Artist: Daphne Matsakis

21

Rust 2018

Artist: Daphne Matsakis

22

Rust 2021

23

Rust 2024...?

24

Rust 2024...?
Uh, I don't know. Nodody does, not yet.

24

Where we are
If performance and reliability are your top considerations:

Rust is your best choice

If ease of iteration is your top priority:

Use a GC'd language like Python, Java, or Go

25

 says:

"A stitch in time saves nine."

26

Where we are
If performance and reliability are your top considerations:

Rust is your best choice

If ease of iteration is your top priority:

Use a GC'd language like Python, Java, or Go

But what about the software in the middle?

27

Rust 2024
I think we want a combination of

Building on our strengths

Addressing our weaknesses

Think big opportunities

28

Building on our strengths
Rust is doing really well in several areas:

Networking

Embedded systems, IoT

Kernels, core architectural layers

29

Rust in networking, circa 2018
async fn process_connection() {

 something().await;

}

30

Rust in networking, circa 2021
Async fn enables lightweight tasks and a natural coding style...

...but support is missing from many areas of the language, like traits,

closures, async-drop.

31

Rust in networking, circa 2021
Closing the gap requires a number of crates and tools:

async_trait proc macro (shown below)

futures crate combinators

...and some things, like async drop, just don't work.

#[async_trait]

trait AsyncIterator {

 type Item;

 async fn next(&mut self) -> Option<Self::Item>;

}

32

Rust in networking, circa 2021
Async fn enables lightweight tasks and a natural coding style...

...but support is missing from many areas of the language, like traits,

closures, async-drop.

33

Rust in networking, circa 2021
Async fn enables lightweight tasks and a natural coding style...

...but support is missing from many areas of the language, like traits,

closures, async-drop.

Great networking runtimes like tokio, async-std, glommio,

embassy, fuschia...

...but no mechanism for interop, leading to a lack of widely used

libraries as well as surprising failures.

33

Rust in networking, circa 2021
Async fn enables lightweight tasks and a natural coding style...

...but support is missing from many areas of the language, like traits,

closures, async-drop.

Great networking runtimes like tokio, async-std, glommio,

embassy, fuschia...

...but no mechanism for interop, leading to a lack of widely used

libraries as well as surprising failures.

Rust developer tooling like cargo, rust-analyzer, rustup is

excellent...

...but relatively limited options to debug/pro�le/test applications,

especially async ones.

33

Rust in networking, circa 2024
Async fn can be used everywhere: traits, closures, drop

Rich, interoperable library ecosystem

Tooling like tokio console to analyze and debug neworked

applications

Works on servers as well as bare-metal environments

34

https://github.com/tokio-rs/console

How do we get there?
Async vision doc lays out a few key areas:

Core compiler support for async functions in traits

Traits for interoperability (read, write, spawn, etc)

Polish, diagnostics, tooling support

Would you like to help? Join #wg-async on rust-lang Zulip.

35

https://rust-lang.github.io/wg-async/vision.html
https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async

Building on our strengths
Networking:

Async vision doc

Embedded, IoT, kernels:

Stabilize Rust features that give control over low-level details

Take advantage of custom details about a given platform

General:

Rules and tools for unsafe code

36

Rust 2024
I think we want a combination of

Building on our strengths ✅

Addressing our weaknesses

Think big opportunities

37

Addressing our weakenesses
Rust has some challenges:

Learning curve

Cognitive overhead

38

Journey to loving Rust
Most folks take 3-6 months to learn Rust.

At �rst, it's ridiculously frustrating.

At some point, you turn the corner, and -- for many of us -- it's hard

to imagine using another language.

39

Key to loving Rust
Learning to leverage the Rust type system instead of �ghting it.

Rust is pushing you towards new patterns. Those patterns are hard

to learn, but they are (usually) bene�cial.

40

Detours
But not everybody comes to love Rust.

Some 20% of people on the Rust survey use Rust daily and yet say

they "struggle" to be productive.

Why?

41

Why do people struggle?
Think back to the statue:

Inherent vs accidental complexity

42

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

43

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

Inherent complexity: Representing many possibilities

Accidental complexity: Option types, if let vs match

44

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

Inherent complexity: Mutability xor sharing, pointers and references

Accidental complexity: &mut syntax

45

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

Inherent complexity: Returning a derived reference

Accidental complexity: Lifetime elision

46

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

Inherent complexity: Returning a derived reference

Accidental complexity: Lifetime elision

fn get_lazy<'a>(list: &'a mut Vec<String>) -> &'a mut String

46

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

Accidental complexity: This code doesn't build!

s was returned from the function, so s is borrowed for the rest of

the function

47

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

s was returned from the function, so s is borrowed for the rest of

the function

s came from list, so list is borrowed for the rest of the function

too

48

Inherent vs accidental complexity
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if let Some(s) = list.first_mut() {

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

s was returned from the function, so s is borrowed for the rest of

the function

s came from list, so list is borrowed for the rest of the function

too

so push is illegal

Try it out

49

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=04de40f1c3a8805c105821b91ef9fb88

Workaround
fn get_lazy(list: &mut Vec<String>) -> &mut String {

 if !list.is_empty() {

 let s = list.first_mut().unwrap();

 return s;

 }

 list.push(format!("Hello, world!"));

 list.first_mut().unwrap()

}

Workaround: move borrow inside the if

50

Reducing accidental complexity
Language changes like polonius, implied bounds

Better environments and materials for learners:

Visualize Rust rules

Teach borrow checker patterns

51

Rust 2024
I think we want a combination of

Building on our strengths ✅

Addressing our weaknesses ✅

Think big opportunities

52

Cognitive overhead
Rust makes you care about

performance

reliability

long-term maintenance

...even when you don't want to.

53

Example: Interfaces
Compare:

trait Iterator {

 type Item;

 fn next(&mut self) -> Option<Self::Item>;

}

with

interface Iterator<E> {

 bool hasNext();

 E next();

}

54

Example: Rc vs Arc
Rust has two reference-counted types:

Rc<T>: reference counted -- faster

Arc<T>: atomic reference counted -- works across threads

Which should you use?

55

Example: Async vs not
Earlier we talked about async:

trait AsyncIterator {

 type Item;

 async fn next(&mut self) -> Option<Self::Item>;

}

Great to have AsyncIterator and AsyncDrop, but will we wind up with

an AsyncFoo for every sync Foo?

56

Think big
Rust is always looking for ways to eliminate tradeo�s:

Can we �nd a third way that means you don't have to think about

it?

57

Avoiding colors
Maybe instead of de�ning traits like AsyncIterator, we should have

async Iterator.

Perhaps we can leverage the same mechanism for const (compile-

time evaluation)?

Can we write "maybe async" code that works in both modes?

Reference.

58

https://github.com/rust-lang/lang-team/issues/162

Rc vs Arc
There are many ways to make reference counting faster:

Deferred reference counting

Biased reference counting

Maybe we should try some of them?

59

https://openresearch-repository.anu.edu.au/handle/1885/42030
https://dl.acm.org/doi/10.1145/3243176.3243195

Iterative tooling
What if cargo test could run tests even when there were compilation

errors?

Maybe even skip compiling code that it didn't need?

60

Unsafe code
Can cargo test enforce unsafe code rules by default?

Can we support veri�ers and theorem provers, so that people can

prove things about unsafe code?

61

Library with custom errors and lints
diesel#2450

let result = diesel::delete(

 scripts

 .filter(id.eq("1"))

)

 .execute(session.db())

 .map_err(|e| {

 debug!("{:?}", e);

 format!("Could not delete script.")

 });

Problem? Using a string, not an integer.

Error?

62

https://github.com/diesel-rs/diesel/issues/2450

Library with custom errors and lints
the trait bound `diesel::query_builder::SelectStatement<schema::scripts::table,

 diesel::query_builder::select_clause::DefaultSelectClause,

 diesel::query_builder::distinct_clause::NoDistinctClause,

 diesel::query_builder::where_clause::WhereClause<diesel::expression::operators::Eq

 <schema::scripts::columns::id, &str>>>: diesel::query_builder::IntoUpdateTarget` is

not satisfied

the trait `diesel::query_builder::IntoUpdateTarget` is not implemented for

 `diesel::query_builder::SelectStatement<schema::scripts::table,

 diesel::query_builder::select_clause::DefaultSelectClause,

 diesel::query_builder::distinct_clause::NoDistinctClause,

 diesel::query_builder::where_clause::WhereClause<diesel::expression::operators::Eq

 <schema::scripts::columns::id, &str>>>`

help: the following implementations were found:

<diesel::query_builder::SelectStatement<F,

diesel::query_builder::select_clause::DefaultSelectClause,

diesel::query_builder::distinct_clause::NoDistinctClause, W> as

diesel::query_builder::IntoUpdateTarget>rustc(E0277)

63

Platforms
Could

#[cfg(unix)]

fn do_something_in_a_unix_way() { }

become

fn do_something_in_a_unix_way()

where

 std::Platform: Unix,

{

 ...

}

64

Building Rust 2024
I don't exactly know what Rust 2024 will be like.

But I know it's going to be a community e�ort.

If you're interested in getting involved, take a look at some of the

recent blog posts:

Compiler team ambitions

Lang team roadmap for 2024

Library team aspirations

65

https://blog.rust-lang.org/inside-rust/2022/02/22/compiler-team-ambitions-2022.html
https://blog.rust-lang.org/inside-rust/2022/04/04/lang-roadmap-2024.html
https://blog.rust-lang.org/inside-rust/2022/04/20/libs-aspirations.html

Rust 2024
Building on our strengths:

Async and sync code working at par

Stabilize key low-level capabilities

Support unsafe code

Addressing our weaknesses:

Smarter analyses, less accidental complexity

Developer tooling, documented patterns

Thinking big:

Now's the time!

66

