Lessons Learned from 15 Years
of Scala in the Wild

Dean Wampler
@deanwampler
https://deanwampler.medium.com

dean@deanwampler.com

rwise noted. All rights reserved.

© Dean Wampler, 2021-2022, unless othe

@deanwam pler

sz Research

> U o — — H B 01Feb2022 (& Explainer (© 10 minute read

What’s next in computing: The era of
3 m LR accelerated discovery

To meet the growing challe wwer-shifting world, the ways we have discovered new ideas in the
past won't cut it moving forward. A convergence of computing revolutions taking place right now will
help accelerate the rate of scientific discovery like nothing before

IBM
Research

hitps://research.ibm.com/blog/what-is-accelerated-discOvery

@deanwampler © Dean Wampler, 2021-2022, unless otherwise noted. All rights reserved.

programming-scala.com

@deanwampler

O'REILLY

Programming

Scala

Scalability = Functional Programming + Objects

Dean Wampler

© Dean Wampler, 2021-2022, unless otherwise noted. All rights reserved.

@deanwampler

How Scala Has Evolved

= Greater Clarity

» From Implicits to Contextual
Abstractions

= |mprovements to the Type
System

“Enterprise Scala”

= FP.-Over OOP
= Should Everything Be Typed?

» |Less Code Is More

@deanwampler

The Future??

= \What current industry trends
may mean for FP and Scala

@deanwampler

Greater Clarity

Python-esque Syntax in Scala 3

// Scala 2 braces
trait Monoid[A] {

def (al: A, a2: A): A

def ;A
}
integer match {
case 0 => ("zero"
case _ => ("other value")

@deanwampler

// Scala 3, no braces option
trait Monoid[A]:

def

def

integer match

(al:

case O =»>

case

=>

Aia 2 (AYERA

A:N@WO:
("other value")

More “Intentional” Constructs

// Implicit Type Conversions // True Extension Methods
implicit final class ArrowAssoc [A] import scala.annotation.targetName
private val self: A) extends AnyVal {
def [B](y: B): (A, B) = (self, y) extension [A] (a: A)
("arrow2")
("Use =5 instead...", "2.13.0") inline def ~>[B](b: B): (A, B) = (a, b)
det ~[B](y: B): (A, B) = —>(y)
}

Used to write “a -> b” to
return a tuple “(a, b)”

@deanwampler

From.lmplicits:to
Contextual Abstractions ™

L AN
.

Implicits are a mechanism with idiomatic usage.
Givens and using clauses are more intentional.

trait Semigroup[T]:
extension (t: T)
infix def (other: T): T
("plus") scala>"one" <+> ("two" <+> "three")
def (other: T): T = t. (other) | ("one" <+> "two") <+> "three"
val resl: String = onetwothree

trait Monoid[T] extends Semigroup[T]: val resZ: String = onetwothree

def L
scala> "one" <+> StringMonoid.unit
| StringMonoid.unit <+> "one"
given |StringMonoid: Monoid[String] with val res3: String = one
def . String = "" val res4: String = one

extension (s: String)
infix def (other: String): String =
s + other

@deanwampler

Implicits are a mechanism with idiomatic usage.
Givens and using clauses are more intentional.

trait Semigroup[T]:
extension (t: T)
infix def (other: T): T
("plus")
def (other: T): T = t. (other)
trait Monoid[T] extends Semigroup[T]:

def 4 4P

given NumericMonoid|[T: Numeric]: Monoid[T] with
def i [Numeric[T]].
extension (t: T)
infix def
[Numeric[T]].

(other: T): T =
(t, other)

@deanwampler

scala> 2 <+> (3 <+> 4)

| (2.2 <+> 3.3) <+> 4.4

| (BigInt(2) combine BigInt(3))
_ oosstme@HsdA»v
_

val resb: Int = 9O
val res6: Double
val res7: BigInt = 9

I
(@)
(@)

scala> 2 <+> NumericMonoid[Int].unit

| NumericMonoid[Double].unit <+> 3.3
val res8: Int = 2
val res9: Double = 3.3

Implicits are a mechanism with idiomatic usage.
Givens and using clauses are more intentional.

scala> process(“AWS”)
val res@: String = “AWS-Cloud!”

trait Context:

scala> given ctx: Context new Context:

def : String) 1
, _ def info: String = "Also Cloud!"

given Context = new Context: |

def : String = "Cloud!"
lazy val ctx: Context
scala> process("Azure")(using ctx)
val resl: String = Azure-Also Cloud!

def (name: String)l(using Context)): String =

"$name—$ { [Context] . b

@deanwampler

Improvements to the Type System

J‘
-
- - P T ——
’ A -
™ . -'l-
> _ . “‘*\ — L \
A\%\‘ﬂr.(\l\- . ; &
- o 7
dﬁ..“‘\ :) h\ > o v
- - > . -
S M
. AN

S &Y - ..‘ -
S / . e
Y ‘
Fal ﬂ o

Opaque type aliases

object
opaque type =

// These are the two ways to lift to the Logarithm type

def (ds:) : = math. (d)
def (d:) : [1=
ifd > then (math'. (d)) else

// Extension methods define an opaque type’s public APIs

extensiony(x:)
def ; = math. (%)
def (y.) = (math. (x) + math.

def (v) = X +.V

@deanwampler

Cy))

Intersection

Crait
override def v = +SuUper .
def OF

trait [T]=
override det ” = +SUpEr .

def (igs M)

def (x: [1): —
X. ©

X

s a1) Only allowed values must

R be of both types
Resettable and Growable.

@deanwampler

Intersection

val rg =
def
. def
trait o
override def : = w
o (: val gr =
. def
trait &] % ot
override det ; = o
def (s)3 v
rg.
def [(x: [gv“@m
X ® .
X ()
X () Types commute: This equals
X | _

@deanwampler

new with [] {
(): - -

(s:) = + S

new [] with {
(): - -

(s:) = + s

// "Growable:Resettable"
// "Resettable:Growable"

BUT linearization isn’t the
samel!

Un

case class (name: . password:
def (id: . dbc:
try
val results = dbc. (
results. match
case 0 =5
case 1. => results. vasy
case _ => results. @ as 1)
catch
case dbe: =>pdbe.
(- myDBConnection) match
case message: =>
case (name,) =5
case seq: [L =

@deanwampler

)
1d
message)
name')
seq’)

Types also commute

Must use pattern matching
to determine the actual
type of the instance.

“Enterprise Scala”

Unlearning Enterprise Java habits

@deanwampler

FP Over OOP

Is anything more concise than SQL?

SELECT x FROM users WHERE 1d = **Dean Wampler”

Like SQL, functional code
tends to be very concise and
to the point, where Object-Relational Mapping
composable operations was a mistake, IMHO...
enable fast, efficient
programming

@deanwampler

Parametric Polymorphism

What can we deduce about

def _”_H_”_ ANM . Seq _”_H_H_ v - Thnt these methods?? The first
can have only one possible
def (xs: Seq[Int]): Int plamssiaden,

https://medium.com/scala-3/the-value-of-parametric-polymophism-e76bfb9a516b

@deanwampler

Should Everything
Be Typed?

clgBlicesien: elpipsrt When should we avoid static typing??
kind: Deployment

metadata:

Should we faithfully

name: nginx—deployment . : i
¢ PO duplicate this logic in our

spec: | Scala code?? Gan we use
selector: templates and minimize
matchlLabels: knowledge instead?

app: nginx
replicas: 2 # tells deployment to run 2 pods matching the template
template:
metadata:
labels:
app: Nginx
spec:
containers:
— name: nginx example from:
image: nginx:1.14.2 https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
ports:
— containerPort: 80

@deanwampler

peCiliE AQ@.Q...@._@%_/\._OE

- g

'.# - . . l"b‘\.u‘) -

¥ -) » .”. h -
. - » » ‘A_..”l '} - VI 0
e I.lc -)

Avoid Converting
Enterprise Java to
Enterprise Scala

@deanwam pler

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._ :_3<®1_”®Q :JQ@X: _3 m—Um—\—A

object InvertedIndex {
def main(a: Array[String]) = {

val sc = new SparkContext("local[*]", "Inverted Idx")

sctextr N e 1 e = <> = When your code is this concise, do you really

val Array(path, text) = need:
line.split("\t",2)
(path, text)
}.flatMap { » Dependency injection frameworks?
case (path, text) =>
text.split("""\W+""") map {

word => (word, path) x Fancy mocking libraries for testing?
}

}.map { .

case (w, p) => ((w, p), 1) n | ots of QOM_Q_:_ Um._”._nmﬂjm\w

}.reduceByKey {

case (nl, n2) => nl + n2
}.map { = Factories, Adapters...

case ((w, p), n) => (w, (p, n))
}.groupByKey
.mapValues { iter => » | ots of micro services to partition the
iter.toSeq.sortBy { :

case (path, n) => (-n, path) _OQ_O\.V
}.mkString(", ")
}.saveAsTextFile("/path/out")
sc.stop()

from:
https://deanwampler.github.io/polyglotprogramming/papers/Spark-TheNextTopComputeModel.pdf

@deanwampler

— -
-

.
S

Will FP. Adoption Continue to Grow?

Will FP Adoption Continue to Grow??

Why are languages like Python, Go, Kotlin, etc. growing in popularity?
= None is particularly functional.

= FP fans like us might consider them “disabled”.

TIOBE Programming Community Index

@deanwampler

1) FP Is Too “Advanced”

» For most of the world’s developers,
FP is either too hard or they lack
the motivation to learn it.

» |n contrast, OOP is “naively”
intuitive and therefore seductive.

Second worst way OOP was
abused: the belief we should
faithfully represent the domain
In code.

(Fhe worst way was
unconstrained, unprincipled
mutability.)

2) SW Development Itself Is Changing

Two Kinds of Programming
= Applications

» Services

Both can exist in
the same
environment.

@deanwampler

= You write a significant amount
of the program logic yourself.

» The domain logic is complex.

» Deployment is a secondary

concern.

@deanwampler

“Applications”

FP and “real” FP
languages are the
pest tool here!

Blog Guides APl 9 Forum Contribute Team

Compress the complexity of
modern web apps.

Learn just what you need to get started, then keep leveling up as
you go. Ruby on Rails scales from HELLO WORLD to IPO.

Rails 7.0.2.3 — released March 8, 2022

Everything you need.

Rails is a full-stack framework.|It ships with all
; [To iamazing web apps on
both the front and back end.

Rendering HTML templates, updating databases, sending and receiving

nnm

» EF.g., services in a Kubernetes
cluster.

= |ntegration, wiring, scripting
the biggest challenges.

= Code you write is relatively
small and focused.

Go, Bash, Python,
and ... YAML.
FP isn’t as important.

@deanwampler

ervices”

Kubernetes Features

utomated rollouts and rollbacks

Kubernetes progressively rolls out changes to your

lon or its configuration, while monitoring application

health to ensure it doesn't kil all your instances at the same
time. If something goes wrong, Kubernetes will rollback the
change for you. Take advantage of a growing ecosystem of
deployment solutions.

Storage orchestration
Automatically mount the storage system of your choice,
whether from local storage, a public doud provider such as
, Or 3 network storage tern such as NFS,
er, Ceph, Cinder, or Flocker

Automatic bin packing

Automatically places containers based on their resource
requirements and other constraints, while not sacrificing
avallabllity. Mix critical and best-effort workloads in order to
drive up utilization and save even more resources

Pv6 dual-stack

Allocation of IPv4 and IPv6 addresses to Pods and Services

Self-healing

Restarts containers that fail, replaces and reschedules

containers when nodes die, kills containers that dont
respond to your user-gefined health check, and doesn’t
advertise them to clients until they are ready to serve.

No need to modify your application to use an unfamiliar
service discovery mechanism, Kubernetes gives Pods their
own P addresses and a single DNS name for a set of Pod
and can load-balance across them.

nfiguration management

Deploy and update secrets and application configuration
without rebuiiding your iImage and without exposing secrets

In your stack configuration

Batch execution

In addition to services, Kubernetes can manage your batch
and CI workioads, 2~D5a.3h containers that fail, if desired

Scale your application up and down with a simple
command, with a Ul, or automatically based on CPU usage.
zned for extensibil

Add features to your Kubernetes cluster without cha
upstream source code.

“Services”

» Data Science, ML/Al ap@igations Q r ./__u@—é_" a solution to a

» |ntegration, wiring, scripting of

big libraries.

= Code you write is relatively
small and focused.

Mostly scripting:
Python and R

@deanwampler

)

50-year-old grand
challenge in biology

M T1037 / 6vrd T1049 / 6yaf
90.7 GDT 93.3 GDT

Maciej Kula @4 1se domain) (adhesin tip)

If 1 had a penny for every time | forgot 10 initlalize Tensorflow varabies, 1 would

be a very nch man))
)Experimental result
)Computational prediction
Maciej Kula !

rch is bad because everything works with no extra effort

@deanwampler

Two Kinds of Programming

» As more and more software
problems get standardized into
frameworks and libraries, we’ll write
less and less code.

= That’s a good thing...

» .. butlclaimitis athreat to FP.

Thank You

deanwampler.com/talks
https://deanwampler.medium.com

dean@deanwampler.com
@deanwampler

e
LRy,

