
Tiny Type Tools

2

Tools
Haskell

Type holes

GHC

Type search

Hoogle

Remove lambdas

Pointfree

Code synthesis

Djinn

Equational laws

QuickSpec

Refining property tests

FitSpec

Insert lambdas

Pointful

Case splits, code
synthesis

Wingman

Libraries
● Expose the core algorithm
● Reuse across different languages
● Returns useful data structures
● Enables rich user experience with types

○ Tell me cardinality, i.e. how many inhabitants
○ Show me similar functions which already exist
○ Synthesise code
○ Gives equational laws

Type Algebra
● Void ~ 0

● () ~ 1

● Bool ~ 2

● (forall a. a -> a) ~ 1

● (forall a. a -> a -> a) ~ 2

● Either a b ~ (a + b)

● (a, b) ~ (a * b)

● [()] ~ ∞

https://web.archive.org/web/20201111192703/https://alexknvl.com/posts/counting-type-inhabitants.html

https://web.archive.org/web/20201111192703/https://alexknvl.com/posts/counting-type-inhabitants.html

Type Formulas
• (a, b) ~ (b, a)

• Either a b ~ Either b a

• ((a, b) -> c) ~ (a -> b -> c)

• (a -> b -> c) ~ ((a, b) -> c)

• (Either a b -> c) ~ (a -> c, b -> c)

• (forall x. (a -> x) -> f x) ~ f a

• (forall x. (x -> a) -> f x) ~ f a

Rewrite Rules - Commutative
commutative :: Algebra x -> Maybe (Algebra x)
commutative (Product a b) =
 Just (Product b a)
commutative (Sum a b) =
 Just (Sum b a)
commutative _ =
 Nothing

Rewrite Rules - Curry Product
curryProduct :: Algebra x -> Maybe (Algebra x)
curryProduct (Exponent c (Product a b)) =
 Just (Exponent (Exponent c b) a)
curryProduct _ =
 Nothing

Rewrite Rules - Combined
rules :: Ord x => [(RewriteLabel, Rule [] (Algebra x))]
rules =
 [(RewriteYonedaCovariant, rule yonedaCovariant),
 (RewriteYonedaContravariant, rule yonedaContravariant),
 (RewriteMoveForall, rule moveForall),
 (RewriteRemoveForall, rule removeForall),
 (RewriteArithmetic, rule arithmetic),
 (RewriteCurrySum, rule currySum),
 (RewriteCurryProduct, rule curryProduct),
 (RewriteUncurryProduct, rule uncurryProduct),
 (RewriteAssociative, rule associative),
 (RewriteDistributive, rule distributive),
 (RewriteCommutative, rule commutative),
 (RewriteIntroduceArity, rule introduceArity)
]

Heuristics
• Disincentivise terms

• Terms have cost 5
• Functions have cost 10
• Foralls have cost 20

• Disincentivise rules
• Each rule has cost 1
• Commutative has cost 2

Pretty printed
∀ a. ∀ b. (a -> b) -> a + 1 -> b + 1
= ∀ a. a + 1 -> a + 1 -- via covariant yoneda lemma
= ∀ a. (a -> a + 1) * (1 -> a + 1) -- via curry sum
= ∀ a. (a -> a + 1) * (a + 1) -- via arithmetic
= (∀ a. a -> a + 1) * (∀ a. a + 1) -- via distributive
= (∀ a. (1 -> a) -> a + 1) * (∀ a. a + 1) -- via introduce
arity
= (1 + 1) * (∀ a. a + 1) -- via covariant yoneda lemma
= 2 * (∀ a. a + 1) -- via arithmetic
= 2 * (∀ a. (0 -> a) -> a + 1) -- via introduce arity
= 2 * (0 + 1) -- via covariant yoneda lemma
= 2 * 1 -- via arithmetic
= 2 -- via arithmetic

Rendered via MathJax

type-algebra, next steps
https://github.com/puffnfresh/type-algebra
● Publish on Hackage
● Properly handle infinite types
● Quick/dirty translation from Haskell types
● General problem:

○ Run a bunch of rewrites
○ Apply a heuristic
○ Search for solution(s)

● Are there useful rewrites that are missing?

https://github.com/puffnfresh/type-algebra

 Type Search using Hoogle

http://neilmitchell.blogspot.com/2020/06/hoogle-searching-overview.html

http://neilmitchell.blogspot.com/2020/06/hoogle-searching-overview.html

• Fingerprints types into a database
• Arity: (a -> b) = 1
• Terms: (a -> b) = 2
• Rares: (Settings a -> Program b) = [“Settings”, “Program”]

• Applies some rewrites to the query
• Finds nearest fingerprints
• Unifies the signatures

Type Search

Type for Searching

runSearch

 :: Monad m

 => Search m a a' b b' c

 -> [(b, a)]

 -> a

 -> b

 -> SerialT m (b, c)

Structured Type for Searching

Search

 (Writer [SearchLog a n])

 (Fingerprint a)

 (FingerprintCost a)

 (Signature n)

 SignatureCost

 (StructuredCosts a)

type-search
https://github.com/puffnfresh/type-search
• Found and fixed bugs in Hoogle
• Could almost be swapped into Hoogle
• Has commonalities with type-algebra:

• Ranking by cost
• Rewrites
• Searching for solutions

https://github.com/puffnfresh/type-search

https://www.hedonisticlearning.com/djinn/

https://www.hedonisticlearning.com/djinn/

https://hackage.haskell.org/package/quickspec

https://hackage.haskell.org/package/quickspec

https://www.haskellforall.com/2013/12/equational-reasoning.html

https://www.haskellforall.com/2013/12/equational-reasoning.html

World Domination

