

Tools

L
GHC Hoogle Pointfree Djinn
Type holes Type search Remove lambdas Code synthesis
QuickSpec FitSpec Pointful Wingman
Equational laws Refining property tests Insert lambdas splits, code

synthesis

Libraries

Expose the core algorithm
Reuse across different languages
Returns useful data structures

Enables rich user experience with types

Tell me cardinality, i.e. how many inhabitants
Show me similar functions which already exist
Synthesise code

O
O
O
o Gives equational laws

Type Algebra

Void ~ ©

() ~1

Bool ~ 2

(forall a. a -> a) ~ 1
(forall a. a -> a -> a) ~ 2
Either a b ~ (a + b)

(a, b) ~ (a * b)

[()] ~ =

Counting type inhabitants.

Last modified on April 20, 2019 by Alex

Preamble

For Scala readers: Haskell's void type can be assumed to be roughly equivalent to Nothing. Neither has any
inhabitants other than diverging or erroneous expressions that fail at runtime. Maybe is the same as option,
except its empty case is called Nothing and its non-empty case is called Just.

For Haskell readers: Any in Scala is roughly equivalent to

data Any = forall a. Any a

the least informative existential tvpe

https://web.archive.org/web/20201111192703/https:/alexknvl.com/posts/counting-type-inhabitants.html

https://web.archive.org/web/20201111192703/https://alexknvl.com/posts/counting-type-inhabitants.html

Type Formulas

¢ (a) b) ~ (bJ a)
e Either a b ~ Either b a

e ((a, b) ->c) ~(a ->b ->)
e (@ ->b ->c) ~ ((a, b) ->)
e (Either a b -> c) ~ (a -> ¢, b -> ¢)

e (forall x. (a -> x) -> f x) ~f a
e (forall x. (x -> a) -> f x) ~f a

Rewrite Rules - Commutative

commutative :: Algebra x -> Maybe (Algebra x)
commutative (Product a b) =
Just (Product b a)
commutative (Sum a b) =
Just (Sum b a)
commutative _ =
Nothing

Rewrite Rules - Curry Product

curryProduct :: Algebra x -> Maybe (Algebra x)
curryProduct (Exponent c¢ (Product a b)) =

Just (Exponent (Exponent c b) a)
curryProduct _ =

Nothing

Rewrite Rules - Combined

rules :: Ord x => [(RewritelLabel, Rule [] (Algebra x))]
rules =
[(RewriteYonedaCovariant, rule yonedaCovariant),

(RewriteYonedaContravariant, rule yonedaContravariant),
(RewriteMoveForall, rule moveForall),
(RewriteRemoveForall, rule removeForall),
(RewriteArithmetic, rule arithmetic),
(RewriteCurrySum, rule currySum),
(RewriteCurryProduct, rule curryProduct),
(RewriteUncurryProduct, rule uncurryProduct),
(RewriteAssociative, rule associative),
(RewriteDistributive, rule distributive),
(RewriteCommutative, rule commutative),
(RewriteIntroduceArity, rule introduceArity)

Heuristics

« Disincentivise terms
« Terms have cost 5
« Functions have cost 10
« Foralls have cost 20

 Disincentivise rules
e Eachrule hascost]
e Commutative has cost 2

Pretty printed

Va. vV b. (a->b) ->a+1->b+1

=V a.a+1->a+1 -- via covariant yoneda lemma

=V a. (a->a+1)* (1 ->a+1) -- via curry sum
=V a. (a->a+1) * (a+1) -- via arithmetic

=(V a.a->a+1)* (Vv a. a+1) -- via distributive
=(Va. (1 ->a) ->a+1) * (Vv a. a+1) -- via introduce
arity

=(1+1) * (Vv a. a +1) -- via covariant yoneda lemma
=2 *(V a. a+1) -- via arithmetic

=2 * (V a. (0 ->a) ->a+ 1) -- via introduce arity

=2 * (0 +1) -- via covariant yoneda lemma

=2 * 1 -- via arithmetic

= 2 -- via arithmetic

VaVbla—-b)—=(a+1)=(b+1))=Vala+1)—=(a+]1) (covariant yoneda lemma)

=Vaa-(a+1)*1->(a+1) (curry sum)
=Vaa-—(a+1)*(a+1) (arithmetic)
=(Vaa—(a+1)*(Vaa+1) (distributive)

=(Va(l sa)=(a+1)*(Vaa+]1) (introduce arity)
=(1+1)*(Vaa+1) (covariant yoneda lemma)
=2*(Vaa+1) (arithmetic)
=2*(Va(0—a)—(a+1)) (introduce arity)
=2*%(0+1) (covariant yoneda lemma)
=) *] (arithmetic)

=2 (arithmetic)

Rendered via MathJax

type-algebra, next steps

https://aithub.com/puffnfresh/type-algebra

Publish on Hackage
Properly handle infinite types
Quick/dirty translation from Haskell types

General problem:

o Run abunch of rewrites
o Apply a heuristic

o Search for solution(s)

Are there useful rewrites that are missing?

https://github.com/puffnfresh/type-algebra

HoogAe (a->b)->[a] ->[b | | set:stackage v || Search |

Packages

is:exact

base +

ghc +
haskell-gi-base +
relude &
xmonad-contrib +
Cabal +
base-prelude +
rio =+
numeric-prelude &
dimensional &
pqueue
ghc-lib-parser +
rebase +
numhask
LambdaHack +
mixed-types-num =

i (a->b)->[a]->[b]

map :: (a->b) ->[a] -> [b]

base Prelude Data.List GHC.Base GHC.List GHC.OldList, ghc GHC.Prelude, haskell-gi-base Data.Gl.Base.ShortPrelude, relude
Relude.List.Reexport, xmonad-contrib XMonad.Config.Prime

@ map f xs is the list obtained by applying T to each element of xs, i.e..

map :: (a->b) -> [a] -> [b]

Cabal Distribution.Compat.Prelude.Internal, base-prelude BasePrelude, rio RIO.List RIO.Prelude, numeric-prelude NumericPrelude
NumericPrelude.Base, dimensional Numeric.Units.Dimensional.Prelude, pqueue Data.PQueue.Max, ghc-lib-parser GHC.Prelude, rebase
Rebase.Prelude, numhask NumHask.Prelude, LambdaHack Game.LambdaHack.Core.Prelude Game.LambdaHack.Core.Prelude, mixed-type:
Numeric.MixedTypes.PreludeHiding, yesod-paginator Yesod.Paginator.Prelude, brittany Language.Haskell.Brittany.Internal.Prelude,
distribution-opensuse OpenSuse.Prelude, faktory Faktory.Prelude, hledger-web Hledger.Web.Import

@ map f xs is the list obtained by applying f to each element of xs, i.e.

strictMap :: (a -> b) -> [a] -> [b]
ghc GHC.Utils.Misc, ghc-lib-parser GHC.Utils.Misc

map :: (a->b) ->[a] -> [b]

y€
br

Type

Search using Hoogle

faktory +

hlaedoar-weh &4

livm-hs-pure LLVM.Prelude

o u B2 R S MO ANET S A Y T Ry A WAL RN TR | N RSO Y YO R T Sl Ry L WL W, St >

Tuesday, June 09, 2020
Hoogle Searching Overview

Summary: Hoogle 5 has three interesting parts, a pipeline, database and search algorithm.

The Haskell search engine Hoogle has gone through five major designs, the first four of which are described in these slides from TFP
2011. Hoogle version 5 was designed to be a complete rewrite which simplified the design and allowed it to scale to all of Hackage. All
versions of Hoogle have had some preprocessing step which consumes Haskell definitions, and writes out a data file. They then have
the search phase which uses that data file to perform searches. In this post I'll go through three parts -- what the data file looks like,
how we generate it, and how we search it. When we consider these three parts, the evolution of Hoogle can be seen as:

« Versions 1-3, produce fairly simple data files, then do an expensive search on top. Fails to scale to large sizes.

« Version 4, produce a very elaborate data files, aiming to search quickly on top. Failed because producing the data file required
a lot of babysitting and a long time, so was updated very rarely (yearly). Also, searching a complex data file ends up with a lot
of corner cases which have terrible complexity (e.g.a -> a -> a -> a -> a would kill the server).

« Version 5, generate very simple data files, then do O(n) but small-constant multiplier searching on top. Update the files daily
and automatically. Make search time very consistent.

Version 5 data file

By version 5 | had realised that deserialising the data file was both time consuming and memory hungry. Therefore, in version 5, the

res live, and
9 http:/neilmitchell.blogspot.com/2020/06/hoogle-searching-overview.htm|

data NamesSize a where NamesSize :: NamesSize Int
data NamesItems a where NamesItems :‘: NamesItems (V.Vector Targetld)

http://neilmitchell.blogspot.com/2020/06/hoogle-searching-overview.html

Type Search

« Fingerprints types into a database
« Arity:(a ->b) =1
e Jerms.(a -> b) =2
 Rares: (Settings a -> Program b) = [“Settings”, “Program”]

« Applies some rewrites to the query
* Finds nearest fingerprints
« Unifies the signatures

Type for Searching

runSearch
:: Monad m
=> Search m a a' b b' c
-2 [(b, a)]
-> a
-> b
-> SerialT m (b, c)

Structured Type for Searching

Search
(Writer [SearchLog a n])
(Fingerprint a)
(FingerprintCost a)
(Signature n)
SignatureCost
(StructuredCosts a)

Query string: Int -> String

Results:

1. Int -> String
2. a -> String
3. Int -> Db

4. a -> D

type-search

https:/aithub.com/puffnfresh/type-search
« Found and fixed bugs in Hoogle
« Could almost be swapped into Hoogle

« Has commonalities with type-algebra:
Ranking by cost
Rewrites
Searching for solutions

https://github.com/puffnfresh/type-search

Djinn
f::a->Maybe a->a Submit

f :: a -> Maybe a -> a
fab-=
case b of
Nothing -> a
JUSE € -> ¢
-- or
fa_=a

https:/MwWww.hedonisticlearnina.com/diinn/

https://www.hedonisticlearning.com/djinn/

For example, give QuickSpec the functions reverse,++ and [], and it will find six laws:

reverse [] == []

Xs ++ [] == Xxs

[] ++ Xs == XS

reverse (reverse Xs) == XS

(Xs ++ ys) ++ zs == XS ++ (ys ++ 2s)

reverse Xs ++ reverse ys == reverse (ys ++ XS)

https:/hackage.haskell org/package/quickspec

https://hackage.haskell.org/package/quickspec

- Evaluate "repeat’
main = do
print 1
foldr (>>) (return ()) (take 2 (print l:repeat (print 1)))

- Evaluate "take’
main = do
print 1
foldr (>>) (return ()) (print l:take 1 (repeat (print 1)))

- Evaluate " foldr’
main = do
print 1
print 1
foldr (>>) (return ()) (take 1 (repeat (print 1)))

https:/www.haskellforall.com/2013/12/equational-reasoning.html

https://www.haskellforall.com/2013/12/equational-reasoning.html

ar w‘;i‘*;"
PRRN L i
\ A)\ %‘ A
5

World Domination

