Glean

FACTS ABOUT CODE

Simon Marlow 00 MetCI

“I want to ask questions about my code”

What are all the Where’s the
functions in file definition of Who is using
Xyz.hs? my_function? MyClass?

What are all the Where’s the
functions in file definition of Who is using
Xyz.hs? my_function? MyClass?

With these, you could implement IDE
features like jump-to-definition,
find-all-references, or outlines.

What are all the Is anything from
headers referenced this import used in Who is calling
by my project? this file? my_function?

What are all the Is anything from
headers referenced this import used in Who is calling
by my project? this file? my_function?

With these, you could implement dead
code detection tools.

What are all the What does the What documentation
methods of C and class C inherit comments are
their types? from? associated with C?

What are all the What does the What documentation
methods of C and class C inherit comments are
their types? from? associated with C?

With these, you could implement code documentation tools.

Find all the Find code that
Find all functions functions that creates an object of
called unsafeXXX returna T type MyClass

Find all the
Find all functions functions that Find calls to
called unsafeXXX returna T my_function

With these, you could implement code search tools.

All of these
things exist

e |n one form or another

All of these
things exist

e |n one form or another

e But what if you want to ask questions
about

O

O

O

All of your company’s code?
Or all of github?

In all the different programming
languages?

All of these We need something
things exist that scales

e |n one form or another

e But what if you want to ask questions to large codebases

about to multiple programming languages

o All of your company’s code? to lots of clients

o Or all of github?

to complex queries

o In all the different programming
languages?

o

Glean

System for collecting, deriving and querying facts about source code

[Get Started]

Indexer
f’
/ \ e One for each language
Source code Compiler e Use existing compiler front end to get AST
:> front end :> . e Turn AST into Glean facts
it (,) e Parallelise and distribute like crazy

3 : e
Ntk e e s m e e m e e Emssm e e EEesEmEeesEEea e EEeaEnas @...-“ IDEs
4 I

g h - Code
browsing
Glean > 5 ~ ~
- - Analysis
e
~_ A
RocksDB N)

~

Source code

4

Storing facts

Compiler
front end

Each fact is stored exactly once

Using compact binary encoding

Facts are indexed for efficient retrieval
Derive additional facts automatically

RocksDB

llllllllllllll

/
IDEs

N

/

\

~

Code
browsing

/

Analysis

/

AST
/ \ Querying the data

e Glean’s query language is called Angle

front end o DBsreplicated across a fleet of servers

f
/ \ e Based on Datalog
Source code :y,\ Compiler j e Querying at scale:
in

t) S :
o Indexing and replication runs continuously

(+)
4 Y\ []
X y P
@ IDEs W
- 2

4 A — Code
: browsing
Glean > - - ~
- / Analysis
@ é g :

— -
w -

RocksDB N)

~

. L]

Basic principles

Glean stores facts
Each fact is stored exactly once, and is given a unique fact ID

The type of a factis a predicate

Predicate Fact

predicate Name: string { “i¢ This is what the \
programmer writes in the
schema.

It defines the shape of the
data to store.

This says we have a
predicate “Name” with keys

&ftype “string” /

Predicate Fact

predicate Name: string { “id”: 42, "key”: "“foo” } \\\\
This is an example of a

Name fact.

I'm using JSON as a
concrete representation,
but you can also write and
query data using a
strongly-typed DSL.

The ID 42 is assigned by
Glean; if you write the
same fact twice they get
commoned up.

< 4

Predicate Fact

predicate Name: string { “id": 42, "key”: “foo” }
{
predicate QualifiedName: “id”: 43,
{ “" key" : {
name ° Name, nnameu: { nidn: 44. nkeyu: "f" }
module : Name | , "key”, “M" }
) Predicates can refer to other

predicates, so the facts form
a DAG. (note acyclic)

,/

Predicate Fact

predicate Name: string { “id”: 42, "key”: "“foo” }
{
predicate QualifiedName: “id” . 43,
{ llkey": {
name : Name, “name”: { "“id": 44, “key”: "“f" }
module : Name “module”: { “id”: 45, "“key”, “M" } You can write data nested
} } like this.
}

Query results are also
pranded by default.

)

Predicate Fact

predicate Name: string { “id": 42, "key”: “foo” }
{
predicate QualifiedName: “id”: 43,
{ “" key" : {
name : Name, llname": { llid": 44, llkey": llf" }
module : Name llmodule": { llid": 45, llkey", MM" }
} }
}
type Location = D\
{
line : nat, This is a type, not a
column : nat predicate. It has no facts, it's
Y just an alias.)
predicate Class : g //
{ “column”: ©
name : QualifiedName, }
location : Location, }

} }

Predicate

predicate Name: string

predicate QualifiedName:

{

name . Name,
module : Name

}

type Location =

{

line : nat,
column : nat

}

predicate Class

{

name : QualifiedName,

location : Location,

}

Fact
{ llid": 42, llkey": llfOO" }
{

“id" . 43,

llkey" : {

llname": { llid": 44, llkey": llf” }

llmodule": { llid": 45, llkey", MM" }
}
}
{
“id" . 44,
llkey" : {

“name” : { “id”: 43 }

“Location” { \\
“line”: 10, We might refer to a fact by
“column”: © its ID only, to express

\ } sharing explicitly.

}

(U

)

Indexing end-to-end

Define a schema (predicates + types)
The indexer emits data using either JSON or a typed DSL
Glean encodes and writes the data to a RocksDB

Then you can query it...

Querying with Angle

S glean shell

Glean Shell, built on 2022-04-27T14:22:027Z, from rev
ed19a6d3e3¢c3a66867a161988a134f7a9b7140d3

type :help for help.

>

Querying with Angle

> example.Class { name = { name = "MyClass" }}

¢ \

his is a query, it will return
all matching facts in the DB

(U)

Querying with Angle

> example.Class { name = { name = "MyClass" }}

The query starts with a predicate }

Querying with Angle

> example.Class { name = { name = "MyClass" }}

and gives a pattern to specify
which facts we want to match

Querying with Angle

predicate Name: string

> example.Class { name = { name = "MyClass" }}

predicate QualifiedName:

{

name : Name,
module : Name

and gives a pattern to specify)
which facts we want to match

predicate Class

{

name : QualifiedName,
location : Location,

}

Querying with Angle

facts> example.Class { name = { name = "MyClass" }}
{

"id": 1027,

"key": {

"name" : {

"id": 1026,

"key": {

"name": { "id": 1024, "key": "MyClass" },
"module"”: { "id": 1025, "key": "M" }

}

¥

"location": { "line": 16, "column": 1 }

1 results, 4 facts, 0.57ms, 215504 bytes, 1313 compiled bytes
facts>

Querying with Angle

e The query language is quite expressive:
o statements, variables, disjunction, if-then-else, negation
o supported by a query compiler, optimizer, and byte-code query engin

Querying with Angle

e The query language is quite expressive:
o statements, variables, disjunction, if-then-else, negation
o supported by a query compiler, optimizer, and byte-code query engin

e Recursive queries? not yet.

Philosophy: language-specific schemas

e Eachlanguage has its own schema

e lLanguage-specific detail enables language-specific tools
o e.g.redundant #include removalin C++

e Design the schema to be a natural fit for the indexer

But how will we support language-agnostic tools?

e With no commonality across our -
language-specific schemas, it will be hard Cit W

for clients to use the data

s B {
Generic Python
code 27?9797

-
browser b
\ J JS

L/ I
Haskell
\ /

But how will we support language-agnostic tools?

p
e Build a client-side library to abstract over - A C++ W
?
the data” e ~ _ [
Generic ulti - Python
code language ("
browser I'bg J
N ey JS
L/ I
- - Haskell

= /

But how will we support language-agnostic tools?

the data? 4 I
o But we want to support clients in

p
multiple languages, so clients must be - . A Glean -
_ Generic . Python
thin multi -
code language ("
browser I'bg J

N D kel JS

L/)

- / Haskell

e Build a client-side library to abstract over -
C++ W

= /

[Which language?

But how will we support language-agnostic tools?

e Putitinaservice?
e Yes, but the APl is fixed and inflexible, can’t
write arbitrary queries

-

\

~

Generic
code

browser

)

Glean
multi -
language
service

-~

N

C++ W
-
Python W

N

[
.

L/ I
Haskell
\ /

Datalog

e Datalogis a query language in which you can derive new facts from existing facts
e e.g.we have

o Facts about Java declarations in Java source files

o Facts about C++ declarations in C++ source files

O
e From all these we can derive:

o Facts about declarations in source files

“codemarkup”

~

type Declaration = Declaration: a declaration
{ In any language

java : java.Declaration | J
python : python.Declaration |

}
predicate FileDeclaration :
{
file : string,
decl : Declaration
}

{ File, Decl } where
JavaFileDeclaration { File, Decl } |
PythonFileDeclaration { File, Decl } |

“codemarkup”

type Declaration =

{

java : java.Declaration |
python : python.Declaration | N\

FileDeclaration { F, D }
} “file F contains declaration D”

/

predicate FileDeclaration :

{
file : string,
decl : Declaration

}

{ File, Decl } where
JavaFileDeclaration { File, Decl } |
PythonFileDeclaration { File, Decl } |

“codemarkup”

type Declaration =

{

java : java.Declaration |
python : python.Declaration |

}

predicate FileDeclaration :
{ . o)
file : string, Defined as the disjunction of all

decl : Declaration language-specific
} FileDeclaration predicates

{ File, Decl } where
JavaFileDeclaration { File, Decl } |
PythonFileDeclaration { File, Decl } |

/

“codemarkup” Queries

ty;{>e Declaration = FileDeclaration { file = “foo.py” }

java : java.Declaration |

thon : thon.Declaration
2 2 | Would search for declarations of all

languages in “foo.py” and return them

}

predicate FileDeclaration :

{
file : string,
decl : Declaration

}

{ File, Decl } where
JavaFileDeclaration { File, Decl } |
PythonFileDeclaration { File, Decl } |

Glean’s “codemarkup” layer

e We’ve built a library of language-agnostic predicates called “codemarkup”
e Currently supports common code navigation properties:
o Declarations-by-file
o References-by-file
o Declaration-to-uses
o Some declaration metadata
e Languages:
o C++, Python, Javascript (Flow), C++, Objective C, Haskell, Rust, Erlang, generic LSIF

Real-world example

S glean index flow ~/code/react --repo react/

Real-world example

S glean index flow ~/code/react --repo react/
... (a few seconds later)
Wrote facts about 616 JavaScript files.

Real-world example

S glean shell

Glean Shell, built on 2022-04-22 09:45:37.840354178 UTC, from rev
cf3b295281¢c94578945¢c5010b28cc1bad2e81a7f

type :help for help.

>

Real-world example

S glean shell
Glean Shell, built on 2022-04-22 09:45:37.840354178 UTC, from rev

ct3b295281¢c94578945¢c5010b20cc1bad2e81a7f
type :help for help.

> :db react/1

react>

Real-world example

S glean shell
Glean Shell, built on 2022-04-22 09:45:37.840354178 UTC, from rev

ct3b295281¢c94578945¢c5010b20cc1bad2e81a7f
type :help for help.

> :db react/1

react> :stat

Total: 4316960 facts (15.37 MB)

Real-world example

react> codemarkup.FileEntitylLocations { file = "test/packages/shared/ReactTypes.js" }

{
"id": 432714,
"key": {
"file": { "id": 90012, "key": "test/packages/shared/ReactTypes.js" },
"location": {
"name"” . "ReactScopelnstance”,
"file": { "id": 90012, "key": "test/packages/shared/ReactTypes.js" },
"location": { "span": { "start": 1927, "length": 18 } }
¥
}

1 results, 6 facts, 15.77ms, 13167976 bytes, 64383 compiled bytes
results truncated (current limit 1, use :limit <n> to change it)
Use :more to see more results

react>

What about functional programming???

With Haskell we can define a type-safe query DSL

Angle Haskell
src.File “foo.hs” predicate @Src.File $§ string “foo.hs”
\
Type application tells the
DSL which predicate we’re
searching
L /
predicate :: forall p . Predicate p => Angle (KeyType p) —-> Angle p

string :: Text -> Angle Text

With Haskell we can define a type-safe query DSL

Angle Haskell
src.File “foo.hs” predicate @Src.File $§ string “foo.hs”
/“Angle t” is a query that h
returns results of type t.
It pretty-prints as the actual
@uery. \/_/
predicate :: forall p . Predicate p => Angle (KeyType p) —-> Angle p

string :: Text -> Angle Text

With Haskell we can define a type-safe query DSL

Angle Haskell

src.File “foo.hs” predicate @Src.File $§ string “foo.hs”

python.DeclarationWithName { predicate @Python.DeclarationWithName $

name = “foo” rec S
} field @"name” “foo”

end

N

Type application with string
type literal for field names.

A /

With Haskell we can define a type-safe query DSL

Angle Haskell

src.File “foo.hs” predicate @Src.File $§ string “foo.hs”

python.DeclarationWithName { predicate @Python.DeclarationWithName $

name = “foo” rec 3
) field @"name” “foo”

end

N

The DSL has enough

information to type-check the
record field.

A)

Instant feedback in VS code

e No instance for (HasField "nosuchfield" Text 'TNoFields)
arising from a use of ‘rec’
e In the second argument of ‘predicate’, namely
“(rec
$ field @"file" (asPredicate (factId fileid))
$ field @"location" location
$ field @"entity" entity
$ field @"nosuchfield" (string "abc") end)'’

In the second argument of ‘(.=)’, namely
‘predicate
@Code.FileEntityLocations
(rec
$ field @"file" (asPredicate (factId fileid))
NNNNN field @"nosuchfield" (string "abc")

ggg)

AN

1

Instant feedback in VS code

e Couldn't match type ‘Glean.Nat’ with ‘Code.Location’
arising from a use of ‘rec’
« In the second argument of ‘predicate’, namely
‘(rec
$ field @"file" (asPredicate (factId fileid))
$ field @"location"” (nat 42) $ field @"entity" entity $ end)’
In the second argument of ‘(.=)', namely
‘predicate
@Code.FileEntitylLocations
(rec
$ field @"file" (asPredicate (factId fileid))
$ field @"location" (nat 42) $ field @"entity" entity $ end)’
In the expression:
o Jield @' location” (nat 42) $
field @"ent{EﬂL;gﬁﬂ&xwi

T i i T P W

NSNS SIS

How does this work?

schema.angle

predicate FileEntitylLocations:

{

file: src.File,
location: Location,
entity: code.Entity,

}

schema.hs

data FileEntitylLocations = FileEntitylLocations
{ fileEntitylLocations_file :: Src.File
, TileEntitylLocations_location :: Code.Location
, fileEntitylLocations_entity :: Code.Entity

}

type instance RecordFields FileEntitylLocations =
TField "file" Src.File (

TField “location” Code.Location (
TField “entity” Code.Entity
TNoFields))

N

Code generation
from the schema to
Haskell (amongst
other languages)

A /

How does this work?

C N

schema.hs A generated Haskell
datatype for each
data FileEntitylLocations = FileEntitylLocations predicate and type in
schema.angle { fileEntitylLocations_file :: Src.File the schema.
, TileEntitylLocations_location :: Code.Location ///
, fileEntitylLocations_entity :: Code.Entity
predicate FileEntitylLocations: }
{
file: src.File, type instance RecordFields FileEntitylLocations =
location: Location, TField "file" Src.File (
entity: code.Entity, TField “location” Code.Location (
} TField “entity” Code.Entity

TNoFields))

How does this work?

schema.hs

data FileEntitylLocations = FileEntitylLocations

schema.angle { fileEntitylLocations_file :: Src.File
, TileEntitylLocations_location :: Code.Location
, fileEntitylLocations_entity :: Code.Entity
predicate FileEntitylLocations: }
{
file: src.File, type instance RecordFields FileEntitylocations = \\\
location: Location, TField "file" Src.File (
entity: code.Entity, TField “location” Code.Location (Type instances tell
} TField “entity” Code.Entity the query library
TNoFields)) fhbqut the fields and
eir types

A /

A pleasant query authoring experience

Iterate on your Angle code using Glean to typecheck it

Generate the Haskell

Iterate on your Haskell query code, using GHC to typecheck it in VS Code
... queries do not fail at runtime

... queries return native Haskell types

A pleasant query authoring experience

e Thisisn’t Haskell-specific.
e There’s also a Hack-based DSL for queries

o itlooks very different, but it’s idiomatic Hack
e And we’re planning a Python DSL too

e Clients using languages without a DSL can make raw Angle queries, just without compile-time
typechecking and IDE feedback.

More Haskell benefits:

e Clients are often making multiple queries to Glean
e We want those to be concurrent when possible
e Haxl + ApplicativeDo is great for this

ApplicativeDo

Turns
do

a <- X

b <-vy

return (a,b)

into

(,) <$>x <*>y

by analysing dependencies between statements.

Hax X

Performs Applicatives in parallel.

Haxl

() <$>x <*>y
will run x and y in parallel.

e Requires a Haxl “datasource” to be implemented for each backend
e Gleanincludes a Haxl datasource for Glean queries

Haxl

When you write

Hax|

mapM query list

the queries all run in parallel.

Haxl + ApplicativeDo

When you write

do
a <- .. glean query ..
b <- .. glean query ..
return (a,b)

with ApplicativeDo enabled, the queries run in parallel.

The Haxl library: effortless concurrency

e A snippet from the Glass codebase that fetches the symbols for a file:

{-# LANGUAGE ApplicativeDo #-}

documentSymbolsForLanguage mlimit includeRefs fileld = do
xrefs <- 1f includeRefs
then searchRecursiveWithLimit mlimit $

Query.fileEntityXRefLocations fileld
else return [] — These two queries run

|
defns <- searchRecursiveWithLimit mlimit $4,,,,,,/f”"”’-CO”CUWenﬂy.

Query.fileEntityLocations fileld
return (xrefs,defns)

FAQ

e What languages do you support?
o Open source now: Javascript/Flow, Hack, Typescript’, Rust’, Go’

" =via LSIF

o Open source but not fully integrated: C++ & Objective C, Rust, Haskell
o Not open source yet, but planned: Python, Java

FAQ

e Are there any actual clients | can use?

FAQ

e \Where are you going with open source?

How do | play with it?

e http://glean.software

e Demo Docker images available for download

http://glean.software

