
Glean
FACTS ABOUT CODE

Simon Marlow

“I want to ask questions about my code”

What are all the
functions in file
xyz.hs?

Where’s the
definition of
my_function?

Who is using
MyClass?

What are all the
functions in file
xyz.hs?

Where’s the
definition of
my_function?

Who is using
MyClass?

With these, you could implement IDE
features like jump-to-definition,
find-all-references, or outlines.

What are all the
headers referenced
by my project?

Is anything from
this import used in
this file?

Who is calling
my_function?

What are all the
headers referenced
by my project?

Is anything from
this import used in
this file?

Who is calling
my_function?

With these, you could implement dead
code detection tools.

What are all the
methods of C and
their types?

What does the
class C inherit
from?

What documentation
comments are
associated with C?

What are all the
methods of C and
their types?

What does the
class C inherit
from?

What documentation
comments are
associated with C?

With these, you could implement code documentation tools.

Find all functions
called unsafeXXX

Find all the
functions that
return a T

Find code that
creates an object of
type MyClass

Find all functions
called unsafeXXX

Find all the
functions that
return a T

Find calls to
my_function

With these, you could implement code search tools.

All of these
things exist

● In one form or another

All of these
things exist

● In one form or another

● But what if you want to ask questions
about

○ All of your company’s code?

○ Or all of github?

○ In all the different programming
languages?

All of these
things exist

● In one form or another

● But what if you want to ask questions
about

○ All of your company’s code?

○ Or all of github?

○ In all the different programming
languages?

We need something
that scales

● to large codebases
● to multiple programming languages
● to lots of clients
● to complex queries

Source code Compiler
 front end

f

yx

int (,)

AST

IDEs

Code
browsing

Analysis

...

Glean

RocksDB

Indexer

● One for each language
● Use existing compiler front end to get AST
● Turn AST into Glean facts
● Parallelise and distribute like crazy

Source code Compiler
 front end

f

yx

int (,)

AST

IDEs

Code
browsing

Analysis

...

Glean

RocksDB

Storing facts

● Each fact is stored exactly once
● Using compact binary encoding
● Facts are indexed for efficient retrieval
● Derive additional facts automatically

Source code Compiler
 front end

f

yx

int (,)

AST

IDEs

Code
browsing

Analysis

...

Glean

RocksDB

Querying the data

● Glean’s query language is called Angle
● Based on Datalog
● Querying at scale:

○ DBs replicated across a fleet of servers
○ Indexing and replication runs continuously

Basic principles
Glean stores facts

Each fact is stored exactly once, and is given a unique fact ID

The type of a fact is a predicate

Predicate Fact

predicate Name: string { “id”: 42, “key”: “foo” }This is what the
programmer writes in the
schema.

It defines the shape of the
data to store.

This says we have a
predicate “Name” with keys
of type “string”

Predicate Fact

predicate Name: string { “id”: 42, “key”: “foo” }
This is an example of a
Name fact.

I’m using JSON as a
concrete representation,
but you can also write and
query data using a
strongly-typed DSL.

The ID 42 is assigned by
Glean; if you write the
same fact twice they get
commoned up.

Predicate Fact

predicate Name: string { “id”: 42, “key”: “foo” }

predicate QualifiedName:
 {
 name : Name,
 module : Name
 }

{
 “id”: 43,
 “key”: {
 “name”: { “id”: 44, “key”: “f” }
 “module”: { “id”: 45, “key”, “M” }
 }
}

Predicates can refer to other
predicates, so the facts form
a DAG. (note acyclic)

Predicate Fact

predicate Name: string { “id”: 42, “key”: “foo” }

predicate QualifiedName:
 {
 name : Name,
 module : Name
 }

{
 “id”: 43,
 “key”: {
 “name”: { “id”: 44, “key”: “f” }
 “module”: { “id”: 45, “key”, “M” }
 }
}

You can write data nested
like this.

Query results are also
expanded by default.

Predicate Fact

predicate Name: string { “id”: 42, “key”: “foo” }

predicate QualifiedName:
 {
 name : Name,
 module : Name
 }

{
 “id”: 43,
 “key”: {
 “name”: { “id”: 44, “key”: “f” }
 “module”: { “id”: 45, “key”, “M” }
 }
}

type Location =
 {
 line : nat,
 column : nat
 }

predicate Class :
 {
 name : QualifiedName,
 location : Location,
 }

{
 “id”: 44,
 “key”: {
 “name” : { “id”: 43 }
 “Location” : {
 “line”: 10,
 “column”: 0
 }
 }
}

This is a type, not a
predicate. It has no facts, it’s
just an alias.

Predicate Fact

predicate Name: string { “id”: 42, “key”: “foo” }

predicate QualifiedName:
 {
 name : Name,
 module : Name
 }

{
 “id”: 43,
 “key”: {
 “name”: { “id”: 44, “key”: “f” }
 “module”: { “id”: 45, “key”, “M” }
 }
}

type Location =
 {
 line : nat,
 column : nat
 }

predicate Class :
 {
 name : QualifiedName,
 location : Location,
 }

{
 “id”: 44,
 “key”: {
 “name” : { “id”: 43 }
 “Location” : {
 “line”: 10,
 “column”: 0
 }
 }
}

We might refer to a fact by
its ID only, to express
sharing explicitly.

Indexing end-to-end
● Define a schema (predicates + types)
● The indexer emits data using either JSON or a typed DSL
● Glean encodes and writes the data to a RocksDB
● Then you can query it…

Querying with Angle

$ glean shell
Glean Shell, built on 2022-04-27T14:22:02Z, from rev
ed19a6d3e3c3a66867a16f988a134f7a9b7f40d3
type :help for help.
>

Querying with Angle

> example.Class { name = { name = "MyClass" }}

This is a query, it will return
all matching facts in the DB

Querying with Angle

> example.Class { name = { name = "MyClass" }}

The query starts with a predicate

Querying with Angle

> example.Class { name = { name = "MyClass" }}

and gives a pattern to specify
which facts we want to match

Querying with Angle

> example.Class { name = { name = "MyClass" }}

and gives a pattern to specify
which facts we want to match

predicate Name: string

predicate QualifiedName:
 {
 name : Name,
 module : Name
 }

predicate Class :
 {
 name : QualifiedName,
 location : Location,
 }

Querying with Angle

facts> example.Class { name = { name = "MyClass" }}
{
 "id": 1027,
 "key": {

"name": {
 "id": 1026,
 "key": {
 "name": { "id": 1024, "key": "MyClass" },
 "module": { "id": 1025, "key": "M" }
 }

},
"location": { "line": 10, "column": 1 }

 }
}

1 results, 4 facts, 0.57ms, 215504 bytes, 1313 compiled bytes
facts>

Querying with Angle

● The query language is quite expressive:
○ statements, variables, disjunction, if-then-else, negation
○ supported by a query compiler, optimizer, and byte-code query engin

Querying with Angle

● The query language is quite expressive:
○ statements, variables, disjunction, if-then-else, negation
○ supported by a query compiler, optimizer, and byte-code query engin

● Recursive queries? not yet.

Philosophy: language-specific schemas
● Each language has its own schema
● Language-specific detail enables language-specific tools

○ e.g. redundant #include removal in C++
● Design the schema to be a natural fit for the indexer

But how will we support language-agnostic tools?
● With no commonality across our

language-specific schemas, it will be hard
for clients to use the data

C++

Python

JS

Haskell

Generic
code

browser
????

But how will we support language-agnostic tools?

● Build a client-side library to abstract over
the data?

C++

Python

JS

Haskell

Generic
code

browser

Glean
multi -

language
library

But how will we support language-agnostic tools?
● Build a client-side library to abstract over

the data?
○ But we want to support clients in

multiple languages, so clients must be
thin

C++

Python

JS

Haskell

Generic
code

browser

Glean
multi -

language
library

Which language?

But how will we support language-agnostic tools?
● Put it in a service?
● Yes, but the API is fixed and inflexible, can’t

write arbitrary queries
C++

Python

JS

Haskell

Generic
code

browser

Glean
multi -

language
service

Datalog
● Datalog is a query language in which you can derive new facts from existing facts
● e.g. we have

○ Facts about Java declarations in Java source files
○ Facts about C++ declarations in C++ source files
○ …

● From all these we can derive:
○ Facts about declarations in source files

“codemarkup”
Declaration: a declaration

in any language

“codemarkup”

FileDeclaration { F, D }
“file F contains declaration D”

“codemarkup”

Defined as the disjunction of all
language-specific

FileDeclaration predicates

“codemarkup”

FileDeclaration { file = “foo.py” }

Queries

Would search for declarations of all
languages in “foo.py” and return them

Glean’s “codemarkup” layer
● We’ve built a library of language-agnostic predicates called “codemarkup”
● Currently supports common code navigation properties:

○ Declarations-by-file
○ References-by-file
○ Declaration-to-uses
○ Some declaration metadata

● Languages:
○ C++, Python, Javascript (Flow), C++, Objective C, Haskell, Rust, Erlang, generic LSIF

Real-world example

$ glean index flow ~/code/react --repo react/1
…

Real-world example

$ glean index flow ~/code/react --repo react/1
... (a few seconds later)
Wrote facts about 616 JavaScript files.
...
$

Real-world example

$ glean shell
Glean Shell, built on 2022-04-22 09:45:37.840354178 UTC, from rev
cf3b295281c94578945c5010b20cc1bad2e81a7f
type :help for help.
>

Real-world example

$ glean shell
Glean Shell, built on 2022-04-22 09:45:37.840354178 UTC, from rev
cf3b295281c94578945c5010b20cc1bad2e81a7f
type :help for help.
> :db react/1
react>

Real-world example

$ glean shell
Glean Shell, built on 2022-04-22 09:45:37.840354178 UTC, from rev
cf3b295281c94578945c5010b20cc1bad2e81a7f
type :help for help.
> :db react/1
react> :stat
...
Total: 431690 facts (15.37 MB)

Real-world example

react> codemarkup.FileEntityLocations { file = "test/packages/shared/ReactTypes.js" }
{
 "id": 432714,
 "key": {

"file": { "id": 90012, "key": "test/packages/shared/ReactTypes.js" },
"location": {

 "name": "ReactScopeInstance",
 "file": { "id": 90012, "key": "test/packages/shared/ReactTypes.js" },
 "location": { "span": { "start": 1927, "length": 18 } }

},
...

}

1 results, 6 facts, 15.77ms, 13167976 bytes, 64383 compiled bytes
results truncated (current limit 1, use :limit <n> to change it)
Use :more to see more results
react>

What about functional programming???

Angle Haskell

src.File “foo.hs” predicate @Src.File $ string “foo.hs”

Type application tells the
DSL which predicate we’re
searching

predicate :: forall p . Predicate p => Angle (KeyType p) -> Angle p

string :: Text -> Angle Text

With Haskell we can define a type-safe query DSL

Angle Haskell

src.File “foo.hs” predicate @Src.File $ string “foo.hs”

“Angle t” is a query that
returns results of type t.

It pretty-prints as the actual
query.

predicate :: forall p . Predicate p => Angle (KeyType p) -> Angle p

string :: Text -> Angle Text

With Haskell we can define a type-safe query DSL

Angle Haskell

src.File “foo.hs” predicate @Src.File $ string “foo.hs”

python.DeclarationWithName {
 name = “foo”
}

predicate @Python.DeclarationWithName $
 rec $
 field @”name” “foo”
 end

Type application with string
type literal for field names.

With Haskell we can define a type-safe query DSL

Angle Haskell

src.File “foo.hs” predicate @Src.File $ string “foo.hs”

python.DeclarationWithName {
 name = “foo”
}

predicate @Python.DeclarationWithName $
 rec $
 field @”name” “foo”
 end

The DSL has enough
information to type-check the
record field.

With Haskell we can define a type-safe query DSL

Instant feedback in VS code

Instant feedback in VS code

How does this work?

predicate FileEntityLocations:
 {

file: src.File,
location: Location,
entity: code.Entity,

 }

schema.angle

data FileEntityLocations = FileEntityLocations
 { fileEntityLocations_file :: Src.File
 , fileEntityLocations_location :: Code.Location
 , fileEntityLocations_entity :: Code.Entity
 }

type instance RecordFields FileEntityLocations =
 TField "file" Src.File (
 TField “location” Code.Location (
 TField “entity” Code.Entity
 TNoFields))

schema.hs

Code generation
from the schema to
Haskell (amongst
other languages)

How does this work?

predicate FileEntityLocations:
 {

file: src.File,
location: Location,
entity: code.Entity,

 }

schema.angle

data FileEntityLocations = FileEntityLocations
 { fileEntityLocations_file :: Src.File
 , fileEntityLocations_location :: Code.Location
 , fileEntityLocations_entity :: Code.Entity
 }

type instance RecordFields FileEntityLocations =
 TField "file" Src.File (
 TField “location” Code.Location (
 TField “entity” Code.Entity
 TNoFields))

schema.hs A generated Haskell
datatype for each
predicate and type in
the schema.

How does this work?

predicate FileEntityLocations:
 {

file: src.File,
location: Location,
entity: code.Entity,

 }

schema.angle
data FileEntityLocations = FileEntityLocations
 { fileEntityLocations_file :: Src.File
 , …
 }

type instance RecordFields FileEntityLocations =
 TField "file" Src.File (
 TField “location” Code.Location (
 TField “entity” Code.Entity
 TNoFields))

schema.hs

data FileEntityLocations = FileEntityLocations
 { fileEntityLocations_file :: Src.File
 , fileEntityLocations_location :: Code.Location
 , fileEntityLocations_entity :: Code.Entity
 }

type instance RecordFields FileEntityLocations =
 TField "file" Src.File (
 TField “location” Code.Location (
 TField “entity” Code.Entity
 TNoFields))

Type instances tell
the query library
about the fields and
their types

A pleasant query authoring experience
● Iterate on your Angle code using Glean to typecheck it
● Generate the Haskell
● Iterate on your Haskell query code, using GHC to typecheck it in VS Code
● … queries do not fail at runtime
● … queries return native Haskell types

A pleasant query authoring experience
● This isn’t Haskell-specific.
● There’s also a Hack-based DSL for queries

○ it looks very different, but it’s idiomatic Hack
● And we’re planning a Python DSL too

● Clients using languages without a DSL can make raw Angle queries, just without compile-time
typechecking and IDE feedback.

More Haskell benefits:
Effortless concurrency with

● Clients are often making multiple queries to Glean
● We want those to be concurrent when possible
● Haxl + ApplicativeDo is great for this

ApplicativeDo

Turns

 do
 a <- x
 b <- y
 return (a,b)

into

 (,) <$> x <*> y

by analysing dependencies between statements.

Haxl

Performs Applicatives in parallel.

 (,) <$> x <*> y

will run x and y in parallel.

● Requires a Haxl “datasource” to be implemented for each backend
● Glean includes a Haxl datasource for Glean queries

Haxl

When you write

 mapM query list

the queries all run in parallel.

Haxl + ApplicativeDo

When you write

 do
 a <- .. glean query ..
 b <- .. glean query ..
 return (a,b)

with ApplicativeDo enabled, the queries run in parallel.

The Haxl library: effortless concurrency
● A snippet from the Glass codebase that fetches the symbols for a file:

These two queries run
concurrently!

FAQ
● What languages do you support?

○ Open source now: Javascript/Flow, Hack, Typescript*, Rust*, Go*

* = via LSIF

○ Open source but not fully integrated: C++ & Objective C, Rust, Haskell
○ Not open source yet, but planned: Python, Java

FAQ
● Are there any actual clients I can use?

FAQ
● Where are you going with open source?

How do I play with it?
● http://glean.software
● Demo Docker images available for download

http://glean.software

