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Figure 9. Typed grammar expressions guarantee linear-time parsing
ocamlyacc staged combinators

plots running time against input size. (For reasons of space,
we omit the similar results for the unstaged version.)

Further performance improvements There are several
opportunities to further improve combinator performance.
The handling of tokens carrying strings is ine!cient (and
accounts for the relatively poor performance in the JSON
benchmark), since the minimal combinator API necessitates
reading strings as char lists before conversion to a "at rep-
resentation; we plan to remedy this by extending the API.
More ambitiously, we plan to combine the code generated
for the scanning and parsing phases into a single unit to
enable further optimizations, e.g. avoiding token material-
ization. Preliminary experiments suggest that throughput
improvements of 2× upwards may be available in this way.

8 Related Work

Adding #xed points to regular expressions was described in
Salomaa [1973], in a construction called the “regular-like lan-
guages”. Later, Leiß [1991] extended Kleene algebra [Kozen
1990] with least #xed points, giving the untyped µ-regular
expressions we use, and also noted that context-free lan-
guages o$er a model. Ésik and Leiß [2005] showed that the
equational theory su!ced to translate grammars to Greibach
normal form. More recently, Grathwohl et al. [2014] have
completely axiomatized the inequational theory. This work
is for untyped µ-regular expressions; restricting CFGs with
a type system seems to be a novelty of our approach.
Our notion of type—especially the FLast set—drew crit-

ical inspiration from the work of Brüggemann-Klein and
Wood [1992]. They prove a Kleene-style theorem for the
deterministic regular languages, which can be compiled to
state machines without exponentially larger state sets. John-
stone and Scott [1998] independently invented the FLast

property (which they named “follow-determinism”) while
studying generalised recursive descent parsing. They prove
that for nonempty, left-factored grammars, using follow-
determinism is equivalent to the traditional Follow set com-
putation. Thus, our type system can be understood as the
observation that LL-class parsing arises from adding guarded
recursion to the deterministic regular languages.
Winter et al. [2011] presented their own variant of the

context-free expressions. Their formalism was similar to our

own and that of Leiß [1991], with the key di$erence being
that their #xed point operator was required to be syntacti-
cally guarded—every branch in a #xed point expression µx .д
had to begin with a leading alphabetic character. Their goal
was to ensure that the Brzozowski derivative [Brzozowski
1964] could be extended to #xed point expressions. Our type
system replaces this syntactic constraint with a type-based
guardedness restriction on variables.

Staging and parsers share a long history. In an early work
on regular expression matching, Thompson [1968] takes a
staged approach, dynamically generating machine code to
recognize user-supplied regular expressions, and in one of
the earliest papers on multi-stage programming, Davies and
Pfenning [1996] present a staged regular expression matcher
as a motivating example. Sperber and Thiemann [2000] ap-
ply the closely-related techniques of partial evaluation to
build LR parsers from functional speci#cations. More re-
cently, Jonnalagedda et al. [2014] present an implementation
of parser combinators written with the Scala Lightweight
Modular Staging framework. The present work shares high-
level goals with Jonnalagedda et al’s work, notably eliminat-
ing the abstraction overhead in standard parser combinator
implementations. However, they focus on ambiguous and
input-dependent grammars that may require backtracking
while our type system ensures that our parsers are determin-
istic and guarantees linear-time performance.
Swierstra and Duponcheel [1996] also gave parser com-

binators which statically calculated #rst sets and nullability
to control which branch of an alternative to take. Since they
used a higher-order representation of parsers, they were
unable to calculate follow sets ahead of time, and so they
had to calculate those dynamically, as the parser consumed
data. By using GADTs, we are able to give a fully-analyzable
#rst-order representation, which enables us to give much
stronger guarantees about runtime.
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Fig. 24. Enhanced staged SYB Performance

The RMWeights benchmark shows improvements over the naive version; there is still a little residual
overhead compared to the handwritten version.

The results of the two new benchmarks are more notable. For Size, the carefully staged version
is almost 30× as fast as the unstaged version; more remarkably, it is over 4× as fast as hand-
written code, due to the fusing together of generated functions and shifting of arithmetic work to
compile-time (Figure 21d).

The carefully staged version of Show is also faster than handwritten code, but there is an additional
surprise: the unstaged generic version also beats the handwritten entry! Examining the handwritten
code for printing lists uncovers the reason: the string concatenation operator is right associative
in OCaml, and so the naive implementation copies the long strings on the right, generated by
show_list, many times.

let rec show_list f l = match l with

[] → "[]"

| h::t → "("^ f h ^" :: " ^ show_list f t ^")"

Parenthesizing to avoid right nesting brings the running time down from 1979µs to 1022µs ,
almost as fast as the generated code that fuses together the printers for lists and bools (Figure 20d).

7 RELATEDWORK

That generic programming libraries often su!er from poor performance is well known, and there
have been several investigations into ways to make them more e"cient.

Boulytchev and Mechtaev [2011] (with a more extensive account in Russian [Mechtaev 2011]) ex-
plore how to implement SYB e"ciently in OCaml. Their implementation preceded the introduction
of modular implicits and GADTs, so they use a type-passing implementation together with a type
equality based on an unsafe cast. Instead of language-supported staging, they carefully refactor the
SYB code to eliminate ine"ciencies, translating to CPS and traversing the type structure in advance
to build e"cient closure-based traversals. They achieve performance fairly close to hand-written
code by combining these transformations with an additional optimisation whose e!ects are similar
to the selective traversal optimisation described in Section 4.5 and Section 4.6.
The work of Adams et al. [2015] (and the earlier version, [Adams et al. 2014]) are comparable

to the earlier attempt to stage SYB described in Section 3 [Yallop 2016]. Adams et al. improve the
performance of the Scrap Your Boilerplate library by means of a domain-speci#c optimisation,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.
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1964] could be extended to #xed point expressions. Our type
system replaces this syntactic constraint with a type-based
guardedness restriction on variables.

Staging and parsers share a long history. In an early work
on regular expression matching, Thompson [1968] takes a
staged approach, dynamically generating machine code to
recognize user-supplied regular expressions, and in one of
the earliest papers on multi-stage programming, Davies and
Pfenning [1996] present a staged regular expression matcher
as a motivating example. Sperber and Thiemann [2000] ap-
ply the closely-related techniques of partial evaluation to
build LR parsers from functional speci#cations. More re-
cently, Jonnalagedda et al. [2014] present an implementation
of parser combinators written with the Scala Lightweight
Modular Staging framework. The present work shares high-
level goals with Jonnalagedda et al’s work, notably eliminat-
ing the abstraction overhead in standard parser combinator
implementations. However, they focus on ambiguous and
input-dependent grammars that may require backtracking
while our type system ensures that our parsers are determin-
istic and guarantees linear-time performance.
Swierstra and Duponcheel [1996] also gave parser com-

binators which statically calculated #rst sets and nullability
to control which branch of an alternative to take. Since they
used a higher-order representation of parsers, they were
unable to calculate follow sets ahead of time, and so they
had to calculate those dynamically, as the parser consumed
data. By using GADTs, we are able to give a fully-analyzable
#rst-order representation, which enables us to give much
stronger guarantees about runtime.
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The results of the two new benchmarks are more notable. For Size, the carefully staged version
is almost 30× as fast as the unstaged version; more remarkably, it is over 4× as fast as hand-
written code, due to the fusing together of generated functions and shifting of arithmetic work to
compile-time (Figure 21d).

The carefully staged version of Show is also faster than handwritten code, but there is an additional
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code for printing lists uncovers the reason: the string concatenation operator is right associative
in OCaml, and so the naive implementation copies the long strings on the right, generated by
show_list, many times.
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Parenthesizing to avoid right nesting brings the running time down from 1979µs to 1022µs ,
almost as fast as the generated code that fuses together the printers for lists and bools (Figure 20d).
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That generic programming libraries often su!er from poor performance is well known, and there
have been several investigations into ways to make them more e"cient.

Boulytchev and Mechtaev [2011] (with a more extensive account in Russian [Mechtaev 2011]) ex-
plore how to implement SYB e"ciently in OCaml. Their implementation preceded the introduction
of modular implicits and GADTs, so they use a type-passing implementation together with a type
equality based on an unsafe cast. Instead of language-supported staging, they carefully refactor the
SYB code to eliminate ine"ciencies, translating to CPS and traversing the type structure in advance
to build e"cient closure-based traversals. They achieve performance fairly close to hand-written
code by combining these transformations with an additional optimisation whose e!ects are similar
to the selective traversal optimisation described in Section 4.5 and Section 4.6.
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Figure 11: Performance comparison of LegoBase (C and Scala programs) with the code
generated by the query compiler of [15].

two compilers, but this turns out to be a very delicate and com-
plicated task as developers can specify flags which actually make
performance worse. We argue that it is instead more beneficial for
database developers to invest their effort in developing high-level
optimizations, like those presented so far in this paper.

Second, we show that the limited optimization scope of existing
query compilers makes them miss significant optimization oppor-
tunities. To do so, we use the compiler of the HyPer database [15]
which employs LLVM, a push engine and operator inlining6. We
also simulate this system in LegoBase by enabling the correspond-
ing optimizations in our architecture7. The results are presented
in Figure 11. We see that, for both the simulated and actual Hy-
Per compilers, performance is significantly improved by 2.15⇥ and
2.44⇥ on average, respectively. In addition, for 10 out of 22 TPC-H
queries, our simulation actually generates code that performs better
than that of HyPer. This is because we inline not only the opera-
tors’ interfaces but also all data-structures and utilities leading to
fewer function calls and better cache locality8.

More importantly, this figure shows that by using the data layout
and data structures optimizations of LegoBase (which are not per-
formed by the query compiler of HyPer), we can get an additional
5.3⇥ speedup, for a total average 7.7⇥ performance improvement
with all optimizations enabled. This is a result of the improved
cache locality and branch prediction, as shown in Figure 13. More
specifically, there is an improvement of 30% and 1.54⇥ on aver-
age for the two metrics, respectively, between DBX and LegoBase.
In addition, the maximum, average and minimum difference in the
number of CPU instructions executed in HyPer is 2.98⇥, 1.54⇥,
and 5% more, respectively compared to LegoBase. The data-stru-
cture and column layout optimizations cannot be provided by ex-
isting query compilers as they target pre-compiled DBMS compo-
nents which exist outside their optimization scope. This shows that,
by extending the optimization scope, LegoBase can outperform ex-
isting compilation techniques for all TPC-H queries.

Finally, we prove that the abstraction without regret vision ne-
cessitates our source-to-source compilation to C. To do so, we pre-
sent performance results for the best Scala program; that is the pro-
gram generated by applying all optimizations to the Scala output.

6We also experimented with another in-memory DBMS that com-
piles SQL queries to native C++ code on-the-fly. However, we were
unable to configure the system so that it performs well compared to
the other systems. Thus, we omit its results from this section.
7In its full generality, the transformation between a Volcano and a
push engine is still under development. For the results presented
here, we have implemented the push version directly since, in our
case, the code of the push engine turns out to be significantly sim-
pler and easier to understand than the Volcano code.
8We note that the simulated and actual HyPer systems may use
different physical query plans and data-structures implementation.
These are the main reasons for the different performance observed
in Figure 11 between the two systems in some queries.

We observe that the performance of Scala cannot compete with that
of the optimized C code, and is on average 2.5⇥ slower. Profiling
information gathered with the perf tool of Linux reveals the fol-
lowing three reasons for the worse performance of Scala: (a) There
are 30% to 1.4⇥ more branch mispredictions, (b) The percentage of
LLC misses is 10% to 1.8⇥ higher, and more importantly, (c) Scala
executes up to 5.5⇥ more CPU instructions9. Of course, these inef-
ficiencies are to a great part due to the Java Virtual Machine and not
specific to Scala. Note that the optimized Scala program is compet-
itive to DBX: for 18 out of 22 queries, Scala outperforms the com-
mercial DBX system. This is because we remove all abstractions
that incur significant overhead for Scala. For example, the perfor-
mance of Q18, which builds a large hash map, is improved by 45⇥
when applying our data-structure specializations.

4.1.1 Impact of Compiler Optimizations

From the results presented so far, we observe that our optimiza-
tions do not equally benefit the performance of all queries, however
they never result in negative performance impact. Here, we pro-
vide additional information about the performance improvement
expected when applying one of our optimizations. These results
are presented in Figure 12.

In general, the impact of an optimization depends on the char-
acteristics of a query. For the data-structure specialization (Fig-
ure 12a), the improvement is proportional to the amount of data-
structure operations performed. We observe that the hash map ab-
straction performs respectably for few operations. However, as
we increase the amount of data that are inserted into these maps,
their performance significantly drops and, thus, our specialization
gives significant performance benefits. For the column layout opti-
mization (Figure 12b), the improvement is proportional to the per-
centage of attributes in the input relations that are actually used.
TPC-H queries reference 24% - 68% and, for this range, the opti-
mization gives a 2.5⇥ to 5% improvement, which degrades as more
attributes are referenced. This is expected as the benefits of the col-
umn layout are evident when this layout can “skip” a number of
unused attributes, thus significantly reducing cache misses. Syn-
thetic queries on TPC-H data referencing 100% of the attributes
show that, in this case, the column layout actually yields no ben-
efit, and it is slightly worse than the row layout. This figure also
shows that the performance improvement of both optimizations is
not directly dependent on the number of operators, as queries with
the same number of operators can exhibit completely different be-
haviour regarding data-structure and attributes references.

For the inlining optimization (Figure 12c) we observe that, when
all operators are considered, inlining does not improve performance
as we move from three to seven operators. This is because the im-
provement obtained from inlining depends on which operators are

9These results were confirmed with Intel’s VTune profiler.
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plots running time against input size. (For reasons of space,
we omit the similar results for the unstaged version.)

Further performance improvements There are several
opportunities to further improve combinator performance.
The handling of tokens carrying strings is ine!cient (and
accounts for the relatively poor performance in the JSON
benchmark), since the minimal combinator API necessitates
reading strings as char lists before conversion to a "at rep-
resentation; we plan to remedy this by extending the API.
More ambitiously, we plan to combine the code generated
for the scanning and parsing phases into a single unit to
enable further optimizations, e.g. avoiding token material-
ization. Preliminary experiments suggest that throughput
improvements of 2× upwards may be available in this way.

8 Related Work

Adding #xed points to regular expressions was described in
Salomaa [1973], in a construction called the “regular-like lan-
guages”. Later, Leiß [1991] extended Kleene algebra [Kozen
1990] with least #xed points, giving the untyped µ-regular
expressions we use, and also noted that context-free lan-
guages o$er a model. Ésik and Leiß [2005] showed that the
equational theory su!ced to translate grammars to Greibach
normal form. More recently, Grathwohl et al. [2014] have
completely axiomatized the inequational theory. This work
is for untyped µ-regular expressions; restricting CFGs with
a type system seems to be a novelty of our approach.
Our notion of type—especially the FLast set—drew crit-

ical inspiration from the work of Brüggemann-Klein and
Wood [1992]. They prove a Kleene-style theorem for the
deterministic regular languages, which can be compiled to
state machines without exponentially larger state sets. John-
stone and Scott [1998] independently invented the FLast

property (which they named “follow-determinism”) while
studying generalised recursive descent parsing. They prove
that for nonempty, left-factored grammars, using follow-
determinism is equivalent to the traditional Follow set com-
putation. Thus, our type system can be understood as the
observation that LL-class parsing arises from adding guarded
recursion to the deterministic regular languages.
Winter et al. [2011] presented their own variant of the

context-free expressions. Their formalism was similar to our

own and that of Leiß [1991], with the key di$erence being
that their #xed point operator was required to be syntacti-
cally guarded—every branch in a #xed point expression µx .д
had to begin with a leading alphabetic character. Their goal
was to ensure that the Brzozowski derivative [Brzozowski
1964] could be extended to #xed point expressions. Our type
system replaces this syntactic constraint with a type-based
guardedness restriction on variables.

Staging and parsers share a long history. In an early work
on regular expression matching, Thompson [1968] takes a
staged approach, dynamically generating machine code to
recognize user-supplied regular expressions, and in one of
the earliest papers on multi-stage programming, Davies and
Pfenning [1996] present a staged regular expression matcher
as a motivating example. Sperber and Thiemann [2000] ap-
ply the closely-related techniques of partial evaluation to
build LR parsers from functional speci#cations. More re-
cently, Jonnalagedda et al. [2014] present an implementation
of parser combinators written with the Scala Lightweight
Modular Staging framework. The present work shares high-
level goals with Jonnalagedda et al’s work, notably eliminat-
ing the abstraction overhead in standard parser combinator
implementations. However, they focus on ambiguous and
input-dependent grammars that may require backtracking
while our type system ensures that our parsers are determin-
istic and guarantees linear-time performance.
Swierstra and Duponcheel [1996] also gave parser com-

binators which statically calculated #rst sets and nullability
to control which branch of an alternative to take. Since they
used a higher-order representation of parsers, they were
unable to calculate follow sets ahead of time, and so they
had to calculate those dynamically, as the parser consumed
data. By using GADTs, we are able to give a fully-analyzable
#rst-order representation, which enables us to give much
stronger guarantees about runtime.
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class Show a where
show :: a -> String

print :: Show a => a -> String
print x = show x

instance Show Int where
show = primShowInt

instance Show Bool where
show = primShowBool

Type classes

[1989]
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
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static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
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The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
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allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
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mentation of Typed Template Haskell in GHC 9.0.1:
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Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
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Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `
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With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
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De�nition 6.3 (Contextual Equivalence in � JK).
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.
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the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
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� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4
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0

�! E1
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1
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41 h42 $43i
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= �4 : g

� ` 4 : Codeg
� ` $4 : g
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
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�! E1
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1

�! 42

43
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�! 42 E3

h42 $43i
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�! h42 $E3i

41 h42 $43i
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�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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� `
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=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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� `

= �4 : g
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
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� `
= 4 : g
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= �4 : g
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� ` 4 : g
� ` h4i : Codeg

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
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: ⇥ ` g �! • ` g,
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8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
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8, 9
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8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.
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⇤ 42 : g)
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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Well-stagedness: the level restriction

timely :: Code (Int -> Int)
timely = < \x -> x >

hasty :: Code Int -> Int
hasty = \y -> $(y)

tardy :: Int -> Code Int
tardy = \z -> < z >

The level restriction: each variable is used only at the 
level in which it is bound
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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Well-stagedness: the level restriction

timely :: Code (Int -> Int)
timely = < \x -> x >

hasty :: Code Int -> Int
hasty = \y -> $(y)

tardy :: Int -> Code Int
tardy = \z -> < z >

The level restriction: each variable is used only at the 
level in which it is bound
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:
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the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)
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8, 9
; dgm1 �!
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8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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Well-stagedness: the level restriction

timely :: Code (Int -> Int)
timely = < \x -> x >

hasty :: Code Int -> Int
hasty = \y -> $(y)

tardy :: Int -> Code Int
tardy = \z -> < z >

The level restriction: each variable is used only at the 
level in which it is bound
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
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: ⇥ ` g �! • ` g,
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8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
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8, 9
; dgm1 �!
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8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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Well-stagedness: the level restriction

timely :: Code (Int -> Int)
timely = < \x -> x >

hasty :: Code Int -> Int
hasty = \y -> $(y)

tardy :: Int -> Code Int
tardy = \z -> < z >

The level restriction: each variable is used only at the 
level in which it is bound
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
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: ⇥ ` g �! • ` g,
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8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
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(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g
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8, 9
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8, 9
; dgm1 �!
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8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
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The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.
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With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
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alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.
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code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.
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With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
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^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

The level restriction: each variable is used only at the 
level in which it is bound

well-typed? well-staged?



20

Is the problem with qpower well-stageness?

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g
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⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
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With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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Is the problem with qpower well-stageness?

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g
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(spdefSi; defDj
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; dgm1 �!
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8, 9
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⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g
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8, 9
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⇤ 41 : g () spdefSi; defDj
8, 9
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^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
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the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
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⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))
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Type Classes

class Show a where
show :: a -> String

print :: Show a => a -> String
print x = show x

instance Show Int where
show = primShowInt

instance Show Bool where
show = primShowBool
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Well-staged type classes

qpower :: Num a => Int -> Code a -> Code a
qpower 0 n = <1>
qpower k n = <$(n) * $(qpower (k – 1) n)>

qpowerFive :: Num a => a -> a
qpowerFive n = $(qpower 5 <n>)
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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Key idea: staged type class constraints
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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Staging with Class 61:25

Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g
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Level-indexed constraint resolution

print :: Show a => a -> String
print x = show x

print :: ShowDict a -> a -> String
print dShow x = show dShow x

Staging with Class 61:25
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

ev : ⇠ 2 �

� |= ⇠ { ev

� `
=�1 4 : Codeg
� `

= �4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

41
0

�! E1

42
1

�! 42

43
0

�! E3

�43
1

�! E3

42 �43
1

�! 42 E3

h42 �43i
0

�! h42 �E3i

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
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h4i : Codeg
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=�1 4 : Codeg
� `
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Level-indexed constraint resolution

print :: Show a => a -> String
print x = show x

print :: ShowDict a -> a -> String
print dShow x = show dShow x

Staging with Class 61:25
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7

� `
= 4 : g

� `
=
h4i : Codeg

� `
=�1 4 : Codeg
� `

= �4 : g

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



25

Level-indexed constraint resolution

print :: Show a => a -> String
print x = show x

print :: ShowDict a -> a -> String
print dShow x = show dShow x
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�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.
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Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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At a high level, GHC’s implementation is close to the description in §2.4: it delays type class
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accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:
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as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
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8, 9
; dgm1 �!
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8, 9
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⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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Staging with Class 61:25
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
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Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



27

How to evaluate staged programs?

level 0 1

Staging with Class 61:25

� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
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accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
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being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
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expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.
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The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
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allowing a de�nition to be reused for any type that is quali�ed to be numeric:
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mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
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At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.
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their essence. Integrating our solution into GHC will require additional steps, which we touch on
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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=�1 4 : Codeg
� `
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� |==+1 ⇠ { 4
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� |== ⇠ { $4
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0
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.



30

Key idea: splice environments

Staging with Class 61:9

evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg
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� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg
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� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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value E F 8 | _x : g .4 | ⇤a.4 | J4KqE

splice environment value qE F • | qE,� =̀ B : g = E

[qE]4 inserts splices in qE back into 4 .
[•]4 = 4
[qE,� =̀ B : g = J4 0KqE

0]4 = [qE] (4 [B 7! [qE
0
]4 0])

dgm1 �! dgm2 (Program reduction)
����������

D �! D
0

def D; dgm �! def D 0; dgm

������������

def k : g = E ; dgm �! dgm[k 7! E]

�����������
4 �! 4 0

4 : g �! 4 0 : g
������������

S �! S
0

spdef S; dgm �! spdef S0; dgm

�������������

spdef � `
= B : g = J4KqE ; dgm �! dgm[B 7! ( [qE]4)]

D1 �! D2 (De�nition reduction)
������

4 �! 4 0

k : g = 4 �! k : g = 4 0

S1 �! S2 (Splice de�nition reduction)
��������

4 �! 4 0

� `
= B : g = 4 �! � `

= B : g = 4 0

41 �! 42 (Reduction)�������

(_x : g .41) 42 �! 41 [x 7! 42]

��������

(⇤a.4) g �! 4 [a 7! g]
������

41 �! 4 01
41 42 �! 4 01 42

�������
4 �! 4 0

4 g �! 4 0 g

�������
q �! q 0

J4Kq �! J4Kq0

q1 �! q2 (Splice environment reduction)
���������

q �! q 0

q,� `
= B : g = 4 �! q 0,� `

= B : g = 4

���������
4 �! 4 0

qE,� `
= B : g = 4 �! qE,� `

= B : g = 4 0

Fig. 5. Values and dynamic semantics in � JK

Essentially, � =̀ B : g = J4K• corresponds to the expression $J4K in the source level, whose splicing
result is bound to B . The position of B inside dgm indicates where the source program $J4K was
originally found, and by substituting B with 4 we successfully insert the splicing result back into
that position. Rule ������������� deals with the more general case where qE can be non-empty,
which corresponds to nested splices, i.e., the source expression 4 (as in $J4K) may itself contain more
splices, and those splices (of the corresponding level, in this case �1) are re�ected as the splice
environment qE associated to J4KqE . In this case, we need to �rst insert those splice de�nitions back
into the expression, i.e., as [qE]4 , and then we conclude by substituting B with [qE]4 .

After we evaluate all de�nitions and splice de�nitions, we can then start evaluating the expression
(rule �����������). Expression reductions (41 �! 42) are mostly standard. Rule ������� uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule �������, which says that to evaluate J4Kq , we leave 4 as is, and all we need to do is
to evaluate q , which simply evaluates all expressions it binds (rules ��������� and ���������).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg
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� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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value E F 8 | _x : g .4 | ⇤a.4 | J4KqE

splice environment value qE F • | qE,� =̀ B : g = E

[qE]4 inserts splices in qE back into 4 .
[•]4 = 4
[qE,� =̀ B : g = J4 0KqE

0]4 = [qE] (4 [B 7! [qE
0
]4 0])

dgm1 �! dgm2 (Program reduction)
����������

D �! D
0

def D; dgm �! def D 0; dgm

������������

def k : g = E ; dgm �! dgm[k 7! E]

�����������
4 �! 4 0

4 : g �! 4 0 : g
������������

S �! S
0

spdef S; dgm �! spdef S0; dgm

�������������

spdef � `
= B : g = J4KqE ; dgm �! dgm[B 7! ( [qE]4)]

D1 �! D2 (De�nition reduction)
������

4 �! 4 0

k : g = 4 �! k : g = 4 0

S1 �! S2 (Splice de�nition reduction)
��������

4 �! 4 0

� `
= B : g = 4 �! � `

= B : g = 4 0

41 �! 42 (Reduction)�������

(_x : g .41) 42 �! 41 [x 7! 42]

��������

(⇤a.4) g �! 4 [a 7! g]
������

41 �! 4 01
41 42 �! 4 01 42

�������
4 �! 4 0

4 g �! 4 0 g

�������
q �! q 0

J4Kq �! J4Kq0

q1 �! q2 (Splice environment reduction)
���������

q �! q 0

q,� `
= B : g = 4 �! q 0,� `

= B : g = 4

���������
4 �! 4 0

qE,� `
= B : g = 4 �! qE,� `

= B : g = 4 0

Fig. 5. Values and dynamic semantics in � JK

Essentially, � =̀ B : g = J4K• corresponds to the expression $J4K in the source level, whose splicing
result is bound to B . The position of B inside dgm indicates where the source program $J4K was
originally found, and by substituting B with 4 we successfully insert the splicing result back into
that position. Rule ������������� deals with the more general case where qE can be non-empty,
which corresponds to nested splices, i.e., the source expression 4 (as in $J4K) may itself contain more
splices, and those splices (of the corresponding level, in this case �1) are re�ected as the splice
environment qE associated to J4KqE . In this case, we need to �rst insert those splice de�nitions back
into the expression, i.e., as [qE]4 , and then we conclude by substituting B with [qE]4 .

After we evaluate all de�nitions and splice de�nitions, we can then start evaluating the expression
(rule �����������). Expression reductions (41 �! 42) are mostly standard. Rule ������� uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule �������, which says that to evaluate J4Kq , we leave 4 as is, and all we need to do is
to evaluate q , which simply evaluates all expressions it binds (rules ��������� and ���������).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg
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� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg
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value E F 8 | _x : g .4 | ⇤a.4 | J4KqE

splice environment value qE F • | qE,� =̀ B : g = E

[qE]4 inserts splices in qE back into 4 .
[•]4 = 4
[qE,� =̀ B : g = J4 0KqE

0]4 = [qE] (4 [B 7! [qE
0
]4 0])

dgm1 �! dgm2 (Program reduction)
����������

D �! D
0

def D; dgm �! def D 0; dgm

������������

def k : g = E ; dgm �! dgm[k 7! E]

�����������
4 �! 4 0

4 : g �! 4 0 : g
������������

S �! S
0

spdef S; dgm �! spdef S0; dgm

�������������

spdef � `
= B : g = J4KqE ; dgm �! dgm[B 7! ( [qE]4)]

D1 �! D2 (De�nition reduction)
������

4 �! 4 0

k : g = 4 �! k : g = 4 0

S1 �! S2 (Splice de�nition reduction)
��������

4 �! 4 0

� `
= B : g = 4 �! � `

= B : g = 4 0

41 �! 42 (Reduction)�������

(_x : g .41) 42 �! 41 [x 7! 42]

��������

(⇤a.4) g �! 4 [a 7! g]
������

41 �! 4 01
41 42 �! 4 01 42

�������
4 �! 4 0

4 g �! 4 0 g

�������
q �! q 0

J4Kq �! J4Kq0

q1 �! q2 (Splice environment reduction)
���������

q �! q 0

q,� `
= B : g = 4 �! q 0,� `

= B : g = 4

���������
4 �! 4 0

qE,� `
= B : g = 4 �! qE,� `

= B : g = 4 0

Fig. 5. Values and dynamic semantics in � JK

Essentially, � =̀ B : g = J4K• corresponds to the expression $J4K in the source level, whose splicing
result is bound to B . The position of B inside dgm indicates where the source program $J4K was
originally found, and by substituting B with 4 we successfully insert the splicing result back into
that position. Rule ������������� deals with the more general case where qE can be non-empty,
which corresponds to nested splices, i.e., the source expression 4 (as in $J4K) may itself contain more
splices, and those splices (of the corresponding level, in this case �1) are re�ected as the splice
environment qE associated to J4KqE . In this case, we need to �rst insert those splice de�nitions back
into the expression, i.e., as [qE]4 , and then we conclude by substituting B with [qE]4 .

After we evaluate all de�nitions and splice de�nitions, we can then start evaluating the expression
(rule �����������). Expression reductions (41 �! 42) are mostly standard. Rule ������� uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule �������, which says that to evaluate J4Kq , we leave 4 as is, and all we need to do is
to evaluate q , which simply evaluates all expressions it binds (rules ��������� and ���������).
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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Table 1. Examples comparison. Well-staged? indicates well-stagedness a�er dictionary-passing elaboration.
37 means the definition itself is accepted but its use is restricted; and O means not applicable.

print1 printInt print2 topLi� trim cancel qnpower/npower5
C1 C2 S1 TS1 A1 A2 §1 S2

Well-staged? 7 3 3 7 3 3 7/ 7 3/ 3
_J)K 7 3 3 7 3 3 7/ 7 3/ 3

GHC 9.0.1 37 3 O 7 37 7 37/ 7 O

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { �4

� |==�1 CodeC⇠ { 4

41 h42 �43i
0

�! E1 h42 �E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.

Type inference. We anticipate that type inference for staged constraints will be straightforward
to integrate into existing constraint solving algorithms (e.g. Vytiniotis et al. [2011]). The key
modi�cation is to track the level of constraints and only solve goals with evidence at the right level.
In our formalism, constraints can be solved either by rule ������������ or by rule ������������. In
practice, the implementation only needs to keep track of the level of normal constraints (e.g. when
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evaluate. This approach requires tracking of levels during runtime, adding complexity to imple-
mentations. Furthermore, as the above example illustrates, it requires inspecting and evaluating
inside quotations. But in realistic implementations, quotations are compiled to a representation
form for which implementing substitution can be di�cult. In particular, previous implementations
with low-level representations of quotations [Pickering et al. 2019; Roubinchtein 2015] maintain
separate environments for free variables which can be substituted into without having to implement
substitution in terms of the low-level representation.

2.7 Our Design: Splice Environments
We present a formalism that is easy to implement and reason about, by introducing quotations
with splice environments in our core calculus � JK. Splice environments capture splices inside quota-
tions, avoiding the need to traverse quotations before splicing them into programs, and allowing
quotations to be treated in an opaque manner that imposes few constraints on their representation.
Splice environments also make the evaluation order of the core calculus evident, avoiding the need
for level-indexed reduction. Using splice environments is reminiscent of the approach taken in
logically inspired languages by Nanevski [2002] and Davies and Pfenning [2001].

A quotation with a splice environment is denoted J4Kq , where 4 is a quoted expression and q the
splices it contains. q consists of a list of splice variables, with each splice variable B represented as
a closure. For example, our previous expression (e1, J e2 $(e3) K) is represented as follows in � JK

(assuming 41, 42 and 43 contain no other splices).

(41, J42 BK• 0̀B :g=43 )

There are several points to note. First, the splice �(43) is replaced by a fresh splice variable B ,
bound in the splice environment of the quotation. All splices in quotations will be similarly lifted,
so that quotations no longer contain splices; in fact, � JK has no splices, only splice environments.

Second, the splice variable B captures four elements:
(1) the spliced expression (43).
(2) the type context (•). Here the type context is empty, but in general the expression may contain

free variables, which the type context tracks.
(3) the level of the expression. Here, 43 is of level 0.
(4) the type (g) after splicing. If 43 is of type Codeg then �(43) is of type g .

Those elements imply that the splice variable B , representing �(43), is at level 1 and of type g .
Finally, the splice environment contains only expressions of level 0, and is itself bound to a

quotation of the same level (i.e., the whole quotation J42 BK• 0̀B :g=43 is at level 0). This is an invariant
maintained in the core calculus: a splice is bound immediately to the innermost surrounding
quotation at the same level.

Now evaluation can be described straightforwardly, without the need to track levels or inspect
quotations. Evaluation initially proceeds as if there is no staging. When it encounters a quotation
J4Kq , rather than inspecting 4 , it evaluates its splice environments q , which are exactly those splices
inside the quotation that should be evaluated in the current stage. In the above example, at level
0, evaluation starts with 41, then proceeds to the quotation J42 BK• 0̀B :g=43 and moves to its splice
environment • 0̀ B : g = 43, which in turn evaluates 43. As this description makes clear, evaluating
the expression evaluates 41 and 43 as desired. In more complex examples, nested quotations and
splices produce nested quotations and splice environments, but the evaluation principle is the same.

Compile-time evaluation and top-level splice de�nitions. As we have said, splice environments
bind each splice to the innermost surrounding quotation at the same level. This scheme does not
account for the case of splices of negative levels which have no such enclosing quotation, such as
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg
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� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3 7 3

� `
=+1 4 : g

� `
=
h4i : Codeg
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value E F 8 | _x : g .4 | ⇤a.4 | J4KqE

splice environment value qE F • | qE,� =̀ B : g = E

[qE]4 inserts splices in qE back into 4 .
[•]4 = 4
[qE,� =̀ B : g = J4 0KqE

0]4 = [qE] (4 [B 7! [qE
0
]4 0])

dgm1 �! dgm2 (Program reduction)
����������

D �! D
0

def D; dgm �! def D 0; dgm

������������

def k : g = E ; dgm �! dgm[k 7! E]

�����������
4 �! 4 0

4 : g �! 4 0 : g
������������

S �! S
0

spdef S; dgm �! spdef S0; dgm

�������������

spdef � `
= B : g = J4KqE ; dgm �! dgm[B 7! ( [qE]4)]

D1 �! D2 (De�nition reduction)
������

4 �! 4 0

k : g = 4 �! k : g = 4 0

S1 �! S2 (Splice de�nition reduction)
��������

4 �! 4 0

� `
= B : g = 4 �! � `

= B : g = 4 0

41 �! 42 (Reduction)�������

(_x : g .41) 42 �! 41 [x 7! 42]

��������

(⇤a.4) g �! 4 [a 7! g]
������

41 �! 4 01
41 42 �! 4 01 42

�������
4 �! 4 0

4 g �! 4 0 g

�������
q �! q 0

J4Kq �! J4Kq0

q1 �! q2 (Splice environment reduction)
���������

q �! q 0

q,� `
= B : g = 4 �! q 0,� `

= B : g = 4

���������
4 �! 4 0

qE,� `
= B : g = 4 �! qE,� `

= B : g = 4 0

Fig. 5. Values and dynamic semantics in � JK

Essentially, � =̀ B : g = J4K• corresponds to the expression $J4K in the source level, whose splicing
result is bound to B . The position of B inside dgm indicates where the source program $J4K was
originally found, and by substituting B with 4 we successfully insert the splicing result back into
that position. Rule ������������� deals with the more general case where qE can be non-empty,
which corresponds to nested splices, i.e., the source expression 4 (as in $J4K) may itself contain more
splices, and those splices (of the corresponding level, in this case �1) are re�ected as the splice
environment qE associated to J4KqE . In this case, we need to �rst insert those splice de�nitions back
into the expression, i.e., as [qE]4 , and then we conclude by substituting B with [qE]4 .

After we evaluate all de�nitions and splice de�nitions, we can then start evaluating the expression
(rule �����������). Expression reductions (41 �! 42) are mostly standard. Rule ������� uses call-
by-name, though the exact choice of the evaluation strategy does not matter. Of particular interest
is rule �������, which says that to evaluate J4Kq , we leave 4 as is, and all we need to do is
to evaluate q , which simply evaluates all expressions it binds (rules ��������� and ���������).
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� `
=�1 4 : Codeg
� `

= $4 : g

� ` 4 : Codeg
� ` $4 : g

� |==+1 ⇠ { 4

� |== CodeC⇠ { h4i

� |==�1 CodeC⇠ { 4

� |== ⇠ { $4

41
0

�! E1

42
1

�! 42

43
0

�! E3

$43
1

�! E3

42 $43
1

�! 42 E3

h42 $43i
0

�! h42 $E3i

41 h42 $43i
0

�! E1 h42 $E3i

41 h42 $43i �! E1 h42 $E3i
� =̀ _J)K { � JK

| q
The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes

the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
well-typed programs; we view GHC’s behavior, in which splicing a well-typed code value can
raise a type error, as unsound. Even where it does not lead to unexpected splice-time type errors,
delaying type class elaboration can unexpectedly change the semantics of a program when the
de�nition site and the splicing site have di�erent instances in scope.
Finally, because GHC excludes local constraints for top-level splices, it (accidentally) correctly

rejects topLi� (and npower5) but wrongly rejects cancel. We argue that topLi� should be rejected
because it is ill-staged, and cancel should be accepted both because it is well-staged, and because
canceling a splice-quotation pair should preserve semantics.

8 INTEGRATION INTO GHC
The goal of this work is to formally study the interaction of type classes and staging, along with
the formalism of splice environments, and so we have focused on a source calculus that captures
their essence. Integrating our solution into GHC will require additional steps, which we touch on
brie�y here.
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elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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Fig. 1. Syntax and typing rules of _J)K

says that if a variable x is introduced at level =, then it is well-typed at level =. Rules ������ and
������ handle generalization and instantiation of type class constraints. If an expression 4 can be
type-checked under a local type class assumption ⇠ , then 4 has a quali�ed type ⇠ ) d . Otherwise,
if a constraint ⇠ can be resolved (§3.3), then an expression of type ⇠ ) d can be typed d .

Rules ������ and �������� type-check staging annotations. In particular, rule ������ increases
the level by one and gives h4i type Codeg when 4 has type g , while rule �������� decreases the
level by one and gives 4 type g when $4 has type Codeg .

Well-formed types and constraints. Typing rules (e.g., rule �����) refer to well-formed rules for
types and for constraints as given in Figure 2. The type well-formedness judgment � ` f simply
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).
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To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

61:2 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

The classic example of staging is power n k, where the value =: can be e�ciently computed for
a �xed : by generating code where the required multiplications have been unrolled and inlined.
The qpower function shows its corresponding staged version where Code annotates the types of
values that will be present dynamically at run time. Since k is to be provided as a �xed value at
compile time, it remains a value of type Int.
power :: Int ! Int ! Int
power 0 n = 1
power k n = n ⇤ power (k � 1) n

qpower :: Int ! Code Int ! Code Int
qpower 0 qn = J 1 K
qpower k qn = J $(qn) ⇤ $(qpower (k � 1) qn) K

Then in the de�nition of power5, we can quote n :: Int to create J n K :: Code Int, and splice the
expression $(qpower 5 J n K) to generate n ⇤ (n ⇤ (n ⇤ (n ⇤ (n ⇤ 1)))). By using the staged function,
static information can be eliminated by partially evaluating the function at compile-time.

power5 :: Int ! Int
power5 n = $(qpower 5 J n K) -- power5 n = n ⇤ n ⇤ n ⇤ n ⇤ n ⇤ 1

The code above is restricted to a �xed type Int, and it is natural to hope for a more generic version.
The incarnation of staged programming in Typed Template Haskell promises the bene�ts of

type classes, one of the distinguishing features of Haskell [Hall et al. 1996; Peyton Jones et al. 1997],
allowing a de�nition to be reused for any type that is quali�ed to be numeric:
npower :: Num a ) Int ! a ! a
npower 0 n = 1
npower k n = n ⇤ power (k � 1) n

qnpower :: Num a ) Int ! Code a ! Code a
qnpower 0 qn = J 1 K
qnpower k qn = J $(qn) ⇤ $(qnpower (k � 1) qn) K

Thanks to type class polymorphism, this works when n has any �xed type that satis�es the Num
interface, such as Integer , Double and countless other types.
It is somewhat surprising, then, that the following function fails to compile in the latest imple-

mentation of Typed Template Haskell in GHC 9.0.1:

npower5 :: Num a ) a ! a
npower5 n = $(qnpower 5 J n K) -- Error!

Currently, GHC complains that there is no instance for Num a available, which is strange because
the type signature explicitly states that Num a may be assumed. But this is not the only problem
with this simple example: in the de�nition of qnpower , the constraint is bound outside a quotation
but is used inside. As we will see, this discrepancy leads to subtle inconsistencies, which can be
used to show that the current implementation of type classes in Typed Template Haskell is unsound.

This paper sets out to formally answer the question of how a language with polymorphism and
quali�ed types should interact with a multi-stage programming language, while preserving type
soundness. In particular, inspired by Typed Template Haskell, we o�er the following contributions:

• We formalize a source calculus _J)K, which models two key features of Typed Template
Haskell, type classes and multi-stage programming, and includes a novel construct, staged
type class constraints that resolves the subtle interaction between the two (§3).

• We formalize a core calculus � JK, a polymorphic lambda calculus extended with quotations
as a compilation target for multi-stage languages (§4). Splice environments, a key innovation
in � JK, make evaluation order evident, avoiding the need for level-indexed evaluation, and
support treating quotations opaquely, giving more implementation freedom about their form.

• We present a type-directed elaboration from _J)K to � JK, which combines our two key ideas:
dictionary-passing elaboration of staged type class constraints, and elaboration of splices into
splice environments (§5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 61. Publication date: January 2022.

• Type Classes
• Quotations/Splicing
• Staged type class constraint

inspire type-directed

• Quotations
• Splice environments

unsound

A solid theoretical foundation for integrating type classes into multi-
stage programs

61:24 Ningning Xie, Ma�hew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang

To show that our de�nition of axiomatic semantics of � JK indeed captures the desirable duality
between splices and quotations, we prove that axiomatically equivalent source programs elaborate
to axiomatically equivalent core programs.

Lemma 6.2 (_J)K =0G to � JK w0G ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and ⇥ `

pgm2 : f { dgm2 , and ⇥ { ⇥ , then ⇥ ` dgm1 w0G dgm2.

With this lemma, now we can use core axiomatic equivalence as an intermediate step to show that
source axiomatic equivalence derives core contextual equivalence.

6.3 Contextual Equivalence
We de�ne contextual equivalence in � JK as below.

De�nition 6.3 (Contextual Equivalence in � JK).
•; � =̀ 41 w2CG 42 : g , •; � =̀ 41 : g ^ •; � =̀ 42 : g

^ (8C : •; � =̀ g  •; • 0̀ Int, C[41] �!⇤ 8 () C[42] �!⇤ 8)

⇥ ` dgm1 w2CG dgm2 : g , ⇥ ` dgm1 ^ ⇥ ` dgm2 ^ (8Si,Dj
8, 9

: ⇥ ` g �! • ` g,

(spdefSi; defDj
8, 9
; dgm1 �!

⇤ 41 : g () spdefSi; defDj
8, 9
; dgm2 �!

⇤ 42 : g)
^ (•; • 0̀ 41 w2CG 42 : g))

Expression contextual equivalence says that two core expressions 41 and 42 are contextually equiv-
alent, if for any computation context C, C[41] and C[42] evaluate to the same value. A computation
context C is a core expression with a hole in it, and we use the notation C[4] to plug in the expres-
sion 4 into the hole of C. The notation C : •; � =̀ g  •; • 0̀ Int means that if •; � =̀ 4 : g then
•; • =̀ C[4] : Int. Program contextual equivalence is de�ned in a similar manner and is built using
expression contextual equivalence.

The �nal piece in our proof is to show that axiomatically equivalent core programs are contextu-
ally equivalent, then with Lemma 6.2 we can prove that axiomatically equivalent source programs
elaborate to contextually equivalent core programs. The proofs follow those of Taha et al. [1998]
and Taha [1999], which are omitted for space reasons. At a high level, this lemma requires us to
build parallel reduction of � JK to prove the Church-Rosser property, which is then used to prove
equivalence between � JK axiomatic semantics and operational semantics.

Lemma 6.4 (� JK w0G to � JK w2CG ). If ⇥ ` dgm1 w0G dgm2, then ⇥ ` dgm1 w2CG dgm2 : g .

Combining Lemma 6.2 and Lemma 6.4 yields our �nal goal:

Theorem 6.5 (_J)K =0G to � JK w2CG ). If pgm1 =0G pgm2, where ⇥ ` pgm1 : f { dgm1 , and

⇥ ` pgm2 : f { dgm2 , and ⇥ { ⇥ , and • ` f { g , then ⇥ ` dgm1 w2CG dgm2 : g .

7 TODAY’S TYPED TEMPLATE HASKELL
3

The behavior of Typed Template Haskell in GHC di�ers from our calculus. Table 1 summarizes
the key examples from §2, comparing the results from the latest GHC (9.0.1) to _J)K. The Haskell
code examples are in the appendix.
At a high level, GHC’s implementation is close to the description in §2.4: it delays type class

elaboration until splicing, and excludes local constraints for top-level splices. This is su�cient to
accept the de�nitions of print1 (and qnpower) and trim, but it restricts their use: print1 can only be
spliced with a monomorphic type signature, and trim can never be spliced, despite its semantics
being clear. The central guarantee of typed code quotations is that well-typed code values represent
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