rules_js

Build and test JavaScript programs with Bazel

Aspect

DEVELOPMENT

Alex Eagle
Co-founder, Aspect.dev
alex@aspect.dev

Slides: https://hackmd.io/@aspect/rules_js

https://hackmd.io/@aspect/rules_js

Bazel: most scalable polyglot Build System.

.| Introductions
D Fetch and install npm packages
.| Runtime module resolutions
|| How to use rules_js

d INTRODUCTIONS

o Alex Eagle
o Aspect Development
e Bazel
e NodedS

e pnpm
e GH/bazelbuild/rules_nodejs

WHO IS ALEX EAGLE

e Worked at Google on Devinfra 2008-2020

e Bazel most of that time: TL for Google's Cl,
build/test results Ul, Angular CLI

e twitter.com/jakeherringbone

http://twitter.com/jakeherringbone

WHAT IS ASPECT

| Co-founded Aspect Development to make Bazel the
industry-standard full-stack build system

e https://aspect.dev - Support and consulting to

nelp you adopt Bazel

e hitps://aspect.build - Products making Bazel
easier to use

e https://github.com/aspect-build - rules_js is
part of our Bazel rules ecosystem

https://aspect.dev/
https://aspect.build/
https://github.com/aspect-build

WHAT IS BAZEL

e Build system for “every” langugage

e |ncremental: re-build proportional to what you
changed

e Cached/parallel: distribute over server farm

e Scalable: works for Google's 2 billion line repo

e Unix Philosophy: just spawns subprocesses,
which can be any tool

More: https://www.aspect.dev/resources

https://www.aspect.dev/resources

WHEN TO CONSIDER BAZEL FOR
FRONTEND

Large-scale: TM SLOC /100 devs
Monhorepo: same use cases as Nx/Rush/Lerna
Polyglot/full-stack: parachute anywhere
Integration testing: fast test against backend
Have a Devinfra team: economy of scale

More: https://www.aspect.dev/resources

https://www.aspect.dev/resources

NONE OF THOSE APPLY?

Small, disconnected JS apps shouldn't use Bazel.

The build system recommended by your framework
is well supported for small-to-medium scale.

WHAT IS NODEJS

JavaScript engine that runs outside the browser.

Typically used for running dev tools to
build and test JavaScript programs.

WHAT IS pnpm

"Fast, disk space efficient package manager”:
https://pnpm.io/

Works with nearly the whole ecosystem

Used by the https://rushjs.io/ monorepo JS-only
build tool

Happens to fit perfectly with Bazel semantics!

https://pnpm.io/
https://rushjs.io/

WHAT IS rules nodejs

Bazel rules forked from Google-internal

e toolchain to run hermetic NodedS interpreter
e shared Bazel interfaces (“Providers”) like
TypeScript DeclarationInfo

rules_jsisalayeronrules nodejs
build bazel rules nodejsisreplaced

BUILD SYSTEMS:
MATRIX / HUB-AND-SPOKE

z#4 The JS ecosystem took a wrong turn

e Grunt and Gulp fell out of favor
e |nstead, each tool became a Build System
e Now each tool needs a plugin for each language

HOW BAZEL WORKS

In five minutes (%

BAZEL: LOADING PHASE

Load and evaluate all extensions, BUILD files and
macros that are needed for the build.

bazel fetch [targets]

https://blog.aspect.dev/configuring-bazels-
downloader

e Bazel is full-featured for fetching external deps
e Can air-gap, security scan, artifactory, etc

e Supply-chain secure, Trust-on-first-use model
e Cache based on integrity hashes

https://blog.aspect.dev/configuring-bazels-downloader

BAZEL: DEPENDENCY GRAPH

monorepo

registry.npmjs.com

my_comp

my_lib

otherrepo

other_team_lib

bazel query --output=graph [targets]

/lexamples/macro:node_modules/mocha/dir

T

/lexamples/macro:node_modules/mocha

/examples/macro:node_modules/mocha-junit-reporter/dit

//lexamples/macro:node_modules »/examples/macro:node_modules/mocha-junit-reportet
/lexamples/macro:test »//examples/macro:node_modules/mocha-multi-reporters

e

/examples/macro:node_modules/mocha-multi-reporters/dit //lexamples/macro:_test_srcs

/lexamples/macro:test__entry_point

BAZEL: ANALYSIS PHASE
@ Bazel rules

Action: for a requested output, how to generate it
from some inputs and tools

e.g."if youneed hello. js,run swconhello.ts"

Requires predicting the outputs!

bazel aquery [targets]

. SwC . .
Sass

component.js

esbuild

express

BAZEL: EXECUTION PHASE

Execute a subset of the action graph by spawning
subprocesses (e.g. node)

component.ts ——» component.js

B .

styles.scss » styles.css

CXPress @

User requested certain targets be built.
Bazel is lazy and will only:

o fetch precise dependencies needed
e run actions required by the transitive

dependency closure of those targets
e run actions that are a “cache miss”

d FETCH AND

INSTALL NPM
PACKAGES

HOW NPM/YARN SOLVE IT

npm install

Install everything needed for the whole
package/workspace

Any build/test script can depend on all npm
packages ¢

-

HOW GOOGLE SOLVES IT

Vendor the world: copy npm ecosystem sources into
VCS

e Never fetches from the internet
e Never runs any package installation

You could do it this way too. (s

HOW RULES_NODEJS SOLVED IT

Just wrap [npm|yarn] install - install the
world

Guaranteed slow when repo rule invalidates
Extra bad when “eager fetching” npm deps

RULES_JS: IDEAL SOLUTION
Port pnpm to Starlark

re-use pnpm’s resolver (via lockfile)
fetch with Bazel's downloader
unpack tarballs with Bazel
re-use @pnpm/lifecycle torun hooks
= these are actions - can be remote cached
link node modules

https://blog.aspect.dev/rulesjs-npm-benchmarks
Best case:

e BUILD file declares fine-grained deps
e pbuild only depends on one library
o we only fetch/install one library!

https://blog.aspect.dev/rulesjs-npm-benchmarks

WORKSPACES

Mix of third-party and first-party deps in a tree of
package.json files.

Google: single version policy
rules_nodejs: independent top-level dep installs
rules_js: supports pnpm workspaces!

d RESOLVING NPM

DEPENDENCIES AT
RUNTIME

HOW IT WORKS IN NPM

NodedJS programs rely on a node modules folder

"Was a big mistake” says NodedS creator, and
Deno fixes it (but here we are)

-

The location of node modules is expected to be
relative to the location of the importing script.

HOW GOOGLE SOLVES IT: PATCH
require
Same strategy as “PnP” e.g. Yarn PnP.

not compatible. Many npm packages wrote their
own require implementation.

HOW RULES_NODEJS SOLVES IT:
RUNTIME “LINKER”

Similar to npm 1ink:use symlinks to make
monorepo libraries appear in the node_modules tree

Slow beginning of every NodeJS spawn
Links appear in source tree w/o sandbox
Bins don't work with

genrule/ctx.actions.run
Not compatible with “persistent workers”

HOW RULES_JS SOLVES IT

Linker is now just a standard Bazel target

Node.js tools assume the working dir is a single tree
of src/gen/node_modules: we can do that!

e “link" to bazel-bin/node modules/...
® COpYy sourcestobazel-bin
e actionsfirstcd bazel-out/[arch]/bin

L;] HOW TO USE
RULES_JS

Documentation and migration guide:
https://docs.aspect.build/rules_js

https://docs.aspect.build/rules_js

INSTALL

Copy the WORKSPACE snippet from latest release.

https://github.com/aspect-build/rules_js/releases

https://github.com/aspect-build/rules_js/releases

ADOPT PNPM

Just run pnpm install and check that your
workflows work.

A few npm packages still have
“hoisting bugs” where they don’t
declare correct dependencies and
accidentally rely on nbom or yarn-
specific layout.

IMPORT pnpm-1lock.yaml

npm translate lock converts to Bazel's format
(Starlark).

WORKSPACE

load("@aspect rules js//npm:npm import.bzl",
"npm translate lock")
npm translate lock(
name = "npm",
pnpm lock = "//:pnpm-lock.yaml",

)

Load the starlark version of the lockfile
load("@npm//:repositories.bzl", "npm repositories")
npm repositories()

LINK THE NPM PACKAGES

BUILD (next to package. json)

load("@npm//:defs.bzl", "js link all packages")

js _1link all packages()

Result of bazel build :allisnow

the virtual store
bazel-bin/node modules/.aspect rules js
symlink into the virtual store

bazel-bin/node modules/some pkg
If you used pnpm-workspace.yaml:
bazel-bin/packages/some pkg/node modules/some dep

bazel build examples/...

LINK FIRST-PARTY PACKAGES

First declare the package...

my-1ib/BUILD

load("@aspect rules js//npm:defs.bzl", "npm package")

npm package (
name = "l1lib",
srcs = |
"index.js",
"package.json",

LINK FIRST-PARTY PACKAGES

..thenlinkto bazel-bin/node modules tree..

app/BUILD

load("@aspect rules js//npm:defs.bzl", "npm link package")

npm_ link package(

name = "node modules/@mycorp/mylib",
src = "//examples/lib"

.then depend on it just like it came from npm!

app/BUILD

js_binary(
name = "my app',
data = |
"//:node modules/react-dom",

"//:node modules/@mycorp/mylib",

1,

entry point = "index.js",

RUNNING NPM TOOLS

1. Just call the bin entries from package.json
2. Write a macro wrapping a bin entry

3. Write a custom rule
4. Use an existing custom rule (e.g. rules_ts vs

tsc)

There are also more advanced ways, see
rules_js/examples

bin ENTRIES ARE PROVIDED FOR ALL
PACKAGES

BUILD

load("@npm//typescript:package json.bzl", typescript bin

typescript bin.tsc(
name = "compile",
srcs = |
"fs.ts",
"tsconfig.json",
"//:node modules/@types/node",
1/
outs = ["fs.]Js"],
chdir = package name(),
args = ["-p", "tsconfig.json"],

Each bin exposes three rules:

Use With To

bazel produce
foo :

build outputs
foo binary bazel run side-effects

foo test bazel test assertexit0

WRAP EXISTING BUILD SYSTEM

Use “component libraries” to get coarse granularity

app sources

@ bundle
lib sources @

Pretty fast developer loop in
https://github.com/aspect-build/bazel-
examples/tree/main/vue

https://github.com/aspect-build/bazel-examples/tree/main/vue

ibazel run

cvite

WRITE A MACRO

Bazel macros are like preprocessor definitions.

Good way to give “syntax sugar’,
compose a few rules, set defaults.

Indistinguishable from custom rules at use site

Example: mocha test

(name, srcs, args = [],
bin.mocha test(
name = name,
args = [
"——-reporter",
"mocha-multi-reporters",
"——-reporter-options",

"configFile=$(location //examples/macro:mocha
native.package name() + "/*test.js",

] + args,

data = data + srcs + |
"//examples/macro:mocha reporters.json",
"//examples/macro:node modules/mocha-multi-re
"//examples/macro:node modules/mocha-junit-re

https://github.com/aspect-
build/rules_js/blob/main/examples/macro/mocha.bzl

https://hackmd.io/@aspect/rules_js?print-pdf

WRITE A CUSTOM RULE

Harder and not recommended for most users.

Start from
https://bazel.build/rules/rules-tutorial
and use
https://github.com/bazel-contrib/rules-template

https://bazel.build/rules/rules-tutorial
https://github.com/bazel-contrib/rules-template

USE AN EXISTING CUSTOM RULE
From https://github.com/aspect-build:

rules_esbuild - Bazel rules for
https://esbuild.github.io/ JS bundler
rules_terser - Bazel rules for https://terser.org/ -
a JavaScript minifier

rules_swc - Bazel rules for the swc toolchain
https://swc.rs/

rules_ts - Bazel rules for the tsc compiler from
http:/[typescriptlang.org

https://github.com/aspect-build:
https://esbuild.github.io/
https://terser.org/
https://swc.rs/
http://typescriptlang.org/

rules_webpack - Bazel rules for webpack
bundler https://webpack.js.org/

rules_rollup - Bazel rules for https://rollupjs.org/
- a JavaScript bundler

rules_jest - Bazel rules to run tests using
https://jestjs.io

rules_deno - Bazel rules for Deno
http://deno.land

https://webpack.js.org/
https://rollupjs.org/
https://jestjs.io/
http://deno.land/

.. and many more by other vendors
http://docs.aspect.build

Catalog coming soon at https://bazel-
contrib.github.io/SIG-rules-authors/

http://docs.aspect.build/
https://bazel-contrib.github.io/SIG-rules-authors/

EXAMPLE CUSTOM RULE: ts project

No more rootDirsin tsconfig. json (==

BUILD

load("@bazel skylib//rules:write file.bzl", "write file")

Create a test fixture that is a non-trivial sized TypeS
write file(
name = "gen ts",
out = "big.ts",
content = |
"export const a{0}: number = {0}".format (x)
for x in range(100000)

1/

BUILD

load("@aspect rules ts//ts:defs.bzl", "ts project")

ts project(
name = "tsc",
srcs = ["big.ts"],
declaration = True,
source map = True,

ts_project with custom transpiler

BUILD

load("@aspect rules swc//swc:defs.bzl", "swc transpiler")

ts project(

name = "swc'",

srcs = ["big.ts"],

out dir = "build-swc",

transpiler = partial.make(
swc_transpiler,
args = ["--env-name=test"],
swcrc = ".swcrc',

) s

https://github.com/aspect-build/bazel-examples/tree/main/ts_project_transpiler

Benchmarks: ts_project w/ SWC

https://blog.aspect.dev/rules-ts-benchmarks

https://blog.aspect.dev/rules-ts-benchmarks

Transpile-only use case on large project

bazel build :devserver

PUTTING IT ALL TOGETHER

Sophisticated teams can assemble their own
toolchain.

Create an entire JS build system just by composing
existing tools in a macro!

Example: an entire custom build system called
“differential loading”:

ROADMAP

rules_js 1.0.0 is available now

Coming soon TM

o Gazelle extension to generate BUILD files from
SICS

e Bazel 6.0 package manager: bzlmod instead of
WORKSPACE

https://blog.aspect.dev/bzimod

https://blog.aspect.dev/bzlmod

THANK YOU!

These slides: https://hackmd.io/@aspect/rules_js

Thanks conference organizers and everyone who
helped launch rules_js.

Come work with us on OSS!
http://aspect.dev/careers
Paid support and consulting: http://aspect.dev
Our projects: github.com/aspect-build

https://hackmd.io/@aspect/rules_js
http://aspect.dev/careers
http://aspect.dev/
http://github.com/aspect-build

