
Bazel & Buildkite
{ Fast, Green } - Choose Two

Matthew Mackay
Staff Engineer @ Aspect Development

Who’s Matt Mackay?

Staff engineer at Aspect Development

Worked in various areas of developer experience

Owner on core bazel rulesets

Won an egg and spoon race once

Aspect Development

github.com/aspect-build

Making Bazel easier to adopt,
operate, and optimize

https://github.com/aspect-build

Client Case Study

What is CI with Bazel?

Bazel performance tracking

Buildkite as a CI platform

Client Case Study

Builds per week: ~ 4000 main branch, ~8000 diffs

Build time: 60 min with no optimizations

Expectations:

- Build is fast, especially for no-ops

- Quick feedback and deploy times

- Clear and actionable messaging when builds fail

- Main branch to be green and breakages reverted quickly

- Minimize machine resources cost

What is CI with Bazel?

CI is simple, Bazel does the integration

SCM change Invoke bazel Report results

Just Invoke Bazel?

bazel test //…

Build and test everything

Rely on caching to keep times fast

Good starting point

bazel test $affected-targets

Build and test only the targets that have been affected by a change

Bazel does significantly less work

Overhead of calculating the affected targets

Just Invoke Bazel?

Selective Testing + Q&A BazelCon Talk

https://youtu.be/9Dk7mtIm7_A

bazel-diff by Tinder

https://github.com/Tinder/bazel-diff

Target-determinator owned by bazel-contrib

https://github.com/bazel-contrib/target-determinator

Just Invoke Bazel?

https://youtu.be/9Dk7mtIm7_A
https://github.com/Tinder/bazel-diff
https://github.com/bazel-contrib/target-determinator

Bazel Performance
Tracking

$(bazel info output_base)/command.profile.gz

Open in chrome://tracing

Bazel Performance Tracking

Deterministic repository rules

Package managers may invoke “post install” scripts that do arbitrary work

Files may contain absolute paths, timestamps or debug symbols

Environment variables changing between builds

Cause large invalidations to the build graph or continual cache misses

Deterministic Repository Rules

Service 1 Service 2

Heavy Tests

Service 3 … ...

Library
2

Library
1 ...

...... ...

Library
8... ...

pip npm maven

Deterministic Repository Rules

~/vevn1/_psycopg.cpython-38-darwin.so

587cd33d74cd553776ec0034288a13f62bd6217f287f51645f132d5f50081cd4

~/vevn2/_psycopg.cpython-38-darwin.so

83e7a3ed0f3f0208da46ab6fbf275a8f28d762a04f7e89bc804c70418fee6a10

Deterministic Repository Rules

Deterministic Repository Rules

Finding non-deterministic input files

bazel query "kind('source file', deps(//foo))" --output xml |

xq '.query."source-file"[]."@location"' --raw-output |

awk -F ':' '{print $1}' |

sort |

xargs shasum -a 256 {} |

tee shas.txt

Deterministic Repository Rules

Bazel Performance Tracking

Execution Logs

Gather execution logs from builds

--execution_log_json_file

--execution_log_binary_file

Binary log output can be processed with the execution log parser

https://github.com/bazelbuild/bazel/blob/master/src/tools/execlog

https://github.com/bazelbuild/bazel/blob/master/src/tools/execlog

Bazel Performance Tracking

Execution Logs

JSON output can be processed with jq filters

Get all inputs for a uncached test given its target

select(

.remoteCacheHit == false and

 (.progressMessage | contains("//foo:test"))

) | .inputs

Fixing all the repository rule outputs

Deterministic Repository Rules

Setting environment variables for stable timestamps

ZERO_AR_DATE=1

SOURCE_DATE_EPOCH=624795867

Deterministic Repository Rules

Turn off debug symbols where appropriate

CFLAGS="-g0"

Deterministic Repository Rules

Remove input files that aren’t needed

npm_install(

 name = "npm",

args = [

"&&",

"rm -rf ./node_modules/node-sass/build",

],

Remote Caching

bazel build $targets

bazel build $targets

CI Agent 1

CI Agent 2

read + write

read + write

Use a remote caching service to share build results across agents

OSS Cache implementations such as buchgr/bazel-remote

Fully managed solutions

Bazel Performance Tracking

Analysis Cache
INFO: Build option --define has changed, discarding analysis cache.

INFO: Build option --define has changed, discarding analysis cache.

Can add significant overhead to bazel commands

Find and prevent churning of analysis cache

Flags across verbs in .bazelrc are consistent

Bazel Performance Tracking

INFO: Build option --define has changed, discarding analysis cache.

Use common where appropriate

common --incompatible_foo

Place other flags on each verb

test --incompatible_foo

query --incompatible_foo

Bazel Performance Tracking

If running coverage, consider running test with these flags

--collect_code_coverage

--test_timeout=300,600,1200,3600

--instrumentation_filter=^//

Bazel Performance Tracking

Fun with flags

No scanning of output or external files when checking for changes

--noexperimental_check_output_files

--noexperimental_check_external_repository_files

Bazel Performance Tracking

Store merkle tree calculations to improve remote cache speed

--experimental_remote_merkle_tree_cache

--experimental_remote_merkle_tree_cache_size

Bazel Performance Tracking

Build without the bytes

--remote_download_minimal

Expands to

 --nobuild_runfile_links

 --experimental_inmemory_jdeps_files

 --experimental_inmemory_dotd_files

 --remote_download_outputs=minimal

Bazel Performance Tracking

Constrain users so we can hit our SLA

--test_timeout_filters=-eternal

Paper over flaky tests

--flaky_test_attemps=n

Bazel Performance Tracking

Be vigilant when landing changes with a big blast radius

Perhaps limit landing these to off peak times

Group these changes up where possible

Bazel Performance Tracking

Gather timing metrics from each build stage

Track metrics over time

Setup SLAs, SLOs and SLIs to keep on top of CI performance

Bazel Performance Tracking

Buildkite

Auto scaling
group

Buildkite
Agents

Job Queue Buildkite UI

Private VPC

Running agents on AWS EC2 via ASG for dynamic scaling of compute

https://github.com/buildkite/elastic-ci-stack-for-aws

Elastic Stack Properties

ScaleOutFactor

Controls a decimal factor to speed up or slow down agent scaling

ScaleInIdlePeriod

Number of seconds and agent remains idle before it’s considered for termination

Buildkite

Elastic Stack Properties

MinSize

The minimum number of agents that will be available at any given time

MaxSize

The Maximum number of agents that will be available

Buildkite

Elastic Stack Properties

OnDemandPercentage

Percentage of instances that should be launched as on-demand

Buildkite

Buildkite

Local NVMe disks
Raid 0

(high storage I/O
performance)

Target pattern was
determined by bazel-diff
with some custom logic

layered on

AMI contains system level
dependencies but not

sources

i3en series for good all
around resources

EC2 Not k8s Air-gapped

Buildkite

Different agent pools to guarantee performance, stability, ACLs

Canary

Test our
changes

Diff
+ Slow Diff

Run
unreviewed

code

Main

Build and
Test from

main branch

Privileged

Can push to
release
system

Small

Resource-
constrained for

cost

CRON trigger

Bootstrap agents from a tar for repository caches

bazel build ... tar S3

Buildkite

Signpost failures with annotations

Central team must pre-empt user questions

Consume build events to annotate the build with actionable info

Search and reduce log spam

Buildkite

Stream the events via the Aspect CLI to generate annotations

Buildkite

Shard work between agents

Do work across multiple agents in parallel to break up large test targets

Buildkite

User impact

User Impact

60 min -> ~5 min for diff

Centrally managed CI - Users don't have to think about CI setup for their services

One Oncall engineer monitors alerts and failures, keeping main line branch green

Flaky tests get quarantined quickly (--flaky_test_attempts=3)

Bazel profiles monitored to keep critical path fast as possible

Great resource for build tooling

https://reproducible-builds.org/

Diffoscope

https://diffoscope.org/

Selective Testing + Q&A BazelCon Talk

https://youtu.be/9Dk7mtIm7_A

bazel-diff by Tinder

https://github.com/Tinder/bazel-diff

Target-determinator owned by bazel-contrib

https://github.com/bazel-contrib/target-determinator

Links and References

https://reproducible-builds.org/
https://diffoscope.org/
https://youtu.be/9Dk7mtIm7_A
https://github.com/Tinder/bazel-diff
https://github.com/bazel-contrib/target-determinator

Getting started with Bazel and CI?
Talk to us about scaling your CI system with Bazel,
or about our managed CI offering!

Thanks!

Matthew Mackay
Staff Engineer @ Aspect Development

Bazel & Buildkite
{ Fast, Green } - Choose Two

