When to choose Rust

Tim McNamara
Senior Software Engineer, AWS New Zealand Ltd

https://twitter.com/timClicks
https://youtube.com/timClicks
https://linkedin.com/in/ftimmcnamaranz

An acknowledgement

I'd like to begin by acknowledging the Noongar
people, as traditional owners of South Western
Australia land where we meet today. | would also

like to pay my respects to Elders past, present,
and emerging.

S whoami

@timClicks

https://manning.com/mcnamara

https://manning.com/mcnamara

Aim for the talk

Convince you that Rust is worth
evaluating, not that Rust is what
your conclusion should be.

Your decision

Are the long-term benefits of
Rust sufficient to outweigh
short-term costs?

Time

High

AMAIONPOId

Low

Productivity

High

Low

Baseline productivity

Time

Productivity

\

Adopting a tool leads to a
short-term productivity drop

Time

Productivity

With experience using the new
tool, productivity increases

Time

Productivity

High

Low

Eventually, a new
baseline is reached

Time

What is Rust?

Rust emerged from the Cyclone project, which
was unable to bolt on safety to C.

It was envisaged as a practical programming
language with no novel features - everything in
the language should already be well known in
research languages.

https://cyclone.thelanguage.org/

http://venge.net/gravdon/talks/rust-2012.pdf

Rust

Asafe, concurrent, practical language
Grayton osrs
<gropponmoria com>
ooar 2013

This is not a marketing talk

« Purpose:
- Convince you there's something interesting here:
- Provide some technical details to whet your appetite

« Assuming:
- You'e a systems programmer
- You know >3 existing non-toy languages.
+ One of which i C++
+ Ono of which s ML, Haskel, C# or Scala
+ Lisp and Smaltal folks: wo love you too

Practical = Realistic

+ Nosilver bullets

+ No free lunches

+ Nothing new under the sun

+ PL design has >50 years of history

+ Most good ideas discovered in the first 20

+ PL design work = taste, selection, tradeoffs

+ “New language” = new balance, suited to times

Some Rust code: the Algol basics

£ main0) (

stevee Pone (x:dnt, yiint)
Lo iprintin("helle, vorid') = Beine (x:1, ¥

2)

PP —— anim Color (Red, Green, Blus)
Py x = et

et g fint] = 13,234

Some Rust code: the FP basics

Anonymous functions & type
11,2,3] msp(ix] x+1)

Pattern matching & tagged unions

Squara (F1oa0) |
Ract (£loat, £1oat)

)

£ axea(s: Shape) > float |
e s

http://venge.net/graydon/talks/rust-2012.pdf

Practical = Realistic

* No silver bullets

* No free lunches

* Nothing new under the sun

» PL design has >50 years of history

* Most good ideas discovered in the first 20

» PL design work = taste, selection, tradeoffs

* “New language” = new balance, suited to times

http://venge.net/gravdon/talks/rust-2012.pdf

http://venge.net/graydon/talks/rust-2012.pdf

Some Rust code: the Algol basics

fn main() { struct Point {x:int, y:int}
io::println("hello, world"); let a = Point {x:1, y:2};
} assert 1 == a.x;
fn fact(x: int) -> int { enum Color {Red, Green, Blue}
if x == 1 { let x = Red;
return 1; assert x != Blue;
} else { match x {
return x * fact(x-1); Red => foo(l),
} _ => bar (2)
} }
let a: str = "hello"; fn foo() {
let b: char = '¥'; // Unicode let x = [1,2,3,4];
let c: i8: 0b1010_0000 | Oxf; let mut i = 0;
let d: u32: OxdeadcOde; while i < x.len() {
let e: bool = true; bar(x[i]);
let £: (int, float) = (1, 1.2); i+=1;
let g: [int] = [1,2,3,4]; }
}

Some Rust code: the FP basics

Anonymous functions & type inference

{[1'2,3]-map(lxl x+1)] Y

~[2,3,4] l

Pattern matching & tagged unions

enum Shape {
Circle(float) ,
Square (£loat) ,
Rect (float, float)
}

fn area(s: Shape) -> float {
match s {
Circle(r) => float::pi * (r * r),
Square(s) => s * s,
Rect(w,h) => w * h

http://venge.net/gravdon/talks/rust-2012.pdf

Rust

Asafe, concurrent, practical language
Grayton osrs
<gropponmoria com>
ooar 2013

This is not a marketing talk

« Purpose:
- Convince you there's something interesting here:
- Provide some technical details to whet your appetite

« Assuming:
- You'e a systems programmer
- You know >3 existing non-toy languages.
+ One of which i C++
+ Ono of which s ML, Haskel, C# or Scala
+ Lisp and Smaltal folks: wo love you too

Practical = Realistic

+ Nosilver bullets

+ No free lunches

+ Nothing new under the sun

+ PL design has >50 years of history

+ Most good ideas discovered in the first 20

+ PL design work = taste, selection, tradeoffs

+ “New language” = new balance, suited to times

Some Rust code: the Algol basics

£ main0) (
Lo iprintin("helle, vorid')

Some Rust code: the FP basics

Pattern matching & tagged unions

http://venge.net/graydon/talks/rust-2012.pdf

Why Rust?

Why Rust?

Users deserve
safe, secure software

(They are people, after all)

Unfortunately,
the very best
programmers
are not able to write
safe, secure software

https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/

https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-

We need a safer systems programming language

Security Research & Defense [By MSRC Team / July 18, 2019 /| Memory Safety, Rust, Safe
Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security vulnerabilities
that Microsoft fixes and assigns a CVE (Common Vulnerabilities and Exposures) are due to memory safety

issues. This is despite mitigations including intense code review, training, static analysis, and more.

2007 2008 2009 2010 201 2012 2013 2014 205 2016 2017 2018
Patch Year

@ Memory safety B Not memory safety

~70% of the vulnerabilities Microsoft assigns a CVE each year continue to be memory

safety issues

While many experienced programmers can write correct systems-level code, it's clear that no matter the
amount of mitigations put in place, it is near impossible to write memory-safe code using traditional

systems-level programming languages at scale.

https://www.chromium.org/Home/chromium-security/memory-safety/

https://www.chromium.org/Home/chromium-security/memory-safety/

nnnnnnnnnn

(| The Chromium project finds that
—— around 70% of our serious

security bugs are memory safety
problems.

HHHHHHH

Around 70% of our high severity security bugs are memory unsafety problems (that is, mistakes with C/C++ pointers). Half of those are
use-after-free bugs.

@ e chromium Projects Qs B

High+, impacting stable

Security-related assert

7.1%

-after-fr
Other the-e eer 18:
23.9% -
Other memory unsafety

32.9%

Around 70% of our high severity security bugs are memory unsafety problems (that is, mistakes with C/C++ pointers). Half of those are
use-after-free bugs.

@ e chromium Projects Qs B

High+, impacting stable

Security-related assert

7.1%

-after-fr
Other the-e eer 18:
23.9% -
Other memory unsafety

32.9%

The limits of sandboxing

We’re tackling the memory unsafety problem — fixing classes of bugs at scale, rather than merely containing them — by any and all
means necessary, including:

e Custom C++ libraries
o //base is already getting into shape for spatial memory safety.

o std and Abseil assume correct callers ‘for speed’, but can be modified to do basic checking with implementation changes
(Abseil) and compile-time flags (LLVM libcxx).

o Generalizing Blink’'s C++ garbage collector, and using it more widely (starting with PDFium).

« Hardware mitigations, e.g. MTE.
o Custom C++ dialect(s)

o Defined and enforced by LLVM plugins and presubmit checks. In particular, we feel it may be necessary to ban raw pointers
from C++.

* Using safer languages anywhere applicable
o Java and Kotlin
o JavaScript
o Rust (see our notes on C++ interoperability here)
o Swift
o Others...?

These options lie on a spectrum:

Lower cost, Higher cost,

less improvement more improvement
Spatial Helpers for Full GC Domain- Components
safety in temporal specific in Rust
C++ libs safety in languages

C++ libs

The limits of sandboxing

We’re tackling the memory unsafety problem — fixing classes of bugs at scale, rather than merely containing them — by any and all
means necessary, including:

e Custom C++ libraries
o //base is already getting into shape for spatial memory safety.

o std and Abseil assume correct callers ‘for speed’, but can be modified to do basic checking with implementation changes
(Abseil) and compile-time flags (LLVM libcxx).

o Generalizing Blink’'s C++ garbage collector, and using it more widely (starting with PDFium).

« Hardware mitigations, e.g. MTE.
o Custom C++ dialect(s)

o Defined and enforced by LLVM plugins and presubmit checks. In particular, we feel it may be necessary to ban raw pointers
from C++.

* Using safer languages anywhere applicable
o Java and Kotlin
o JavaScript
o Rust (see our notes on C++ interoperability here)
o Swift
o Others...?

These options lie on a spectrum:

Lower cost, Higher cost,

less improvement more improvement
Spatial Helpers for Full GC Domain- Components
safety in temporal specific in Rust
C++ libs safety in languages

C++ libs

Lower cost,
less improvement

Higher cost,
more improvement

-+ >
Spatial Helpers for Full GC Domain- Components
safety in temporal specific in Rust
C++ libs safety in languages
C++ libs

e less improvement

more improvement

Spatial Helpers for Full GC
safety in temporal
C++ libs safety in

C++ libs

Domain- Components
specific in Rust
languages

Why Rust?

The planet is suffering

https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf

Why Rust?

Save money

CPU

800
600
o
S
9
= 400
1S
o |
o
©]
200
0

JS Rust

https://medium.com/tenable-techblog/optimizing-700-cpus-away-with-rust-dc7a000dbdb2

https://medium.com/tenable-techblog/optimizing-700-cpus-away-with-rust-dc7a000dbdb2

Memory
80

60

40

MB

20

Rust

CPU Usage (Total)

1200

900

Why Rust?

Increase stability

System CPU
s

40
30

20

10:05 10:10

Average Response Time (ms)

30

20

g T
10:05 1010

T
10:15

A Response Time (95th) (ms)
400

300

200

4 # Max @mention (s)

1010

10:15

https://discord.com/blog/why-discord-is-switching-from-go-to-rust

Average Response Ti

40

Max @mentio
600

Average Response Ti

40

Max @mentio
600

Why Rust?

Who wants bugs?

https://doi.org/10.1038/d41586-020-03382-2

Why scientists are
turning to Rust

https://doi.org/10.1038/d41586-020-03382-2

S| />

Koster, now at the University of Duisburg-Essen in Germany, was looking for a language that
offered the “expressiveness” of Python but the speed of languages such as C and C++. In

other words, “a high-performance language that is still, let’s say, ergonomic to use”, he
explains. What he found was Rust.

e />
C and C++ are fast, but they have “no guide rails”, says Ashley Hauck, a Rust programmer (or
‘Rustacean’, as community members are known) in Stockholm. For instance, there are no
controls that stop a C or C++ programmer from inappropriately accessing memory that has
already been released back to the operating system, or to prevent the program from

releasing the same piece twice. In the best-case scenario, this would cause the program to
crash. But it can also return meaningless data or expose security vulnerabilities. According
to researchers at Microsoft, 70% of the security bugs that the company fixes each year relate
to memory safety.

Rust’s model uses rules to assign each piece of memory to a single owner and enforce who
can access it. Code that violates those rules never gets the chance to crash —itwon't
compile. “They have a memory-management system that is based on this concept of
lifetimes that lets the compiler track at compile-time when memory is allocated, wheniit's

freed, who owns it, who can access it,” explains Rob Patro, a computational biologist at the
University of Maryland, College Park. “There’s an entire large class of correctness errors that
go away simply by virtue of the way the language is designed.”

V==
But for many Rustaceans, the human element is equally compelling. Hauck, a member of the
LGBT+ community, says that Rust users have gone out of their way to make her feel
welcome. The community, she says, has “always made an effort to be extremely inclusive —
like, very much aware of how diversity impacts things; very aware of how to write a code of
conduct and enforce that code of conduct”.

“That’s probably a majority of the reason I'm still writing Rust,” Hauck says. “It’s because the
community is so fantastic.”

Why Rust?

Your team will be happier

Rust is developers'
most loved programming language and
most preferred programming language

https://survey.stackoverflow.co/2022/

https://survey.stackoverflow.co/2022/

“The short answer is that Rust solves pain
points present in many other languages,
providing a solid step forward with a
limited number of downsides.”

https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

“I believe that Rust is challenging to learn

but rewarding to use. | think it is actually

surprising how much people enjoy being

challenged as long as the reward is good
enough.”

https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

“When you're outside of Rust, there are
things that sound like empty slogans, but
when you start using it you'll become
pleasantly surprised ...

https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

Should you choose Rust?

Should you choose Rust?

e Can you afford to lower
productivity in short term?

e Do you have an area of your
business that could benefit?

Should you choose Rust?

If you're unsure, test

- The 2021 user survey
reveals that Rust did not
justify its adoption
approximately 1% of the time

- https://raw.qgithubusercontent.com/rust-I
ang/surveys/main/surveys/2021-annual
-survey/2021-annual-survey-summary.p
df, p 99

https://raw.githubusercontent.com/rust-lang/surveys/main/surveys/2021-annual-survey/2021-annual-survey-summary.pdf
https://raw.githubusercontent.com/rust-lang/surveys/main/surveys/2021-annual-survey/2021-annual-survey-summary.pdf
https://raw.githubusercontent.com/rust-lang/surveys/main/surveys/2021-annual-survey/2021-annual-survey-summary.pdf
https://raw.githubusercontent.com/rust-lang/surveys/main/surveys/2021-annual-survey/2021-annual-survey-summary.pdf

How to learn Rust

How to learn Rust

Preparation

- Give yourself permission to be
frustrated

- Expect programs to be rejected
that you feel should be accepted

How to learn Rust

Three steps

- Write small scripts
- Reimplement small service
- Implement larger project

How to learn Rust

Your aim

Understand how Rust
provides its guarantees and
apply them across your
business

How to adopt Rust

How to adopt Rust

Preparation

- Find low risk projects

How to adopt Rust

Three steps

- Find local advocate
- Reimplement small service
- Implement larger project

How to adopt Rust

Your aim

Understand how Rust
provides its guarantees and
apply them across your
business

Where is Rust weak?

Where is Rust weak?

Learning

- 55% of people who have left
the language community
found Rust too hard

Which projects are a good fit?

Which projects are a good fit?

Large programs
("systems programming")

Which projects are a good fit?

Large programs Small utilities
("systems programming")

Which projects are a good fit?

Web services Cloud native Embedded

L — @& L —0— L —0— o

Large programs WebAssembly Daemons Small utilities
("systems programming")

You should consider Rust

