PACTFLOW W

A SMARTBEAR COMPANY

Beyond REST

Contract testing in the age of gRPC, Kafka and GraphQL.

VEI S

YOW! Perth, Sep 22

AAAAAAAAAAAAAAAA

Presented by

Matt Fellows - Principal Product Manager @ SmartBear
— Co-Founder, Pactflow

— Core Maintainer, Pact (Go, JS)

Y @matthewfellows

Consumer-Driven Contracts: A Service Evolution Pattern

This article discusses some of the challenges in evolving a community of service providers
and consumers. It describes some of the coupling issues that arise when service providers
change parts of their contract, particularly document schemas, and identifies two well-
understood strategies - adding schema extension points and performing "just enough"
validation of received messages - for mitigating such issues. Both strategies help protect
consumers from changes to a provider contract, but neither of them gives the provider
any insight into the ways it is being used and the obligations it must maintain as it
evolves. Drawing on the assertion-based language of one of these mitigation strategies -
the "just enough" validation strategy - the article then describes the "Consumer-Driven
Contract" pattern, which imbues providers with insight into their consumer obligations,
and focuses service evolution around the delivery of the key business functionality
demanded by consumers.

CONTENTS

Evolving a Service: An Example
Interlude: Burdened With Services
Schema Versioning

Extension Points

lan Robinson

https://martinfowler.com/articles/consumerDrivenContracts.html#InterludeBurdenedWithServices

https://martinfowler.com/articles/consumerDrivenContracts.html

AAAAAAAAAAAAAAAA

If | got a penny every time...

(a story)

AAAAAAAAAAAAAAAA

“If we just used <insert some new tech>
then we wouldn't need contract testing”

AAAAAAAAAAAAAAAA

Modern architecture

The challenges facing today’s engineering leaders

PACTFLOW W

A SMARTBEAR COMPANY

Customer quote

WEREVEERVEry large program with many different scrum teams

building a wide variety of components all operating in a
microservices event based architecturel

IESdlaleRIsSleERENNighly volatile set of integrated environments is
eaE1=lglellgle] today.

[Welel dlplefteNel= 1l ol uu=Ifelelplile=Nglels) by doing better isolated contract

testing...

Between direct calls to RESTful or GraphQL APIs, or messages
using AWS event bridge or Kafka, and also 3rd party SaaS and

partner integrations.. [[¥XeliiilevlifteN a1 Ele]=

a large banking prospect

PACTFLOW

A SMARTBEAR COMPANY

Industry insights

More microservices, more protocols

fo— |
.

61% say most API growth from microservices

2. 81% of companies operate in a multi-protocol
environment

3. 57% use 3 or more protocols

In your opinion, which of these technology areas do you expect will drive the
most API growth in the next two years?

g

s s 3% B % % s s 60%

Does your organization use any of the following API protocols?

wwwwwww

ssssssssss

aaaaaaaaaa

https://smartbear.com/state-of-software-quality/api/

https://smartbear.com/state-of-software-quality/api/

PACTFLOW

A SMARTBEAR COMPANY

Industry insights

More microservices, more protocols

1. Internal integration is the new focus
2. =open up new use cases/data to the org

Producing APls: heavier focus on internal integration

What factors do respondents consider when deciding whether to produce an API? Their top
answer was the same as last year: integration with internal apps and systems. But this year, the
factor jumped in importance: 83% of respondents selected it, up from 67% last year.

Internal integration rose in importance this year for both producing and consuming APIs. It's a

shift that bears watching, as it has implications for API documentation and design, as well as the
full development lifecycle.

Speeding up development timelines

Reducing development costs

Reducing operat

Improving testing of

Enabling mobile app!
Reducing risk due to
or non-perform

https://www.postman.com/state-of-api/

PACTFLOW

A SMARTBEAR COMPANY Obstacles to producing APIs: lack of design skills

Lack of time was again organizations' biggest obstacle to producing APIs, followed by lack of
people. But the third-biggest hindrance was new this year: lack of API design skills.

[] []

I n r I n I A gap in API design skills may be contributing to an overproliferation of microservices, which is a
problem in itself. Managing too many APIs or microservices was respondents’ sixth biggest
obstacle to producing APIs. Among API-first leaders, it's an even bigger problem: too many

microservices was their second-biggest obstacle.

The headwinds of “Microservices sprawl”

Barriers to implementing microservices:

Experience or skills
Complexity of systems O P
Increasing demands on speed of delivery, and
Limited time due to workload

NN

Mature organisations feeling the pain

“By 2025, less than 50% of enterprise APIs
will be managed, as explosive growth in

APIls surpasses the capabilities of API
management tools.”

Gartner

https://smartbear.com/state-of-software-quality/api/

https://smartbear.com/state-of-software-quality/api/

AAAAAAAAAAAAAAAA

How we test microservices now

And why it doesn’t scale

PACIFLOW @ . E2E Testing | 12

End-to-end tests |
Why this is hard - o @ios
BE:
e Slow =
° Fragile JBON/HTTP JSON/HTTP
e Hardtodebug
e All-at-once painful deployments
e Teams wait on build queues
' LS N/HTTP é(, JSON/HTTP
r=====r=-="1 I']aﬁ """" 1
: ice A |« » Microservice B :
| ----------- i |ISON/HTTP |_ - _l
i é e | [=]
: I

PACTFLOW

A SMARTBEAR COMPANY

Scaling Challenges

Cost / Complexity / Time

E2E Testing | 13

Developer idle time
(queues)

Teams + Components
_ Linearincrease in
_________ teams and
- components results in
—————————————— exponential increase
—————————————— in other factors

Number teams / components

AAAAAAAAA

Unbalanced test

CCCCCCC

Hours

=

m Minutes
e

>
Q

Seconds

Feedback Loops

Ul Tests

Integration Tests

Q

Hieh T O
& (-
Q

©

4=

(-

@)

@

Medium 3
2

00

]

|-

L

£

Low =
LLJ

AAAAAAAAAAAAAAAA

The solution?

Consumer Driven Contract testing

PACTFLOW W

A SMARTBEAR COMPANY

What is Contract Testing?

An alternative approach to APl communication testing

Benefits: ﬁ:l -
[

Simpler - test a single integration at a time
No dedicated test environments - run on a
dev machine
e Get fast, reliable feedback
Tests that scale linearly
Deploy services independently 2

JSON/HTTP

JSON/HTTP

It tracks these over time, enabling evolution

JSON/XML

AP| Gateway

JSON/HTTP

16

JSON/HTTP

JSON/HTTP

PACTFLOW

A SMARTBEAR COMPANY

Required interactions are
captured into a consumer 2
contract between systems

Unit

How it works

Consumer unit tests
its behaviour against
provider mock

Contract

The contract is shared amongst teams to enable

collaboration

Interactions in the contract replayed
4 against provider APl and verified
against consumer(s) expectations

Provider

Unit

Provider tests mock out
any other systems, so it
can be tested in isolation

PACTFLOW Why Contract Testing? | 18

A SMARTBEAR COMPANY

Pact

a8 o
. . . s [[@ ios
Microservice contract testing
-
Contract testing makes it easy to test microservices =
quickly, independently and release safely.
JSON/HTTP JSON/HTTP

Use cases:
- Javascript web applications (e.g. React)
- Native mobile applications

- RESTful microservices with JSON and XML JSON/HTTP) JSON/HTTP
g,
- Asynchronous messaging (e.g. MQ) l_'_ S RN S '
- ! .))) |
And much more : Microservice A :: :: MicroserviceB |
| | /HTTPJSON | "
®________
JSON/XML r 1

PACTFLOW

A SMARTBEAR COMPANY

What is Contract Testing?

Ingredients of a consumer Pact test

[X X J
describe('GET /orders', () => {
before(() => {
con intara

1);

method: 'GET',

path: '/orders',
I
.willRespondWith({
status: 200,
headers: {

b,
body: [{
id: 1234,
total: 9900,
items: [...]
.
3);

'Content-Type':

‘application/json',

return provider.addInteraction(interaction);

5

1)

000
describe('GET /orders', () => {

it('returns all open orders', async () => {
// Act
const orders = await orderService.getOpenOrders();
-
// Assert
expect(orders[0].1d).to.eq(1234)
£l
)3

PACTFLOW

A SMARTBEAR COMPANY

What is Contract Testing?

Outputs of a consumer Pact test

GET /orders
If the client doesn’t call the endpoint as expected, the
test fails ® GET /orders > returns all open orders

Test failed for the following reasons:

|t’s a mock not a stub_ Mock server failed with the following mismatches:

@) The following request was expected but not received:

Method: GET
Path: /orders
Headers:
Accept: application/json

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: @ total

Time: 1.465 s, estimated 2 s

20

PACTFLOW

A SMARTBEAR COMPANY

21

What is Contract Testing?

Outputs of a consumer Pact test

If the test passes, we get a contract containing the

expectations from this consumer for a given API
provider.

4
"consumer": { "name": "Order Client" },
"provider": { "name": "Order API" },
"interactions": [
{
"description": "a request to get all open orders",
"providerState": "there are orders to be fulfilled",
"request": {
"method": "GET",
"path": "/orders"
}!
"response": {
sl e ool
"headers": {
"Content-Type": "application/json"
}?
"matchingRules": { ... },
"status": 200
}

}7
{0
}

])

"metadata": {...}
}

pACTFLOW ERVIEW NETWORK DIAGRAN MATRIX WEB CONTRACTS

A SMARTBEAR COMPANY

@ A pact between Product Website and Product API i C
Consumer Details
CONSUMER VERSION PUBLISHED AT BRANCH
28669249080d16¢fb62291c1a10d55b431d61474 9 minutes ago main
More consumer details
RELEASED ENVIRONMENTS DEPLOYED ENVIRONMENTS
N/A Production
TAGS
N/A

Provider Details

O
X
O
M
)
O
qV)
an

o)
=
o)
0
-
O
0
L
O
O

PROVIDER VERSION PUBLISHED AT BRANCH
ac1ca19d725736782d63f30f1041584f86cad037 4 days ago master

More provider details
RELEASED ENVIRONMENTS DEPLOYED ENVIRONMENTS
N/A Production
TAG
N/A

CONTRAC CONSUMER CONTRACT PROVIDER
Consumer Contract @ c
ONSUMER CONTRACT STATUS PACT SPEC VERSION
Compatible 2.0.0

(@) Displays product item
\\}\ Displays product item by query

@) Displays products

PACTFLOW

A SMARTBEAR COMPANY

What is Contract Testing?

Provider contract test
record
. W 71 Pact Broker
Pact ;
GET 1234
Pact verifier checks: http request
1. All known consumers of the provider =
2. Provider can respond to all requests for each G Provider
consumer http response
3. For each request, the response (headers,
status, body etc.) matches rules in the
contract
“id”: 1234
“items”

PACTFLOW

A SMARTBEAR COMPANY

-

&’c
o .©
m >
w2 O
O >
© L1
a

NET AGR MATRIX EB
All pacts and verifications for Product Website and Product API
Count: 100 PPLY LIMIT
Consumer Provider Status =
Version EQ Branch & Tags Envs Version Q Branch & Envs
Tags
. acical9 X
24d838d ‘& add_breaking_change N/A 3 master Production
P ed 8
minu , ferified 7 minutes
1ca19
main Production a: ca master Production =/

pACTFLOW VERVIEW NETWORK DIAGRAM

A SMARTBEAR COMPANY

All pacts and verifications for Product Website and Product API

LT . ; R
L {3

pactflow-example-bi-directional-consumer-mountebank

pactflow-example-bi-directional-consumer-nock

e
O
(O
—

I_

N
o 9
X
0X o
Mmoo
o o
G Q.
aY ()]

S

PACTFLOW W

A SMARTBEAR COMPANY

ajd

)

m Hours
ajd

T.0

9 E
: E Minutes
L =

c Q

0

m Seconds
x

Feedback Loops

Ul Tests

End to
End Tests

Integration
LESS

Contract Tests

Unit Tests

High

Medium

Low

N

Effort, Fragility & Confidence

AAAAAAAAAAAAAAAA

New protocols to
the rescue!

Can OpenAPI/AsyncAPI, gRPC, GraphQL or others dig us out of this hole?

AAAAAAAAAAAAAAAA

If we just used
API Specifications

Then, we wouldn’t need contract testing

PACTFLOW

A SMARTBEAR COMPANY

OAS + JSON Schema

How it aims to solve the problem

1. Specifications contain all of the bits needed for humans
and computers to communicate an API's functionality

2. Ituses]SON Schema - we know what the shapes of the
resources are allowed to be

3. We can generate API clients from OAS, so we know they
won't have breaking changes in them

If we can generate client code from the OAS, aren't we
guaranteed to have a working system?

e e e o e T e o el e
St

phptptebeheb b bbbty

+++++++++++++

ety by by by

R R E L EEEPE P et FLE L EE PPt F LR LR e e L E LR PR EE PP bt E L E PR PE PP E L E PR CE PP E L EE PP
L L i A s
L et

ST B
e e T T e A
L

R EECE F LT LT
o

A L L A L
0 e e 0 0 0 90 90 90 e 0 90 0 90 90 90

e o+ o+ g e e
e e L Qo o o o o
o+

o b e
e e
S L L i

L

o
L X e e e
e e e e e
ot

L X S L L L L L L o L o o
+++++++++ ko +++++++++++++++++++++++++++++++ o +++++++++++++++++++++++++++++++++ +++ +++++

St et ol e o el e o e X L I L L
HRHS G S S S S S S S S SRS S S S S S S S

Specifications

We also as| folks which API specifications they use and love. JSON Schema wa:
most popular choice, used by 72% of respondents. The next most popular were Swagg
(55%) and OpenAPI 3.x (

Never heard of it

Aware but don't use it

. Use it

Useit and love it

o+
ey
L

o+
o
o+

o
e

il

o
o

il
2

L
++++:++++
b

L
o+

e
2
s
e
s
&
o
e

o+

e e S
L

ey

e e e 0"

o+
ety

L
L

bttty
&

o+

ot

bttty
et

R

¥
i
&
!
¥
e

L
L

E
iy
E

e

=
o+

iy

Lo
b
e

ety
]
o+
ety

ot
L

L
ot

&
ety
bttty
phetity
Ly

2

=
2

2

+I+++++++++

o+

o+
o
o+

o+
=

L
o+

5!
L
CEEEES

R

S i, S,
e e
TR E EpE e S
bbb !

o+

e

o
£
i
£
E
i
£
E
i
£

W
£

e o v v o e o ol oG G ol oG e G o e o e
o+
4

+

o

¥
¥
e, o o e o o e % % O
5!

CEEERE

s
4!

o
.

o+
o
L
e

225
e
+++ o
+++ o+

o
+++++ o+

o

o
i
b
o

hd

+
e
o+
L]
Ehy

]
+ bt
A L

o

o

e

L
o+

+++

R
e P e P S
o, 0 0o, 0 o £ e S S oo e e 0 o S S S o S S T o S S 0 o S R 0 oo
o T S S TS e e S e e T e S St S S S S e S e e e e S

-

b
e e

et

o
S,
e e o ol o el o e G o

T E TR ECE F R

bty

bttt

bkt

o L e e e e 0
e e e ++++++++::I:::::::::::I::::::::::::::::::::ﬁ;
A R

o+

T,._T
ety
o+

e
i

L
ety

o

oy

e

o

o

—
i

L
ety

]

o

e
L

e

o

o+

L
ety

o

oy

e

o
o+

3

L
i

L
ety

o

oy

e

o

o

—
i

L
ety

]

o

e
L

e

o

o+

L
ety

o

oy

e

o
o+

3

L
i

L
ety

o

oy

e

o

o

—
oy

e
o+

o

L

o o

PACTFLOW

A SMARTBEAR COMPANY

e e
e e, o, o e o a0 0 e e D e O
L e

o o o o
2 e e

o

@maueiroz1995 - Follow
Replying to @mqueiroz1995 @ubiratanfsoares and 2 othe

o
M)
Why |t d Oesn t :++ This talk have some great insights on how to do that =)
ok <)

youtube.com

Nicola Corti - Let me write your networking code

When writing ing code, you want to make
n the client and server ..

1. Schemas are abstract - testing requires diligence to prove correctness
2. Loss of sight of API surface area required by consumers
3. A mechanism for evolution is needed

. . . . +::++ lr\ndras Bubics
4. Client SDKs are often modified and can be used in unexpected ways in @orochi_kazu - Follow
++++
practice ;E;? OAS or protobufs codegen is based on schemas, not
e contracts :)
. . , _ st An example to describe the key difference is: say you have a
/\I’]y “validation tool /fO/’ a SU]T/CIG/’N.‘/)/ comp/ex data format, st body with many optional fields, and some combinations of
therefore, will likely have two phases of validation: one at the S Lﬁig}j&i‘@:{ﬁ;’;ﬁ: 22;";?;2‘3,5“9 complen ot e
schema (or structural) level, and one at the semantic level. The 2 1233 oM. Jul19, 2021
latter check will likely need to be implemented using a more] 5 ooy & Cony Ik

s
W
e
&
¥
S
e

o

Iy
+

i
5!

general-purpose programming language

o

bty

Read 2 replies

o+
bty
++:+
ettt
EEbEy
ety
i

gk

S

et

- JSON Schema

S,

e e
e
ey bt LR
S e et Z,
L A A i e,
e e S R SN0
-I.I St
" i i 202
W Matheus Queiroz - Jul 19, 2021
S

L

e
o

1-
&
EEEE
s
i

¥
e
i
o
£
R

Fy
¥
i
e
#

¥

£

¥
4

chr

Hd
Hd
g
hd
i

=

ch

]

chy

.

o+
o+

W
o
o
o
+
o
o
o+

iy

fr
e
!
EEE
-+
++
+
o
i

o+

o
o
o

o

#
S

L
i
thy

e

2
-y

-+

o

e

T
)

e

o+
o+

che

e

£

T
!

R
!
&

e

P
SEhred
!
bty
o
e
Iy
+++
4!

o
+

)

i
LR
o+
S

-y

]

hy

-

thy

o

PACTFLOW

A SMARTBEAR COMPANY

What about versioning?

API versioning is the most common practice

We can use API versioning if we believe there to be a breaking
change. However:

1. Teams need to build and maintain more code

2. Without knowing what consumers are using, functionality
must persist between API versions

3. Consumers need to update to later versions, and teams
need to monitor and coordinate this migration

4. Managing the APIs across environments

This overhead and coordination is costly.

Change management

When it comes to preferred change-management practices, versioning APIs again scored the
most mentions—just barely—at 62%. Use of Git repositories grew in popularity to 61%, up from

58% last year. Semantic versioning also saw a boost, from 2

L

e e +T+T'F'+T+I+?I+:
0 e o e S N S S e S S e S S e S S S S S

L o 2 e
L
e e o, o L R L
o

++++++++++++++:++

S,
S 4
e
S

o

e S L L L L L L L L L L L L L e L L T L e L
L o o o T e e e
L e e

last year to 23%

A P S R S
P e A

this year.

oy

Tt
T,

4!
bbbty
R
e e
SR,
) R

L,

T

e
A EECEEE
e

o
s

o

b

o n
S

b

f.i?_i_‘ri:"r

-+

o
ity

o’
Lt

"nan " "
e

o
B
o

-+

" a "
ety

-
S

i n e m
L

"
phebptett]

"
)

gy
T Lo T
o+

b

e
2

+++++

AAAAAAAAAAAAAAAA

If we just used

Interface Definition Languages

Then, we wouldn’t need contract testing

PACTFLOW

A SMARTBEAR COMPANY

Protobufs (+ Avro and Thrift)

How it aims to solve the problem

33

1. Designed with schema evolution in mind
2. In built forwards and backwards compatibility
3. Supports codegen to create server/client SDKs

“Protocol buffers provide a language-neutral, platform-
neutral, extensible mechanism for serializing structured
data in a forward-compatible and backward-compatible
way. It’s like JSON, except it's smaller and faster, and it
generates native language bindings.”

AAAAAAAAAAAAAAAA

Protobufs (+ Avro and Thrift)

Why it doesn’t

Colourless green ideas sleep furiously

34

PACTFLOW W

AAAAAAAA COMPANY

Protobufs (+ Avro and

Why it doesn’t

hrift)

The curious case of missing merchant payments

I lost count of how many bugs we had at <redacted> because
people where unaware of the default value behaviour

- Poor soul responsible for finding the bug

35

PACTFLOW

36
A SMARTBEAR COMPANY

Protobufs (+ Avro and Thrift)

Why it doesn’t

1. Message semantics Forwards and backwards compatibility is not

2. Optionals and defaults: a race to incomprehensible APIs enforced: while forwards and backwards

3. Managing breaking changes (e.g. Field descriptors) compatibility is a promise of Protobuf, actually
4. Providing transport layer safety maintaining backwards-compatible Protobuf APIs
5. Narrow type safety (strict encodings) isn’t widely practiced, and is hard to enforce.

6. Loss of visibility into real-world client usage

7. Coordinating changes (forwards compatibility)

https://docs.buf.build/

AAAAAAAAAAAAAAAA

If we just used
GraphQL

Then, we wouldn’t need contract testing

PACTFLOW

A SMARTBEAR COMPANY

GraphQL

How it aims to solve the problem

It shares many of the attributes of schemas, plus ...

1. Itis a type system, therefore you get the benefits of types (such as

type safety)
2. In built deprecation capabilities to avoid versioning

Evolve your API
without versions

Add new fields and types to your GraphQL API
without impacting existing queries. Aging fields can
be deprecated and hidden from tools. By using a
single evolving version, GraphQL APIs give apps
continuous access to new features and encourage
cleaner, more maintainable server code.

38

“GraphQL is a query language for APIs and a runtime
for fulfilling those queries with your existing data.
GraphQL provides a complete and understandable
description of the data in your API, gives clients the
power to ask for exactly what they need and nothing
more, makes it easier to evolve APIs over time, and
enables powerful developer tools.”

PACTFLOW

A SMARTBEAR COMPANY

GraphQL

Why it doesn’t

1. GraphQL is still likely to interface with non-GraphQL APIs e.g. REST, legacy APIs etc.
2. Deprecation is at runtime '

3. Versioning is still a thing / A mechanism for safe evolution is required
4. Loss of sight of APl surface area required by consumers !
5. Default values

See also: reasons as to why Schemas don't fix it

1 Apollo’s “deprecation” feature is @

39

AAAAAAAAAAAAAAAA

Contract Testing

How it can help

PACTFLOW 27 41

A SMARTBEAR COMPANY

Your Provider Contract

...iIsonly one representation your API

CHANGES IN VERSION 10.17:
THE CPU NO LONGER OVERHEATS
WHEN YOU HOLD DOWN SPACESAR.

COMMENTS:

With a sufficient number of users of an AP, it does not matter TS l)ME X ' mr::: '
what you promise in the contract: all observable behaviors of MY CONTROE E:: 5 HPIRD “'
your system will be depended on by somebody 50 T HOLD SPACEBAR INSTERD, AND I'

CONFIGURED EMACS TO INTERPRET A
- Hyrum's Law RAPID TEMPERATURE. RISE. As CONTROL,

ADWIN \JRITES:
THAT'S HORRIFYING.

(onGTiNeUserY WRITES:

LOOK, MY SETUP WORKS FOR ME..
J0ST ADD AN OPTION To REENABLE
SPACEBAR HEFTING.

EVERY CHANGE BREAKS SOMEONES WORKFLOW.

https://xkcd.com/1172/

https://xkcd.com/1172/

PACTFLOW 4

A SMARTBEAR COMPANY

Contract Testing

A generalised approach to APl communication testing

Record / replay
Specification by example
Service evolution
Transport concerns
Typed field matchers
APl surface area

Tests the representative examples against the real provider

Reduces ambiguity, improves APl comprehension

Time travel, by pairing application versions with known supported contracts
Are encoded in the contract

Provide advanced narrow type system, including semantics (such as dates)
Is made visible, by the sum of all of the consumer contracts

\ 2 /

vV vy

o vk WwN —

\ 4

PACTFLOW

A SMARTBEAR COMPANY

Pact

Extend capabilities via Plugins

With plugins, you can create custom:
1. Transports (e.g. gRPC)

2. Protocols (e.g. protobufs)
3. Matching rules (e.g. semver strings)

Currently in beta (Q4 2022 delivery)

:= README.md

7

Pact Protobuf/gRPC Plugin

) Pact-Protobuf-Plugin Build [passing

Pact plugin for testing messages and gRPC service calls encoded with as Protocol buffers using the Pact
contract testing framework.

About this plugin

This plugin provides support for matching and verifying Protobuf messages and gRPC service calls. It fits into the
Pact contract testing framework and extends Pact testing for Protocol buffer payloads and gRPC.

Table of Content

* Requirements to use it
« Installation
o Installing the plugin
o Installing the Protocol buffer protoc compiler
* Supported features
* Unsupported features
» Using the plugin
o Testing an interaction with a single Protobuf message
o Testina a aRPC service interaction

PACTFLOW

A SMARTBEAR COMPANY

Demo

Scenario — Route Guide

o000
syntax = "proto3";

package routeguide;

// Interface exported by the server.
service RouteGuide {
// A simple RPC.
i
// Obtains the feature at a given position.
//
// A feature with an empty name is returned if there's no feature at the given
// position.
rpc GetFeature(Point) returns (Feature) {}

T
+

// Points are represented as latitude-longitude pairs in the E7 representation
// (degrees multiplied by 10**7 and rounded to the nearest integer).
// Latitudes should be in the range +/- 90 degrees and longitude should be in
// the range +/- 180 degrees (inclusive).
message Point {

int32 latitude = 1;

int32 longitude = 2;
+

// A feature names something at a given point.
//
// If a feature could not be named, the name is empty.
message Feature {
// The name of the feature.
string name = 1;

// The point where the feature is detected.
Point location = 2;

I

PACTFLOW

A SMARTBEAR COMPANY

Demo

gRPC example - Consumer

(X X J
func TestRouteServiceGetFeature(t *testing.T) {
p, _ := message.NewSynchronousPact({...})
grpcInteraction := "{
"request": {
"latitude" matching(number, 180)",

"longitude": "matching(number, 200)"

"notEmpty('Big Tree')",
"location": {

"latitude": "matching(number, 180)",
"longitude": "matching(number, 200)"
}
I
}
| TSy =) "v - GetFeature"). I
G‘HFFE!m.: BT T ee eXiSte T,

AT TV

WithContents(grpcInteraction, "application/protobuf").

ExecuteTest(t, func(transport message.TransportConfig, m message.SynchronousMessage) error
feature := getFeature(transport.Port)

assert.Equal(t, "Big Tree", feature.GetName())
assert.Equal(t, int32(180), feature.GetLocation().GetLatitude())

return nil

w—
assert.Nokrror(t, err)

PACTFLOW

A SMARTBEAR COMPANY

unc. . TestGrncProvider(t+ *testing_T) {

gRPC example - Provider |5 starterovider()

verifier := provider.PluginVerifter{}I

err := verifier.VerifyProvider(t, provider.VerifyPluginRequest{
ProviderAddress: "http://localhost:8222",
Provider: "grpcprovider",
PactFiles: []string{
filepath.ToSlash(fmt.Sprintf("%s/../pacts/grpcconsumer-grpcprovider.json", dir)),
}!
})

accaort NoaFrreaor/l+ are)

}

func startProvider() {
1is, err := net.Listen("tcp", fmt.Sprintf("localhost:%d", 8222))
if err !'= nil {
log.Fatalf("failed to listen: %v", err)
+
var opts []grpc.ServerOption
grpcServer := grpc.NewServer(opts...)
pb.RegisterRouteGuideServer(grpcServer, server.NewServer())
grpcServer.Serve(lis)

PACTFLOW

A SMARTBEAR COMPANY

Demo
gRPC example - Provider Output

000
Verifying a pact between grpcconsumer and grpcprovider
Route guide - GetFeature

Given a RouteGuide/GetFeature request
with an input .routeguide.Point message
will return an output .routeguide.Feature message [OK]
generates a message which
has a matching body (0K)

47

PACTFLOW

A SMARTBEAR COMPANY

Demo
gRPC example - Bad Provider

00
Verifying a pact between grpcconsumer and grpcprovider
Route guide - GetFeature

Given a RouteGuide/GetFeature request
with an input .routeguide.Point message
will return an output .routeguide.Feature message [FAILED]
generates a message which
has a matching body (FAILED)

Failures:

1) Verifying a pact between grpcconsumer and grpcprovider - Route guide - GetFeature
1.1) has a matching body
$.name -> Expected an non-empty string
$.latitude -> Expected 'number(180)' to be equal to '180'
$.longitude -> Expected 'number(200)' to be equal to '200'

There were 1 pact failures

=== RUN TestGrpcProvider/Provider_pact_verification

PACTFLOW W

A SMARTBEAR COMPANY

Summary

Key takeaways

1.
2.

Multi-protocol internal microservice adoption is accelerating
Lack of standardization for design and test is contributing to
the challenges of “microservices sprawl”

Hyrum'’s law - need to reduce ambiguity

Contract testing is an approach that can reduce the complexity
of API testing and the ambiguity inherent in all API
specifications

Pact is a contract testing tool that can be used to standardise
the APl communication testing across languages, transports

and protocols

PACTFLOW 27 50

AAAAAAAAAAAAAAAA

THANK YOU

Visit the Pact docs

Get in touch
@matthewfellows

pactflow.io

http://pactflow.io/

