
1

Beyond REST

1

Contract testing in the age of gRPC, Kafka and GraphQL.

Matt Fellows

YOW! Perth, Sep ‘22

2

Matt Fellows - Principal Product Manager @ SmartBear

– Co-Founder, Pactflow

– Core Maintainer, Pact (Go, JS)

@matthewfellows

P
re

se
n

te
d

 b
y

More microservices, more protocols

Industry insights

https://martinfowler.com/articles/consumerDrivenContracts.html#InterludeBurdenedWithServices

https://martinfowler.com/articles/consumerDrivenContracts.html

If I got a penny every time…
(a story)

5

“If we just used <insert some new tech>
then we wouldn’t need contract testing”

6

Modern architecture
The challenges facing today’s engineering leaders

C
u

st
om

er
 q

u
ot

e We have a very large program with many different scrum teams
building a wide variety of components all operating in a
microservices event based architecture.

Testing inside a highly volatile set of integrated environments is
extremely challenging today.

Looking to get better confidence by doing better isolated contract
testing…

Between direct calls to RESTful or GraphQL APIs, or messages
using AWS event bridge or Kafka, and also 3rd party SaaS and
partner integrations...it’s difficult to manage.

a large banking prospect

More microservices, more protocols

Industry insights

https://smartbear.com/state-of-software-quality/api/

1. 61% say most API growth from microservices
2. 81% of companies operate in a multi-protocol

environment
3. 57% use 3 or more protocols

https://smartbear.com/state-of-software-quality/api/

More microservices, more protocols

Industry insights

https://www.postman.com/state-of-api/

1. Internal integration is the new focus
2. = open up new use cases / data to the org

The headwinds of “Microservices sprawl”

Industry insights

https://smartbear.com/state-of-software-quality/api/

Barriers to implementing microservices:

1. Experience or skills
2. Complexity of systems
3. Increasing demands on speed of delivery, and
4. Limited time due to workload

Mature organisations feeling the pain

https://smartbear.com/state-of-software-quality/api/

11

How we test microservices now
And why it doesn’t scale

12

● Slow
● Fragile
● Hard to debug
● All-at-once painful deployments
● Teams wait on build queues

Microservice A

API Gateway

Microservice B

JSON/HTTP

JSON/HTTP JSON/HTTP

JSON/HTTP

Microservice C
JSON/XML

MQ

JSON/HTTP

JSON/HTTP

End-to-end tests
Why this is hard

#1 #2 #3 #4 #5

E2E Testing

13

Scaling Challenges
Co

st
 /

Co
m

pl
ex

ity
 /

Ti
m

e

Number teams / components

Build time

Environments

Risk associated
with change

Teams + Components
Linear increase in
teams and
components results in
exponential increase
in other factors

Developer idle time
(queues)

E2E Testing

14

U
n

b
al

an
ce

d
 t

es
t

p
yr

am
id

Read the blog

15

The solution?
Consumer Driven Contract testing

16

What is Contract Testing?

Benefits:

● Simpler - test a single integration at a time
● No dedicated test environments - run on a

dev machine
● Get fast, reliable feedback
● Tests that scale linearly
● Deploy services independently

It tracks these over time, enabling evolution

An alternative approach to API communication testing

H
ow

 it
 w

or
ks

a large banking prospect1

Consumer unit tests
its behaviour against

provider mock

5

Provider tests mock out
any other systems, so it

can be tested in isolation

4
Interactions in the contract replayed

against provider API and verified
against consumer(s) expectationsContract

2
Required interactions are
captured into a consumer
contract between systems

3
The contract is shared amongst teams to enable
collaboration

18

Microservice A

API Gateway

Microservice B

JSON/HTTP

JSON/HTTP JSON/HTTP

/HTTPJSON

Pact

Microservice C
JSON/XML

MQ

JSON/HTTP

Contract testing makes it easy to test microservices
quickly, independently and release safely.

Use cases:
- Javascript web applications (e.g. React)
- Native mobile applications
- RESTful microservices with JSON and XML
- Asynchronous messaging (e.g. MQ)
- And much more!

Why Contract Testing?

Microservice contract testing

19

What is Contract Testing?
Ingredients of a consumer Pact test

20

What is Contract Testing?
Outputs of a consumer Pact test

If the client doesn’t call the endpoint as expected, the
test fails.

It’s a mock not a stub.

21

What is Contract Testing?
Outputs of a consumer Pact test

If the test passes, we get a contract containing the
expectations from this consumer for a given API
provider.

22

C
ol

la
b

or
at

in
g

P

ac
t

B
ro

ke
r

23

Provider contract test

What is Contract Testing?

Pact

{

“id”: 1234,

“items”:[

...

],

}

GET /orders/1234

✅
Pact verifier checks:

1. All known consumers of the provider
2. Provider can respond to all requests for each

consumer
3. For each request, the response (headers,

status, body etc.) matches rules in the
contract

Pact Broker

24

P
ac

t
B

ro
ke

r
E

vo
lu

ti
on

25

P
ac

t
B

ro
ke

r
Tr

ac
k

d
ep

en
d

en
ci

es

26

R
eb

al
an

ce
d

 t
es

t
p

yr
am

id

Read the blog

27

New protocols to
the rescue!
Can OpenAPI/AsyncAPI, gRPC, GraphQL or others dig us out of this hole?

2
8

API Specifications
Then, we wouldn’t need contract testing

Ifwe just used

29

1. Specifications contain all of the bits needed for humans
and computers to communicate an API’s functionality

2. It uses JSON Schema – we know what the shapes of the
resources are allowed to be

3. We can generate API clients from OAS, so we know they
won’t have breaking changes in them

If we can generate client code from the OAS, aren’t we
guaranteed to have a working system?

How it aims to solve the problem

OAS + JSON Schema

30

1. Schemas are abstract – testing requires diligence to prove correctness
2. Loss of sight of API surface area required by consumers
3. A mechanism for evolution is needed
4. Client SDKs are often modified and can be used in unexpected ways in
practice

Why it doesn’t

OAS + JSON Schema

Any “validation tool” for a sufficiently complex data format,
therefore, will likely have two phases of validation: one at the
schema (or structural) level, and one at the semantic level. The
latter check will likely need to be implemented using a more
general-purpose programming language

- JSON Schema

31

API versioning is the most common practice

What about versioning?

We can use API versioning if we believe there to be a breaking
change. However:

1. Teams need to build and maintain more code
2. Without knowing what consumers are using, functionality

must persist between API versions
3. Consumers need to update to later versions, and teams

need to monitor and coordinate this migration
4. Managing the APIs across environments

This overhead and coordination is costly.

3
2

Interface Definition Languages

Then, we wouldn’t need contract testing

Ifwe just used

33

1. Designed with schema evolution in mind
2. In built forwards and backwards compatibility
3. Supports codegen to create server/client SDKs

How it aims to solve the problem

Protobufs (+ Avro and Thrift)

“Protocol buffers provide a language-neutral, platform-
neutral, extensible mechanism for serializing structured
data in a forward-compatible and backward-compatible
way. It’s like JSON, except it's smaller and faster, and it
generates native language bindings.”

34

Colourless green ideas sleep furiously

Why it doesn’t

Protobufs (+ Avro and Thrift)

35

The curious case of missing merchant payments

Why it doesn’t

Protobufs (+ Avro and Thrift)

I lost count of how many bugs we had at <redacted> because
people where unaware of the default value behaviour

- Poor soul responsible for finding the bug

36

1. Message semantics
2. Optionals and defaults: a race to incomprehensible APIs
3. Managing breaking changes (e.g. Field descriptors)
4. Providing transport layer safety
5. Narrow type safety (strict encodings)
6. Loss of visibility into real-world client usage
7. Coordinating changes (forwards compatibility)

Why it doesn’t

Protobufs (+ Avro and Thrift)

https://docs.buf.build

Forwards and backwards compatibility is not
enforced: while forwards and backwards
compatibility is a promise of Protobuf, actually
maintaining backwards-compatible Protobuf APIs
isn’t widely practiced, and is hard to enforce.

https://docs.buf.build/

3
7

GraphQL
Then, we wouldn’t need contract testing

Ifwe just used

38

It shares many of the attributes of schemas, plus …

1. It is a type system, therefore you get the benefits of types (such as
type safety)
2. In built deprecation capabilities to avoid versioning

How it aims to solve the problem

GraphQL
“GraphQL is a query language for APIs and a runtime
for fulfilling those queries with your existing data.
GraphQL provides a complete and understandable
description of the data in your API, gives clients the
power to ask for exactly what they need and nothing
more, makes it easier to evolve APIs over time, and
enables powerful developer tools.”

39

1. GraphQL is still likely to interface with non-GraphQL APIs e.g. REST, legacy APIs etc.
2. Deprecation is at runtime 1
3. Versioning is still a thing / A mechanism for safe evolution is required
4. Loss of sight of API surface area required by consumers 1
5. Default values

See also: reasons as to why Schemas don’t fix it

1 Apollo’s “deprecation” feature is 👌

Why it doesn’t

GraphQL

40

Contract Testing
How it can help

41

…is only one representation your API

Your Provider Contract

https://xkcd.com/1172/

With a sufficient number of users of an API, it does not matter
what you promise in the contract: all observable behaviors of
your system will be depended on by somebody

- Hyrum's Law

https://xkcd.com/1172/

42

1. Record / replay
2. Specification by example
3. Service evolution
4. Transport concerns
5. Typed field matchers
6. API surface area

A generalised approach to API communication testing

Contract Testing

Tests the representative examples against the real provider
Reduces ambiguity, improves API comprehension
Time travel, by pairing application versions with known supported contracts
Are encoded in the contract
Provide advanced narrow type system, including semantics (such as dates)
Is made visible, by the sum of all of the consumer contracts

Extend capabilities via Plugins

Pact

With plugins, you can create custom:

1. Transports (e.g. gRPC)
2. Protocols (e.g. protobufs)
3. Matching rules (e.g. semver strings)

Currently in beta (Q4 2022 delivery)

44

Demo
Scenario – Route Guide

45

Demo
gRPC example - Consumer

46

Demo
gRPC example - Provider

47

Demo
gRPC example – Provider Output

48

Demo
gRPC example – Bad Provider

1. Multi-protocol internal microservice adoption is accelerating

2. Lack of standardization for design and test is contributing to

the challenges of “microservices sprawl”

3. Hyrum’s law – need to reduce ambiguity

4. Contract testing is an approach that can reduce the complexity

of API testing and the ambiguity inherent in all API

specifications

5. Pact is a contract testing tool that can be used to standardise

the API communication testing across languages, transports

and protocols

Key takeaways

Summary

Read the blog

50

THANK YOU
Get in touch

@matthewfellows

pactflow.io

Visit the Pact docs

http://pactflow.io/

