o0

-

Preparing Apache Kafka
for Scala 3

A Story in 3 acts

A Story in 3 acts
1. Origin

A Story in 3 acts

1. Origin
2. Challenges during the PoC

A Story in 3 acts

1. Origin
2. Challenges during the PoC
3. What should we improve?

Who?

Josep Prat g |

Sy
X

Might have seen me at the Akka corner some ye
ago.

Working at Aiven.
Director of the Open Source Program Office.

ars

http://aiven.io/

Why?

Aiven offers Managed Open Source Data
Infrastructure as a Service.

Why?

Aiven offers Managed Open Source Data
Infrastructure as a Service.

§g kafka

Why?

Aiven offers Managed Open Source Data
Infrastructure as a Service.

§g kafka

Among many others...

Why?

Aiven offers Managed Open Source Data
Infrastructure as a Service.

§g kafka

Among many others...

Apache Kafka,is a trademark of their respective owners.

Why?

The Open Source Program Office employs people to
work full time on Open Source projects.

What?

Apache Kafka is:

What?

Apache Kafka is:

o Distributed event streaming platform

What?

Apache Kafka is:

 Distributed event streaming platform
e Extremely scalable

What?

Apache Kafka is:

 Distributed event streaming platform
e Extremely scalable

« High throughput

What?

Apache Kafka is:

 Distributed event streaming platform
e Extremely scalable

e High throughput

» High availability

What?

Some internal details on Apache Kafka:

What?

Some internal details on Apache Kafka:

Scala

22.3%

Others 3.0%

74.7%

Java

What?

Some internal details on Apache Kafka:

o Compiles against Scala
2.12 and 2.13

Scala

22.3%

Others 3.0%

74.7%

Java

What?

Some internal details on Apache Kafka:

o Compiles against Scala
2.12 and 2.13

e Uses Gradle as a build
tool 22.3%

Others 3.0%

Scala

74.7%

Java

What?

Some internal details on Apache Kafka:

o Compiles against Scala

2.12 and 2.13
e Uses Gradle as a build i
tOOl 22.3%
« Kafka Core is mostly others [NGI0g;

written in Scala
74.7%

Java

What?

Some internal details on Apache Kafka:

o Compiles against Scala

2.12 and 2.13
e Uses Gradle as a build i
tOOl 22.3%
« Kaftka Core is mostly others [NGI0g;

written in Scala
e NO macros nor
typeclasses

74.7%

Java

What?

Seemed like a walk in the park...

What?

Seemed like a walk in the park...

...0r not!

Several moons ago...

Decided to upgrade Apache Kafka to Scala 3, and
started a PR...

1. Gradle

How complicated could it be to compile using the
Scala 3 compiler instead?

Gradle

One might think:

Gradle

One might think:

e Change dependencies.gradle

Gradle

One might think:

e Change dependencies.gradle
e Change build.gradle

Gradle

One might think:

e Change dependencies.gradle
e Change build.gradle
e Do some magic with version names

Gradle

One might think:

e Change dependencies.gradle
e Change build.gradle

e Do some magic with version names
 Profit

Easy, right?

[DO NOT MERGE] Scala3 test #10934
flprat o s 10 mvarae S —rrily pache: trunk lrom prat:scalal-test L‘J

) Coowersation # o Commits F Checks # [) Fles charged 4

nected on Jun 28, 2021 Lrrtasy TN e
9 Forat comme $ on 28, 22 ©

This is a draft PR 10 showcase how compicated 5 10 migraie 1 Scalald

It ncludes a necessary change as well (removal of Scala Collectons Compat and Java8 Compat tbranes). This s needed as
those ibranes’ only purpose was 10 croas-compde 10 Scala 2,11 and 2,12

Alter this is done, only a bit of workaround gradie was needed (lbrary names ot Scala 3 compaler changed)
The only code change needed is the renaming of methods Bke aslave . mScala, until . from and to which weve since

Scala 2 12.0 (Compat Rtranes were shadowng those). And s change is pretty sutomalc
On the 1est tie (only 1 ddnt really compde} only the nght new impart needed to be brought in

Committer Checklist (excluded from commit message)

[Verity

psign and implementaion
[Verity test coverage and C1 buid status

) Verity documantation (including upgrads noles)

I was wrong...

Big kudos to Tomasz Godzik!

For singlehandedly introducing support for Scala 3!
gradle/gradle/pull /18001

https://github.com/gradle/gradle/pull/18001

Status: v
[ssue under gradle/gradle /16527

From version: 7.3.0

https://github.com/gradle/gradle/issues/16527

2. Unit SAM and overloads

Reproducer {
// assertThrows has 3 overloads, 2 with 3 parameters and
// 1 with only 2 parameters.

// This overload is taking a subclass of “Throwable™,
// and an "Executable® which is a parameterless SAM
// returning void
assertThrows (classOf[IllegalArgumentException],

() => 3)

1
2
3
4
5
6
7
8

// Compiles

// This overload is taking a subclass of “Throwable ,
// an "Executable which is a parameterless SAM

// returning void, and a ~String"

assertThrows (classOf[IllegalArgumentException],

2. Unit SAM and overloads

e U =
assertThrows[T <: Throwable](clazz: Class|[T],
executable: Executable,
message: String
): Unit=22??
assertThrows[T <: Throwable](clazz: Class|[T],
executable: Executable,

supplier: Supplier[String]
): Unit=22?

2. Unit SAM and overloads

message: String

supplier: Supplier[String]

2. Unit SAM and overloads

// This overload is taking a subclass of “Throwable™,
// and an ~Executable® which is a parameterless SAM
// returning void
assertThrows (classOf[IllegalArgumentException],

() => 3)

2. Unit SAM and overloads

10 // Compiles

2. Unit SAM and overloads

// an ~Executable” which is a parameterless SAM
// returning void, and a ~String"
assertThrows (classOf[IllegalArgumentException],
() => 3,
"This is a message")

2. Unit SAM and overloads

2. Unit SAM and overloads

2. Unit SAM and overloads

1
2
3
4
5
§)
7
8

Workaround

Reproducer
assertThrows (classOf[IllegalArgumentException],
() => 3)

assertThrows (classOf[IllegalArgumentException],

() => {3; O},

"This is a message")

assertThrows (classOf[IllegalArgumentException],

() => {3; O},

() => "This is a message")

2
3

Workaround

assertThrows (classOf[IllegalArgumentException],
() => 3)

Workaround

assertThrows (classOf[IllegalArgumentException],

() => {3; O},

"This is a message")

Workaround

Workaround

assertThrows (classOf[IllegalArgumentException],

() => {3; O},

() => "This is a message")

Workaround

Status: Not solved X
[ssue under lampepfl/dotty /issue /13549

[t conflicts with existing Scala 3 code making
functional code fail.

https://github.com/lampepfl/dotty/issues/13549

3. No static forwarder methods in
trait companion

ObjectTraitPair {
Constant: String = "Some Text"

}

// In Scala 2.13 this class bytecode will carry over
// any val and def defined in the object with the same name
// but not in Scala 3.0

ObjectTraitPair {

method: String = "bye"

=

1
2
3
4
5
6
7
8
9
0

3. No static forwarder methods in
trait companion

ObjectTraitPair {
Constant: String = "Some Text"

3. No static forwarder methods in
trait companion

ObjectTraitPair {
method: String = "bye"

3. No static forwarder methods in
trait companion

5 // In Scala 2.13 this class bytecode will carry over

6 // any val and def defined in the object with the same name
7 // but not in Scala 3.0

Bytecode discrepancy

Output of javap ObjectTraitPair.class:

public interface ObjectTraitPair {
public static void $init$(example.ObjectTraitPair);

public java.lang.String method();
public void example$ObjectTraitPair$ setter Smethod S$Seq(java.

But it should be:

public interface ObjectTraitPair {
public static java.lang.String Constant();
public void example$ObjectTraitPair$ setter $Smethod Seq(jav

public java.lang.String method();
public static void $init$(example.ObjectTraitPair);

}

Bytecode discrepancy

Output of javap ObjectTraitPair.class:

public interface ObjectTraitPair {
public static void $init$(example.ObjectTraitPair);

public java.lang.String method();

public void example$ObjectTraitPair$ setter Smethod S$Seq(java.

}

But it should be:

public static java.lang.String Constant();

Status: v
I[ssue under lampepfl/dotty /13572

From Scala version: 3.1.0

https://github.com/lampepfl/dotty/issues/13572

4. Variable handling in super
calls

ClassWithLambda(sup: () => Long)
ClassWithVar (var msg: String)
ClassWithLambda(() => 1)

= ClassWithVar("foo")
5 // Throws at runtime!

6 // java.lang.VerifyError: Bad type on operand stack

4. Variable handling in super
calls

ClassWithLambda(sup: () => Long)

4. Variable handling in super
calls

ClassWithVar (var msg: String)
ClassWithLambda(() => 1)

4. Variable handling in super
calls

4 = ClassWithVar("foo")

5 // Throws at runtime!

6 // java.lang.VerifyError: Bad type on operand stack

But this works!

ClassWithLambda(sup: () => Long)
ClassWithVar(msg: String)
ClassWithLambda(() => 1) {

msg: String = msg

ClassWithVar("foo")

But this works!

ClassWithVar(msg: String)
ClassWithLambda(() => 1) {

msg: String = msg

But this works!

ClassWithVar(msg: String)

msg: String = msg

Status: v
[ssue under lampepfl/dotty /13630

From Scala version: 3.1.1

https://github.com/lampepfl/dotty/issues/13630

5. Handle Java varargs with
parametrized T...

Given this Java class:

TypedVarargs<vV> {
TypedVarargs<V> varArgs(V thing, V... things) {

14

And this Scala one:

TypedVarargs|[Long] ()
X.varArgs(1lL)

throws at runtime:
.lang.ClassCastException: [J cannot be cast to [Ljava.lang.Obje

5. Handle Java varargs with
parametrized T...

Given this Java class:

TypedVarargs<vV> {
TypedVarargs<V> varArgs(V thing, V... things) {

And this Scala one:

TypedVarargs[Long] ()

5. Handle Java varargs with
parametrized T...

Given this Java class:

TypedVarargs<vV> {
TypedVarargs<V> varArgs(V thing, V... things) {

And this Scala one:

2 y = X.varArgs(1lL)

5. Handle Java varargs with
parametrized T...

Given this Java class:

TypedVarargs<v> {
TypedVarargs<V> varArgs(V thing, V... things) {

14

And this Scala one:

3 // This throws at runtime:
4 // java.lang.ClassCastException: [J cannot be cast to [Ljava.lang.Obje

Workaround

TypedVarargs|[java.lang.Long] ()

X.varArgs(1lL)

Workaround

TypedVarargs|[java.lang.Long] ()

Status: v
[ssue under lampepfl/ dotty /13645

From Scala version: 3.1.1

https://github.com/lampepfl/dotty/issues/13645

6. Type erased for by-name
parameters

Given this code:

ByNameParam {

byNameParam(str: => String): Unit = {}

6. Type erased for by-name
parameters

Given this code:

byNameParam(str: => String): Unit = {}

Output of javap ByNameParam.class:

public ByNameParam {

public static void byNameParam(scala.FunctionO);

}

But should be:

public ByNameParam {

public static void byNameParam(scala.FunctionO<java.lang.String>);

}

Output of javap ByNameParam.class:

public static void byNameParam(scala.FunctionO);

But should be:

public ByNameParam {

public static void byNameParam(scala.FunctionO<java.lang.String>);

}

Output of javap ByNameParam.class:

public static void byNameParam(scala.FunctionO);

But should be:

public static void byNameParam(scala.FunctionO<java.lang.String>);

Status: v
[ssue under lampepfl/dotty /13638

From Scala version: 3.1.2

https://github.com/lampepfl/dotty/issues/13638

Summary:

Issue Status Since

gradle/gradle /16527 Gradle 7.3.0

lampepfl / dotty /13549 N/A

lampepfl/dotty /13572 Scala 3.1.0

lampepfl /dotty /13645 Scala 3.1.1

v
X
v

lampepfl/dotty /13630 ¥ Scala 3.1.1
4
4

lampepfl / dotty / 13638 Scala 3.1.2

https://github.com/gradle/gradle/issues/16527
https://github.com/lampepfl/dotty/issues/13549
https://github.com/lampepfl/dotty/issues/13572
https://github.com/lampepfl/dotty/issues/13630
https://github.com/lampepfl/dotty/issues/13645
https://github.com/lampepfl/dotty/issues/13638

<irony>
Easy, huh?
</irony>

But sure this is now all done

But sure this is now all done
right?

It looks we need to sit tight
Migration will happen for Apache Kafka 4.0.0 release.

It looks we need to sit tight

Migration will happen for Apache Kafka 4.0.0 release.
And this looks to be still 1 year in the future.

_

What should we

- : "\ ’;-:.
-
) L)y (RS
i R
. .
_s
o‘~":

e a. |

(]
kel
o
O
y—
()
[%2]
[
£
-

800000

600000

400000

200000

@ Java B Scala

Versions

37

Why wasn't it more
straightforward?

Java — Scala interoperability improved substantially
in 2.12 and 2.13.

Why wasn't it more
straightforward?

Java — Scala interoperability improved substantially
in 2.12 and 2.13.

Dotty followed kind of a parallel line branching out in
2.11.

Community build

We need more non-fully Scala friendly environment.

Community build

We need more non-fully Scala friendly environment.

To include projects on the fringe of the core of the
Scala community.

Mixed Java/Scala projects

We, the Scala community, need to get closer to these
projects.

Lack of Scala Understanding

Some projects don't have "in house" Scala experts.

Lack of Scala Understanding

Some projects don't have "in house" Scala experts.

And historically, Scala migrations have been tedious.

How can I help?

Here you have a couple of places where you can help!

How can I help?

Here you have a couple of places where you can help!

o FLIP-265: Deprecate and remove Scala API support:
Call for Scala developers!

https://cwiki.apache.org/confluence/display/FLINK/FLIP-265+Deprecate+and+remove+Scala+API+support
https://lists.apache.org/thread/d3borhdzj496nnggohq42fyb6zkwob3h

How can I help?

Here you have a couple of places where you can help!

o FLIP-265: Deprecate and remove Scala API support:
Call for Scala developers!
 Bring Apache Kafka closer to Scala 3

https://cwiki.apache.org/confluence/display/FLINK/FLIP-265+Deprecate+and+remove+Scala+API+support
https://lists.apache.org/thread/d3borhdzj496nnggohq42fyb6zkwob3h
https://lists.apache.org/thread/q9b97d4ofjcwt8ymkr3ksxysmhc6vm1n

Join some Tava/Scala OSS
Projects!

Further Info:

e Mailing list thread

e [Pull Request| Big proof of concept
o [Pull Request] In between step

* Blog post that originated this talk

https://lists.apache.org/thread/q9b97d4ofjcwt8ymkr3ksxysmhc6vm1n
https://github.com/apache/kafka/pull/11350
https://github.com/apache/kafka/pull/11432
https://aiven.io/blog/preparing-apache-kafka-for-scala-3

