
People love to debate about things.
Problem is: In software architecture,
we need decisions after the debate.

"Either Have Taste or Have a Software
Architecture – Not Both!"

Matthias Bohlen <mbohlen@mbohlen.de>

GraphQL

Let's collect some
topics of debate

What opinions did you have
debates about?

Put stickies here (use cmd- D
or ctrl- D to duplicate):

Green: your proposal
Red: "their" proposal

Double- click on a word to
edit it

Zoom in or out with your
mouse wheel (or with two
fingers on a touchpad)

Quality
Goals

Do a proper modular
monolith before
going distributed

yours

do not require
testers

Functional
JS

React vs
Angular

OO
Javascript

Microservices
everywhere

!

Migrate from
premises to the

cloud for all services

CQRS/ES

We should leverage
postgis functionality
as much as we can.

Microservice

no, wait till we
know more

yours

SCS vs Multi-
Layered

Microservices

Data schema
before model

Start with the most
problematic

(interconnected) service
and re- evaluate then

We must use the
observer pattern due
to the complexity of

the domain.

Material UI vs
other Design

Framework vs DIY

Monorepo

Solution may not meet the
performance requirement s

we should include more
components in place alread

standardize message
structure of Kafka to
include a "header"

Start with simple design
and improve it aftewards if

it doesn't meet
performance requirments

all microservices
typescript

Serverless

get rid of
ActiveX solution

microservice
open for all
languages

Always separate blocks/components
that have different concerns or

(technical) interfaces (and be able to
scale them as needed) - despite the
overhead of "wasted" resources or

higher development time

AWS Lambda
vs. ECS

ThreeDiToolbox.threedi_plugin INFO The selected 3di model spatialite: None

We must use
websockets!

yours

Let's get started
with

polling/stateless.

We're agile, we
will worry later

One big
RDBMS

Delivering well
understood features >
Software Crafting Skills

Relevance

Kubernetes

Use of gRPC in
microservices

communications

Cloud
Native

postpone it
until it's too late

In a problematic code
base, crafting might
be more important

Embrace full
native cloud

paas

Isolated DB
per service

Why do people have
debates?

Example: Code formatting
How long did you discuss these questions?

Should a single lambda parameter have parentheses around it?

Should the keyword "else" better be on the next line?https://prettier.io/ makes most
of these choices non-
configurable, ending the
debates about this.

https://prettier.io/

People debate b/c
they optimize for
different goals

"Let's avoid
a cache."

"Let's add a
cache."

I want
performance.

I want a system
that's easy to

maintain.

Do we have time for this?

Architecture is not
as easy to decide as
code formatting.

Architectural
debates might take
10x longer!

Funct.
Suitability

There must be a
more systematic
approach

Structures

Goals

Context

ApproachesQualities

These... lead to
those...

should
mostly...

Con-
straint

External
System

Organi-
zation

Process

UsabilityEfficiency

Security

Maintain-
ability

Port-
ability

Compati-
bility

Reliability

Story

Require-
ment

Business

Software
Architecture is...

Allocation
to teams

Modules
the set of structures needed
to reason about the system
which comprise software elements,
relations among them,
and properties of both.

Bass, Clements, Kazman:
Software architecture in practice,
3rd edition, page 4

Allocation to
machines

Communication
at runtime

Implemen-
tation units

Partitioning

Components
& Connectors

Structure =
set of elements,
held together
by a relation

Reasoning
about an attribute of the
system that is important
to some stakeholder

Approach =
a way in which patterns
and tactics affect particular
quality attributes

static

Dynamic

Allocation

Layers

Peer- to-
Peer

Publish/sub-
scribe

MVC

What patterns and
tactics do we use
to achieve qualities?

Client /
Server

Active
redundancy

Pipes and
filters

reuse,
loose

coupling

usability,
modularity

scalability,
maintain-

ability
portability,
maintain-

ability

availability,
scalability

modifiability,
ease of

deployment

availability

at expense of
performance

Some Examples:

Caching

performance

at expense of
maintain-

ability

What approaches do
you use in your
Architecture?

Horizontal
scalability for
performance

Dependency
Injection for
Testability

Code readability
for maintainability

1

Modularity for
Integration into

platform

Kafka for
reliability

Logging and
Monitoring for
Mainainability

DB Partitioning
for scalability and

performance

Put stickies here
(use cmd- D or
ctrl- D to
duplicate)

Double- click on a
word to edit it

Write it as "A for
Q", i.e. "approach
A to reach quality
Q"

Zoom in or out
with your mouse
wheel (or with
two fingers on a
touchpad)

Duplicate these
and change the
nameCache for

Performance

API
authentication

for Security

Layering for loose
coupling/changea

bility

multithreading
for performance

DDD for
Maintainability

Automatic
vulnerability scanning

for security

Autoscaler for
Availability

FaaS for
scalability

Message queue
for reliability

Spatial calculations
within db for
performance.

Reactive
Programming for

Performance

Event streams for
multiple views of

same data

Layers for
maintainibility

configuration
Data for
flexibility

Service
interaction for

reusability.

AWS Lambda
for Availability

CQRS for
maintainability

OAuth2 for
Security

g
Improving

Throughput

API for
decoupling

Y- Principle for
separation of

concerns

Kubernetes for
maintainability /

extensibility (same
structure) Test coverage

for stability
Versioning for
changeability.

Distributed Tracing
for

analysis/transparency

Monitoring &
Alerting for
availability

The Tiny Voting System example
A tiny cloud- based system to allow

remote- working teams to vote for topics.

Add topic Sort topics
Vote for
a topic

Collect
votes Decide

Fast response
time

Cloud
Serverless

Stories

Qualities

Structures

Structures and
approaches

Goals and Qualities

Context

Secure against
hacking

Easy to
deploy

Easy to
use

Easily
modifiable

Topic
module

Relational
DB

API
gateway

Approaches

OAuth2

Modulization

containers

embeddable
into Teams etc.

SPA

Name the blue approaches
and orange structures, and

link them to the yellow
stories and qualities:

CI/CD /
gitops

Cloud
Serverless

user
research

layered
architecture

MVC/MVVM

document
DB :)

or graph
DB

web/mobile
GUI

Decision
module

Frontend
first

use existing voting
library to not

reinvent the wheel

Standardize your
architecture
vocabulary

Context

Goal

Layers

Peer- to-
Peer

Publish/sub-
scribe

MVC

Client /
Server

Pipes and
filtersCaching

Patterns, tactics,
approaches

Allocation
to teams

Modules

Allocation to
machinesCommunication

at runtime

Implemen-
tation units

Partitioning

Components
& Connectors

Static
Structures

Dynamic
Structures

Allocation
Structures

Quality

Whenever
these come in...

Those need to be
created / modified:

Repeatable decisions
(architectural policies)

approach

pattern
tactic

quality

goal

structure

Attributes like
performance
security
usability...
(ISO 25010
has 5 more!)

Ways to affect a
quality attribute

tactic = to- do
pattern =
known solution
for a problem
approach =
larger concept
that uses tactics
and patterns

Some stakeholder
wants...

a function
a report
another kind of
"story"

To make stories run,
we need to make

a module
a component
a communication
mechanism

Client/server

Topic Vote

Summarize
votes

Vote for a
topic

Add topic

"When we need another quality, we
look for a known approach for that."

"When we get a goal (e.g. a story), we look
for structure(s) that can support it."

Easy to
deploy

CDN as
cache

Fast

Putting it all
together

Architectural reasoning

out

out

in

Structures

Incoming architectural forces

Approaches

Layers

Peer- to-
Peer

Publish/sub-
scribe

MVC

Client /
Server

Active
redundancy

Pipes and
filters

reuse,
loose

coupling

usability,
modularity

scalability,
maintain-

ability
portability,
maintain-

ability

availability,
scalability

modifiability,
ease of

deployment

availability

at expense of
performance

Caching

performance

at expense of
maintain-

ability

Context

Goal

Quality

Allocation
to teams

Modules

Allocation to
machinesCommunication

at runtime

Implemen-
tation units

Partitioning

Components
& Connectors

Don't forget to
get feedback and
iterate!

To- Dos for Monday

Brainstorm
existing

vocabulary

Run an "architectural
vocabulary" workshop

with your team

Show the
TVS example

Collect context
& goals

Collect
qualities Identify

element types

Identify
relation types

Brainstorm
existing tactics

Brainstorm
existing patterns

Bundle them
as approaches

Collect existing
structures

Name all the
stuff you found

Put vocabulary
and policies into
your team's Wiki

1

2

3

4
5

If you need help
with this or with
Domain- Driven Design...
Hire me: mbohlen@mbohlen.de

Collect, write,
use, improve!

Structure =
set of elements,
held together
by a relation

