
PRACTICES FOR
EFFECTIVE CONTINUOUS ARCHITECTURE
EOIN WOODS
iSAQB Software Architecture Gathering
November 2022

Eoin Woods

• Endava’s CTO, based in London (since 2015)
• 10+ years in products - Bull, Sybase, InterTrust
• 10 years in capital markets - UBS and BGI
• Software developer, architect, now CTO
• Author, editor, speaker, community guy

THE CHANGING FACE OF
SOFTWARE DEVELOPMENT

4

Software Development in the age of Digital Platforms

• Platforms are ”always on”
• Platforms are built to evolve in unpredictable ways
• Some intelligent behaviour is becoming expected
• Continual updates to the software (and infrastructure)
• Parallel developments occur on a platform
• Platforms are highly connected
• Multiple interfaces and audiences to be accommodated
• Platforms must be extensible by design

5

A multi-dimensional software engineering challenge!

So Software Practice Evolved

6

FLUID
EVOLVING

ARCHITECTURE

DevOps (and SRE)

Microservices and Serverless

Cloud Infrastructure

Agile Working

Reusable Cloud Services

Traditional software architecture is of less value

7

Constant evolution

Less known early in delivery

Less value in “up front” architecture

INTRODUCING CONTINUOUS ARCHITECTURE

8

Is architecture still needed?

9

• Achieving quality attributes
• Balancing stakeholder concerns
• Making complex tradeoffs
• Achieving cross cutting concerns

across many independent parts

But architecture is now a
continual flow of decisions

Cross-Cutting Concerns

Tradeoffs

Stakeholders

Quality
Attributes

Yes!

• Principle 1: Architect products: evolve from projects to products
• Principle 2: Focus on quality attributes, not functional requirements
• Principle 3: Delay design decisions until absolutely necessary
• Principle 4: Architect for change – leverage the “power of small”
• Principle 5: Architect for build, test, deploy and operate
• Principle 6: Model the organisation of your teams after

the design of the system

Continuous Architecture Principles

10www.continuousarchitecture.info

Murat Erder &
Pierre Pureur, 2015

Moving to Continuous Architecture

11

Principles
1. We prefer industry protocols,

then standard in-house ones,
then ad-hoc point-to-point ones

2. Partner specific detail must not
pollute domain model …

3. Do not use cloud specific services

Principles
1. We prefer industry protocols,

then standard in-house ones,
then ad-hoc point-to-point ones

2. Partner specific detail must not
pollute domain model …

3. Do not use cloud specific services

Principles
1. We prefer industry protocols,

then standard in-house ones,
then ad-hoc point-to-point ones

2. Partner specific detail must not
pollute domain model …

3. Do not use cloud specific services

Styles &
Patterns

Principles

Decisions

Top Down Prescriptive Design Evolving Shared Design

Artifacts of Continuous Architecture

12

Styles & Patterns:
Common solutions to
repeating problems

Evolving
Shared Design

Principles
1. We prefer industry protocols,

then standard in-house ones,
then ad-hoc point-to-point ones

2. Partner specific detail must not
pollute domain model …

3. Do not use cloud specific services

Principles
1. We prefer industry protocols,

then standard in-house ones,
then ad-hoc point-to-point ones

2. Partner specific detail must not
pollute domain model …

3. Do not use cloud specific services

Principles
1. We prefer industry protocols,

then standard in-house ones,
then ad-hoc point-to-point ones

2. Partner specific detail must not
pollute domain model …

3. Do not use cloud specific services

Principles:
Guidance to achieve
aligned design decisions

Decisions:
Understanding what we
did, when and why

THE ACTIVITIES OF CONTINUOUS ARCHITECTURE

13

Essential Continuous Architecture Activities

14

Provide
Leadership

Focus on
Quality

Attributes

Drive
Architectural

Decisions

Manage
Technical

Debt

Implement
Feedback

Loops

Provide Leadership

• Leading rather than ”managing”
• Get the team doing the architecture work

• Lead the resolution of technical concerns
• What are the key architecture principles?
• Which option to choose when none is perfect?
• What can be deferred, what needs to be done now? (Tech debt)
• What are the options when something ”impossible” is needed?

• Constant progress towards technical excellence
• What are the right ways of working?
• What are the long-term consequences of decisions?
• ”the conscience of the team”

• Represent the technical view ”upwards”
• “difficult conversations” 15

https://www.pexels.com/@fauxels

Leadership: a Technical Leadership Group

• Form a team to own the architecture & technical concerns
• Technical Leadership Group, Tech Leads Group, …

• Spreads knowledge across the team
• Empowers others to take responsibilities with support

• Topic champions for security, performance, resilience, …

• Provides technical growth opportunities
• Allows multiple perspectives for decision making
• Frees up your time

• But there does need to be a decision making mechanism (usually you)

16

https://www.pexels.com/@fauxels

• Reminder probably unnecessary for quality attributes!
• “the architect’s obsession”
• Constant process of balancing tradeoffs

• Cross-cutting concerns that need system level attention
• The question is how to get attention for them?

• Most teams and product owners are obsessed by features
• ”how many stories in this sprint?” (meaning ”features”)

• Quality attributes often not needed ”this sprint”
• Stores up potential problems for later

• How do we integrate them into Continuous Architecture?

Focus on Quality Attributes

17

https://pixabay.com/users/publicdomainpictures-14

Focus on Quality Attributes

18

Business
Concern

Scenarios
(illustrate

implications)

Measurement

Tactics

Quality
Attributes

Technical
Attention

• Get attention using scenarios – make the need clear
• Stimulus + Response + Measurement (+ implications if needed)
• Consider using a Quality Attribute Tree to organise them

• Prioritisation is key and an important architectural activity
• Working across stakeholder groups to find an acceptable balance
• Security, performance, scalability, resilience are normally important
• Evolution (maintainability, flexibility) is normally assumed

• Help the team to break down these huge goals into stories
• Implementation of architectural tactics, styles & patterns

• Make sure the stories get into the backlog – PO conversations
• Own some of the difficult ones (e.g. resilience & BCP)

• Find people to be ”champions” for the others

Quality Attributes Architectural Approach

19

https://pixabay.com/users/publicdomainpictures-14

Drive Architectural Decisions

• Less detailed models means decisions and principles become
more important – new first-class artefacts of architecture

• Architectural decisions are how we …
• achieve quality properties (via tactics)
• make tradeoffs
• manage technical debt
• achieve sustainable delivery
• maximise value

20

https://www.pexels.com/@karolina-grabowska

Actually they always were …
we used to just hide them in our models!

Drive Architectural Decisions

• Making, validating, managing and implementing decisions is
core to doing architecture continuously

• We must ensure that good decisions are made
• Practical, logical, balanced, well-argued, well-communicated

• Ensure decisions align with our architecture principles
• Or cause the principles to evolve

• Decisions must be captured, understood, implemented and
curated

21

https://www.pexels.com/@karolina-grabowska

Drive Architectural Decisions

• Use the technical leadership group to:
• Make decisions
• Validate decisions
• Communicate decisions
• Implement decisions

22

https://www.pexels.com/@karolina-grabowska

Remember: you need to make
sure good decisions are made,
not make all the decisions!

• Capture decisions in an accessible way
• ADRs in Git appear to have become something of a standard

• https://adr.github.io/ and https://github.com/npryce/adr-tools
• Simple wiki pages with a well defined format also work well

• Curating decisions over time is important
• Control the number & organise the catalogue
• Revalidate and remove obsolete decisions
• Feedback into the architecture principles

Manage Technical Debt

23

Technical debt is a well established yet nebulous concept …

… very context specific

One person’s “debt” is another person’s “simplest thing possible”

Hard coded validation rather than a chain-of-responsibility of validators.
Debt? Or simple and effective?

Does Technical Debt Matter?

24

Technical debt matters when it stops us doing something …

… it is now too expensive to make a change
… we are too slow to react to a need

… our team is too inefficient to be valuable
… it is too risky to update our technology

It is these situations that the architect needs
to be looking ahead for, to predict and avoid

Sources of Technical Debt

25

Environment

Changing Context

Development Practice

Team Structure

• Time and cost
• Poor requirements
• Unrealistic goals

• Business context change
• Technology change
• Evolution through success

• Poor testing
• Lack of peer review & collaborative work
• Inconsistent approach

• Inexperience with technology or domain
• Lack of communication & understanding
• Part time ad-hoc teams

Source: Managing Technical Debt, Kruchten, Nord, Ozkaya

Dealing With Technical Debt

26

Just-in-Time

Cleanup

Little and
Often

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Technical Debt Total by Sprint

-1
1
3
5
7
9
11
13
15

1 2 3 4 5 6 7 8

Debt Remediation Effort by Sprint

0
5
10
15
20
25
30
35

1 2 3 4 5 6 7 8

Technical Debt Total by Sprint

Dealing With Technical Debt

27

Unified backlog for
visibility and
prioritisation

Unified
Backlog

Features

Arch

Debt

Implement Feedback Loops

28

Code Repo Production

Architecture
Cycle

Architectural
Decisions &
Knowledge

Delivery Pipeline

Artefact
Measurements

Operational
Measurements

Measurements can be trends or limits
Internally or externally focused

Good ones provide architectural “reality checks”

• Feedback loops are your ”architectural reality check”
• Automated, semi-automated and manual all have their place
• Typically measure quality attributes but can be functional
• Internal (e.g. code complexity) and

external (e.g. API response time) are both important
• Start small and simple, targeting biggest risks or concerns
• Over time the implementation can become complex

• Don’t fall in love with your feedback loop implementation!

Implement Feedback Loops

29

https://unsplash.com/photos/DKSWyxtcPVQ

TO CONCLUDE

30

In Conclusion

31

https://unsplash.com/photos/NOBZdtTTGrg

Cloud

Agile + DevOps

Digital Platforms

Continuous Software
Engineering

Less value in ”Up
Front” architecture

Continuous
Architecture

Technical
Leadership

Quality
Attributes

DecisionsTechnical
Debt

Feedback
Loops

To Find Out More

32continuousarchitecture.info

continuous-architecture.com

Eoin Woods
Endava
eoin.woods@endava.com
@eoinwoodz and @eoinwoods@mastodonapp.uk 33

THANK YOU … QUESTIONS?

