endava

PRACTICES FOR
EFFECTIVE CONTINUOUS ARCHITECTURE

EOIN WOODS

iISAQB Software Architecture Gathering
November 2022

Foin Woods

Endava’s CTO, based in London (since 2015)
10+ years in products - Bull, Sybase, InterTrust
10 years in capital markets - UBS and BGI
Software developer, architect, now CTO

Author, editor, speaker, community guy

UITEERIEE | Software Systems B | software __
4 i i S o rchitectur i
~ Architecture h“%ﬂ"[ﬁ, CoxTixyous Archite

@endava

THE CHANGING FACE OF
SOFTWARE DEVELOPMENT

':’s'endava

Software Development in the age of Digital Platforms

+ Platforms are “always on” m—
* Platforms are built to evolve in unpredictable ways —
 Some intelligent behaviour is becoming expected v

¢ Continual updates to the software (and mfrastructure?';

* Parallel developments occur on a platform

e Platforms are highly connected
* Multiple interfaces and audiences to be accommodated

e Platforms must be extensible by design

A multi-dimensional software engineering challenge!

@endqva
So Software Practice Evolved

DevOps (and SRE)

Reusable Cloud Services

Microservices and Serverless ||»

Cloud Infrastructure

FLUID
EVOLVING
ARCHITECTURE

Agile Working

@endqva

Traditional software architecture is of less value

Constant evolution

Less known early in delivery

Less value in “up front” architecture

INTRODUCING CONTINUOUS ARCHITECTURE

'c‘s'endava

ls architecture still needed? VYes!

Quality
Attributes

Stakeholders

Cross-Cutting Concerns

* Achieving quality attributes
* Balancing stakeholder concerns
* Making complex tradeoffs

* Achieving cross cutting concerns
across many independent parts

But architecture is now a
continual flow of decisions

{'g'endava
Continuous Architecture Principles

Principle 1: Architect products: evolve from projects to products

Principle 2: Focus on quality attributes, not functional requirements

Principle 3: Delay design decisions until absolutely necessary

III

Principle 4: Architect for change — leverage the “power of smal

Principle 5: Architect for build, test, deploy and operate

Principle 6: Model the organisation of your teams after ‘
the design of the system Murat Erder &

Pierre Pureur, 2015

WWw.continuousarchitecture.info

Moving to Continuous Architecture

package [lodel] Model[Basic Unts

System

eblocks
«imports
Engine L smeots)

imass : massfkiogrami{unit = kiograr}

walueTypes .
length[metre] N
\ eimports
unit = COmetre \
~ \
wakeTyper S Al

massikilogre

® O niipsiioniine visualparadiom cony

quantityKind = (2

unit = Chkilogran 1y~ ~ o e

«valueT) ~ Business Layer -
i .

electri

unit = [Dampere (D > = -0 B

~ Application Layer

qu

wm @ g © Aa O®
o = > =

~ Technology Layer

O @ oA

o ® = =
=

b 4 4

~ Relationships

e

O R o= — =

4

+r 9= @0 .

More Shapes.

Basic Units

valueTypes
mass{kilogram]

quantitykind = [mass
«imports 1 unit = Ckilogram

“alueTypes
mass[milligram]

1 . - «imports _ _ — — 7|quantityKind = [Gmass
Basic Mass Units | _ - unit = Cmillgram
=~ — _ _ «mports waleTypes
“valueTypes
length{kilomet
i unit = Cgram
_ . wimports | quantityKind = Calength
"
Basic Length Units - unit = Clkilometre wvalueTypes
imports
- - mee> > val
| quantityKind = Clength
~~ unit = COmetre
=~ _dmports
> _imports T~a «valueTypes
«valeTypes =
timetre]
Basic Time et length
unit = COmilimetre
=< < e
cient %

Claim Customer
Registration Information
A A

{ Damage Claiming Process

(F— N T 3
N N Z/

|)

Foem |

Top Down Prescriptive Design

':é'endava

Processing Unit

Data- Replica Engine

Virtualize Middleware

Messaging | Processing TSN
G

Deployment

Gri

Data- Replica Engine = o—p

Processing Unit Memory Processing Unit

e 1

Data- Replica Engine

Styles &
Patterns

Principles
1. We prefer industry protocols,
then standard in-house ones,

2. Partner specific detail must not
pollute domain model ...

then ad-hoc point-to-point ones

3. Do not use cloud specific services

Principles

1. Use Elastic Search for exposing enterprise wide search APL
Status

Context

Tharsizsnasd ot

Thers srs aptions ke Elssicsaarch o Sl hare s can b repicsted
Decision

Consequences

Evolving Shared Design

Decisions

11

Artifacts of Continuous Architecture

Styles & Patterns:
Common solutions to
repeating problems

Principles:
Guidance to achieve
aligned design decisions

Decisions:
Understanding what we
did, when and why

Processing Unit
S
Processing Unit Memory
' Data- Replica Engine

Processing Unit

Principles

1. We prefer industry protocols,
then standard in-house ones,
then ad-hoc point-to-point ones

2. Partner specific detail must not

pollute domain model ...

3. Do not use cloud specific services ||

'c’s'endava

THE ACTIVITIES OF CONTINUOUS ARCHITECTURE

@endqva
Essential Continuous Architecture Activities

Implement
Feedback
Loops

Provide
Leadership

Manage Focus on
Technical Quality
Debt Attributes

Drive
Architectural
Decisions

14

Provide Leadership

Leading rather than “managing”
e Get the team doing the architecture work

Lead the resolution of technical concerns
* What are the key architecture principles?
* Which option to choose when none is perfect?
* What can be deferred, what needs to be done now? (Tech debt)
* What are the options when something “impossible” is needed?

Constant progress towards technical excellence

* What are the right ways of working?
* What are the long-term consequences of decisions?
* "the conscience of the team”

Represent the technical view "upwards”
e “difficult conversations”

TEAM Q
| L=

TOPO LOGIQ]

HOW GREAT LEADERS INSPIRE
EVERYONE 10 TAKE ACTION

INE TO TAKE ACTIO
SIMON SINEK &

WHY

':'g'endclva

\\\\\\\\\\\\\\\

The
ADVANTAGE| B
e

Leadership: a Technical Leadership Group

Form a team to own the architecture & technical concerns
* Technical Leadership Group, Tech Leads Group, ...

Spreads knowledge across the team

Empowers others to take responsibilities with support
* Topic champions for security, performance, resilience, ...

Provides technical growth opportunities

Allows multiple perspectives for decision making

Frees up your time
* But there does need to be a decision making mechanism (usually you)

':”s'endava

Focus on Quality Attributes

Reminder probably unnecessary for quality attributes!
* “the architect’s obsession”
* Constant process of balancing tradeoffs

Cross-cutting concerns that need system level attention
* The question is how to get attention for them?

Most teams and product owners are obsessed by features
* "how many stories in this sprint?” (meaning “features”)

Quality attributes often not needed "this sprint”
» Stores up potential problems for later

How do we integrate them into Continuous Architecture?

':é'endava

https://pixabay.com/users/publicdomainpictures-14

17

'@:'endqva
Focus on Quality Attributes

Business Scenarios

(illustrate

Concern implications)

Quality
Attributes

. Measurement
Technical

Attention
Tactics

18

':’s'endava

Quality Attributes Architectural Approach

Get attention using scenarios — make the need clear e
e Stimulus + Response + Measurement (+ implications if needed)
e Consider using a Quality Attribute Tree to organise them

Prioritisation is key and an important architectural activity

* Working across stakeholder groups to find an acceptable balance
* Security, performance, scalability, resilience are normally important

* Evolution (maintainability, flexibility) is normally assumed

Help the team to break down these huge goals into stories
* Implementation of architectural tactics, styles & patterns

Make sure the stories get into the backlog — PO conversations

N | Software Systems
hitgcture

econd Fiton

Own some of the difficult ones (e.g. resilience & BCP)
* Find people to be "champions” for the others

':'g'endava

Drive Architectural Decisions

* Less detailed models means decisions and principles become
more important — new first-class artefacts of architecture

* Architectural decisions are how we ...
* achieve guality properties (via tactics)
* make tradeoffs
* manage technical debt
* achieve sustainable delivery
* maximise value

Actually they always were ...
we used to just hide them in our models!

Drive Architectural Decisions

Making, validating, managing and implementing decisions is
core to doing architecture continuously

We must ensure that good decisions are made
* Practical, logical, balanced, well-argued, well-communicated

Ensure decisions align with our architecture principles
e Or cause the principles to evolve

Decisions must be captured, understood, implemented and
curated

':’s'endava

'c’s'endava

Drive Architectural Decisions

* Use the technical leadership group to:

decisions
.. Remember: you need to make
decisions .
o sure good decisions are made,
decisions not make all the decisions!
decisions
decisions in an way

ADRs in Git appear to have become something of a standard
* https://adr.github.io/ and https://github.com/npryce/adr-tools
Simple wiki pages with a well defined format also work well

decisions over time is important
Control the number & organise the catalogue

Revalidate and remove obsolete decisions
Feedback into the architecture principles

'c‘s'endava
Manage Technical Debt

Technical debt is a well established yet nebulous concept ...
... very context specific

One person’s “debt” is another person’s “simplest thing possible”

Hard coded validation rather than a chain-of-responsibility of validators.

Debt? Or simple and effective?

23

'c’s'endava
Does Technical Debt Matter?

Technical debt matters when it stops us doing something ...

... itis now too to make a change
... We are too to react to a need
... our team is too to be valuable
.. it is too to update our technology

It is these situations that the architect needs
to be looking ahead for, to predict and avoid

24

Sources of Technical Debt

Environment

Changing Context

Development Practice

Team Structure

Source: Managing Technical Debt, Kruchten, Nord, Ozkaya

qss’endava

Time and cost
Poor requirements
Unrealistic goals

Business context change
Technology change
Evolution through success

Poor testing
Lack of peer review & collaborative work
Inconsistent approach

Inexperience with technology or domain
Lack of communication & understanding
Part time ad-hoc teams

25

Dealing With Technical De

Just-in-Time

Little and
Often

Cleanup

Ot

15
13
11

Debt Remediation Effort by Sprint

35
30
25

Technical Debt Total by Sprint

20
7 15
5 . : . .
3
. 1l
1
0
-1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Debt Remediation Effort by Sprint Technical Debt Total by Sprint
15 35
13 30
11 25
9 20
7 15
5 10
: I s mm
1 1 ————y § |
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

15
13
11

\e]

Bk oW oo N

Debt Remediation Effort by Sprint

3 4 5 6 7 8

30
25
20
15

’ -
0
1

1

o

Technical Debt Total by Sprint

2 3 4 5 6 7 8

'@b:'endava

26

Dealing With Technical Debt

Arch

/

Debt

Features

Unified
Backlog

LT

':’s'endava

Unified backlog for
visibility and
prioritisation

'c‘s'endava
Implement Feedback Loops

Delivery Pipeline

Artefact
Measurements

Operational

/)\ Measurements

Architecture

N N

Cyde/

(Measurements can be trends or limits

Knowledge Internally or externally focused
Good ones provide architectural “reality checks” ¢

Architectural
Decisions &

{'g'endava

Implement Feedback Loops

Feedback loops are your "architectural reality check”

Automated, semi-automated and manual all have their place

Typically measure quality attributes but can be functional

Internal (e.g. code complexity) and
external (e.g. APl response time) are both important

Start small and simple, targeting biggest risks or concerns

Over time the implementation can become complex
* Don't fall in love with your feedback loop implementation!

Software Building
Architecture Evolutionary
Architectures

e

|54
CONTINUOUS “f§ I
ARCHITECTURE ‘ Metrics

aaaaaaaaaaaaaaaaaaaaaaaaa
000000000000000

; ig L

Chistion Ccer, Dave Fary;

TO CONCLUDE

@endqva
In Conclusion

https://unsplash.com/photos/NOBZdtTTGrg

Digital Platforms

Agile + DevOps

Continuous Software
Engineering

Less value in "Up
Front” architecture

Continuous
Architecture

Feedback
Loops

Technical Quality Technical
Leadership Attributes Debt

To Find Out More

[P

JUST ENOUGH

SoftwareSystems SRAARESE

GEORGE FAIRBANKS

CHALLENGE
MODEL Continuous Architecture

Operating M
modernize IT and er

(13
yesterday'’s

architecture

methologies and
processes will

ORGANIZING not deliver
BUSINESS AND
TECHNOLOGY

TEAMS FOR FAST

FLOW

tomorrow'’s

solutions conTinuous
AR R
CoLaox
IWANT TO BE PART !

continuous-architecture.com
Vataad : Continuous Architecture in Practice Home TheBook ~TheBlog - Opt1
~ . g, R e It
CONTINUOUS “§ Design It! —
From Programmer ‘Welcome to the web site for the book Continuous Architecture In Practice, a modern
A 1{ (ol H I T I_; (S T U]{ F to Software Architect and practical guide to software architecture in the age of Agility and DevOps.

) Traditional architecture practices have served us well for many years, but weren't
IN [R /\ (/ l I (, l— developed with an understanding of the demands of the era of DevOps, agility, cloud,
and microservices. However, today, effective architecture is more important than ever.
S ARCI ¢

The demands of modern software engineering

mean that we need updated architecture practices
ConTivuous

o, that allow organizations to effectively manage

complex, conflicting and cross-cutting concerns
such as resilience, security, and technical
coherence, and meet the fast-changing needs of
complex groups of stakeholders.

Michael Keelin,

In Continuous Architecture in Practice we explain how to update the discipline’s classic

ediied by Susarvah Polaer practices for today’s environments, software contexts, and
On this site you can find out more about the book and read some of our writing on
tanice ralatad tn it contant

continuousarchitecture.info 37

THANK YOU ... QUESTIONS?

Eoin Woods

Endava

eoin.woods@endava.com

@eoinwoodz and @eoinwoods@mastodonapp.uk

