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THE CHANGING FACE OF 
SOFTWARE DEVELOPMENT
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Software Development in the age of Digital Platforms

• Platforms are ”always on”
• Platforms are built to evolve in unpredictable ways
• Some intelligent behaviour is becoming expected
• Continual updates to the software (and infrastructure)
• Parallel developments occur on a platform
• Platforms are highly connected
• Multiple interfaces and audiences to be accommodated
• Platforms must be extensible by design
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A multi-dimensional software engineering challenge!



So Software Practice Evolved
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FLUID
EVOLVING

ARCHITECTURE

DevOps (and SRE)

Microservices and Serverless

Cloud Infrastructure

Agile Working

Reusable Cloud Services



Traditional software architecture is of less value
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Constant evolution

Less known early in delivery

Less value in “up front” architecture



INTRODUCING CONTINUOUS ARCHITECTURE
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Is architecture still needed?
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• Achieving quality attributes
• Balancing stakeholder concerns
• Making complex tradeoffs
• Achieving cross cutting concerns 

across many independent parts

But architecture is now a 
continual flow of decisions

Cross-Cutting Concerns

Tradeoffs

Stakeholders

Quality 
Attributes

Yes!



• Principle 1: Architect products: evolve from projects to products
• Principle 2: Focus on quality attributes, not functional requirements
• Principle 3: Delay design decisions until absolutely necessary
• Principle 4: Architect for change – leverage the “power of small”
• Principle 5: Architect for build, test, deploy and operate
• Principle 6: Model the organisation of your teams after 

the design of the system

Continuous Architecture Principles

10www.continuousarchitecture.info

Murat Erder & 
Pierre Pureur, 2015



Moving to Continuous Architecture
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Principles
1. We prefer industry protocols, 

then standard in-house ones, 
then ad-hoc point-to-point ones

2. Partner specific detail must not 
pollute domain model …

3. Do not use cloud specific services
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1. We prefer industry protocols, 

then standard in-house ones, 
then ad-hoc point-to-point ones

2. Partner specific detail must not 
pollute domain model …

3. Do not use cloud specific services

Styles &
Patterns

Principles

Decisions

Top Down Prescriptive Design Evolving Shared Design



Artifacts of Continuous Architecture
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Styles & Patterns:
Common solutions to 
repeating problems

Evolving 
Shared Design
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Principles
1. We prefer industry protocols, 

then standard in-house ones, 
then ad-hoc point-to-point ones

2. Partner specific detail must not 
pollute domain model …

3. Do not use cloud specific services

Principles:
Guidance to achieve 
aligned design decisions

Decisions:
Understanding what we 
did, when and why



THE ACTIVITIES OF CONTINUOUS ARCHITECTURE
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Essential Continuous Architecture Activities
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Provide 
Leadership

Focus on 
Quality 

Attributes

Drive 
Architectural 

Decisions

Manage 
Technical 

Debt

Implement 
Feedback 

Loops



Provide Leadership

• Leading rather than ”managing”
• Get the team doing the architecture work

• Lead the resolution of technical concerns
• What are the key architecture principles?
• Which option to choose when none is perfect?
• What can be deferred, what needs to be done now? (Tech debt)
• What are the options when something ”impossible” is needed?

• Constant progress towards technical excellence
• What are the right ways of working?
• What are the long-term consequences of decisions?
• ”the conscience of the team”

• Represent the technical view ”upwards”
• “difficult conversations” 15

https://www.pexels.com/@fauxels



Leadership: a Technical Leadership Group

• Form a team to own the architecture & technical concerns
• Technical Leadership Group, Tech Leads Group, …

• Spreads knowledge across the team
• Empowers others to take responsibilities with support

• Topic champions for security, performance, resilience, …

• Provides technical growth opportunities
• Allows multiple perspectives for decision making
• Frees up your time

• But there does need to be a decision making mechanism (usually you)
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• Reminder probably unnecessary for quality attributes!
• “the architect’s obsession”
• Constant process of balancing tradeoffs

• Cross-cutting concerns that need system level attention
• The question is how to get attention for them?

• Most teams and product owners are obsessed by features
• ”how many stories in this sprint?” (meaning ”features”)

• Quality attributes often not needed ”this sprint”
• Stores up potential problems for later

• How do we integrate them into Continuous Architecture?

Focus on Quality Attributes

17

https://pixabay.com/users/publicdomainpictures-14



Focus on Quality Attributes
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Business 
Concern

Scenarios 
(illustrate 

implications)

Measurement

Tactics

Quality
Attributes

Technical 
Attention



• Get attention using scenarios – make the need clear
• Stimulus + Response + Measurement (+ implications if needed)
• Consider using a Quality Attribute Tree to organise them

• Prioritisation is key and an important architectural activity
• Working across stakeholder groups to find an acceptable balance
• Security, performance, scalability, resilience are normally important
• Evolution (maintainability, flexibility) is normally assumed

• Help the team to break down these huge goals into stories
• Implementation of architectural tactics, styles & patterns

• Make sure the stories get into the backlog – PO conversations
• Own some of the difficult ones (e.g. resilience & BCP)

• Find people to be ”champions” for the others

Quality Attributes Architectural Approach 
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Drive Architectural Decisions

• Less detailed models means decisions and principles become 
more important – new first-class artefacts of architecture

• Architectural decisions are how we …
• achieve quality properties (via tactics)
• make tradeoffs
• manage technical debt
• achieve sustainable delivery
• maximise value
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https://www.pexels.com/@karolina-grabowska

Actually they always were … 
we used to just hide them in our models!



Drive Architectural Decisions

• Making, validating, managing and implementing decisions is 
core to doing architecture continuously

• We must ensure that good decisions are made
• Practical, logical, balanced, well-argued, well-communicated

• Ensure decisions align with our architecture principles
• Or cause the principles to evolve

• Decisions must be captured, understood, implemented and 
curated
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Drive Architectural Decisions

• Use the technical leadership group to:
• Make decisions
• Validate decisions
• Communicate decisions
• Implement decisions
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https://www.pexels.com/@karolina-grabowska

Remember: you need to make 
sure good decisions are made, 
not make all the decisions!

• Capture decisions in an accessible way
• ADRs in Git appear to have become something of a standard

• https://adr.github.io/ and https://github.com/npryce/adr-tools 
• Simple wiki pages with a well defined format also work well

• Curating decisions over time is important
• Control the number & organise the catalogue
• Revalidate and remove obsolete decisions
• Feedback into the architecture principles



Manage Technical Debt
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Technical debt is a well established yet nebulous concept …

… very context specific

One person’s “debt” is another person’s “simplest thing possible”

Hard coded validation rather than a chain-of-responsibility of validators.  
Debt?  Or simple and effective?



Does Technical Debt Matter?
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Technical debt matters when it stops us doing something …

… it is now too expensive to make a change
… we are too slow to react to a need

… our team is too inefficient to be valuable
… it is too risky to update our technology

It is these situations that the architect needs 
to be looking ahead for, to predict and avoid



Sources of Technical Debt
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Environment

Changing Context

Development Practice

Team Structure

• Time and cost
• Poor requirements
• Unrealistic goals

• Business context change
• Technology change
• Evolution through success

• Poor testing
• Lack of peer review & collaborative work
• Inconsistent approach

• Inexperience with technology or domain
• Lack of communication & understanding
• Part time ad-hoc teams

Source: Managing Technical Debt, Kruchten, Nord, Ozkaya



Dealing With Technical Debt
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Just-in-Time

Cleanup

Little and 
Often
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Dealing With Technical Debt
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Unified backlog for 
visibility and 
prioritisation

Unified
Backlog

Features

Arch

Debt



Implement Feedback Loops
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Code Repo Production

Architecture
Cycle

Architectural
Decisions & 
Knowledge

Delivery Pipeline

Artefact
Measurements

Operational
Measurements

Measurements can be trends or limits
Internally or externally focused

Good ones provide architectural “reality checks”



• Feedback loops are your ”architectural reality check”
• Automated, semi-automated and manual all have their place
• Typically measure quality attributes but can be functional
• Internal (e.g. code complexity) and 

external (e.g. API response time) are both important
• Start small and simple, targeting biggest risks or concerns
• Over time the implementation can become complex

• Don’t fall in love with your feedback loop implementation!

Implement Feedback Loops
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https://unsplash.com/photos/DKSWyxtcPVQ



TO CONCLUDE
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In Conclusion

31

https://unsplash.com/photos/NOBZdtTTGrg

Cloud

Agile + DevOps

Digital Platforms

Continuous Software 
Engineering

Less value in ”Up 
Front” architecture

Continuous 
Architecture

Technical 
Leadership

Quality 
Attributes

DecisionsTechnical 
Debt

Feedback 
Loops



To Find Out More
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continuous-architecture.com
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THANK YOU … QUESTIONS?


