
Architecture in Dependable
Embedded Systems

Dr. Isabella Stilkerich, Felix Bräunling, Dr. Ulrich Becker



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Example: Schaeffler’s Embedded Systems

A wide range of these applications use an embedded system for e-
motor control

E-Wheel Drive

Hybrid ModuleeAxle

Active Roll-Stabilizer

Gearbox actuator



Embedded System E-Motor Control

+

-Ba
tt

er
y

H3H1 H2

Software

E-Motor

Switching the transistors in a coordinated way generates
a rotating electromagnetic field



Functional Features
Motor types

Permanent magnet synchronous motor

Asynchronous induction motor

Electric current control

Field oriented control

Feed forward, magnetic saturation, 
reluctance

Field weakening control

(Over-)modulation schemes 
and variable switching frequencies

Superimposed controllers

Speed (window) control

Jerk control

Derating and Diagnostics

Self protection and fault detection

Performance derating

Sensors and Observers

Angle tracking observer

Power loss and temperature estimation

Magnetic flux in stator windings

Libraries for various utilities

Table lookup and interpolation

Numerical routines

Signal filters



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Important Qualities: Architecture Goals

• High intelligence and complexity of the control software (selected of qualities):
• Functional correctness: torque precision, dynamics, safety
• Performance efficiency: time behavior, resource utilization, energy
• Reliability: availability
• Security
• Portability: adaptability
• Maintainability

• Qualities are often cross-cutting concerns
• Technical constraint: Use of AUTOSAR (Automotive

Open System Architecture)
Functional 
suitability

Performance 
efficiency Compatibility Usability Reliability Security Maintainability Portability

Functional 
completeness

Functional 
correctness

Functional 
appropriateness

Time behavior

Resource 
utilization

Capacity

Co-existence

Interoperability

Appropriateness 
recognizability

Learnability

Operability

User-error 
protection

User-interface 
aesthetics

Accessibility

Maturity

Availability

Fault tolerance

Recoverability

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Modularity

Reusability

Analyzability

Modifiability

Testability

Adaptability

Installability

Replaceability

ISO 25010: Product quality



How to address these complex topics?

Expect errorsAbstraction M
od

ul
ar

ity

Loose 
coupling

Strong 
cohesion

Dependency injection

Inversion of control Dependency
Inversion PrincipleSeparation of Concerns

Information HidingOpen-Closed
Principle

Single Responsibility
Principle

Conceptual Integrity Simplicity

Design Principles



How to address these complex topics?

Expect errorsAbstraction M
od

ul
ar

ity

Loose 
coupling

Strong 
cohesion

Dependency injection

Inversion of control Dependency
Inversion Principle Separation of Concerns

Information HidingOpen-Closed
Principle

Single Responsibility
Principle

Conceptual Integrity Simplicity

Design Principles



Functional Architecture (1)

Example: Cruise Control

«block»
Determine current 

speed

«block»
Determine desired 

speed

«block»
Determine brake 

status

«block»
Calculate throttle 

setting

«block»
Control throttle

Desired Speed Throttle Setting

Brake Status

Current Speed



Functional Architecture (2)

• A functional architecture represents knowledge about the core function logic:
• Central concepts of the core functional logic, their attributes and relationships
• Enables a better understanding of the function logic
• Establishes a common language
• Helps to detect inconsistencies and redundancies
• Builds the connection to requirements engineering (cf. domain models)

• Functional architectures abstract from technical aspects
• The core functional architecture is independent of technical concerns and has an 

independent life cycle
• Modeling includes structure (e.g. representation of concepts and their 

relationships in a class diagram) and behavior (e.g. modeling of interaction of 
structural elements in a sequence diagram)

• Experts for functional architectures are often not software developers, but 
experts for electric motors, physicians, …



Functional Architecture (3)

Example: Cruise Control

«block»
Determine current 

speed

«block»
Determine desired 

speed

«block»
Determine brake 

status

«block»
Calculate throttle 

setting

«block»
Control throttle

Desired Speed Throttle Setting

Brake Status

Current Speed

ASIC?

FPGA? CPU?

CAN? FlexRay?

Local? Ethernet?



Technical Architecture (First Sketch)

Example: Cruise Control

Wheel Sensor

Cruise Control HMI 
Unit

Brake System

Cruise Control System Engine Control

Button Event Throttle Setting

Current Speed Brake Status

Pulse Signal



How to Construct a Dependable Embedded System?

Functional Architecture

Technical Architecture

Software Implementation

To
p-
D
ow
n

System Architecture

Software Architecture

Specfication
Specification

Specification



How to Construct a Dependable Embedded System?

Functional Architecture

Technical Architecture

Software Implementation

Bottom
-U
p

System Architecture

Software Architecture

In
te
gr
at
io
n

In
te
gr
at
io
n



How to Construct a Dependable Embedded System?

Technical Architecture

Software Architecture

System Architecture

Functional Architecture

Software Implementation

Specfication
Specification

Specification
In
te
gr
at
io
n

In
te
gr
at
io
n

Iterative Incremental



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Example: Architecture Goals

Functionality, safety, real-time behavior: Alignment of design goals
• Functionality often benefits from methods applied in the context of safety-

relevant systems, e.g., isolation and real-time properties
• Safety mechanisms should not just be „mounted on top of functionality“

Properties such as timing, memory usage and safety are a cross-cutting system
aspect
• They have to be respected at all system, hardware and software levels
• The engineering disciplines rely on each other, they are equally important
• Properties should be included in the design process just as any other

functionality or relevant property



Isolation in ISO 26262: Freedom from Interference (FFI)

From ISO26262-6, Annex D
• Software elements must not affect each other in an unintended and negative way
• Errors in an application shall not spread to other applications
• Errors in an application shall not spread to infrastructure services
• Errors in an application shall not affect other system elements

• Elements subject to decomposition must be isolated from each other

Achievement of FFI 
• Timing and execution: Temporal isolation: Scheduling, execution budgets, watchdogs, ...
• Memory: Spatial isolation: Semantic analysis, memory-protection unit, ...
• Safe exchange of information: Communication between isolated elements: checksums, 

...



FFI in Space and Time

Physical isolation of software instances (e.g., independent MCUs): Federated architecture

All resources (memories, CPU time, etc.) can be assigned to a specific functionality

Often, functionalities need to cooperate, they have dependencies
• Safe data exchange between components
• Waiting times / latencies have to be respected in system design, etc.

Functionalities may also be deployed on the same MCU: Integrated architecture
• To reduce physical weight and size as well as costs
• Complicates the provision of FFI
• In contrast to physically isolated components, sophisticated mechanisms are needed for

FFI



Overview

Systems and Software Development

Architecture Goals

Dependability and Functional Safety

Real-Time and Concurrency



Real-Time Systems

DIN 44300: Standard for information processing
• Real-time operation is the operation of a computer system, whose

programs for data processing are operational in a way, so that
processing results are available in a specified time span.
• Depending on the use case, data can be delivered with a random

temporal distribution or at determined points in time.



Real-Time Systems

• A real-time system computes results in reaction to events
• The point in time, at which the result must be available, is called

deadline
• Fastness does not guarantee the real-time capability

• Interrupts may cause unpredictable execution variations
Time is not an internal characteristic of a computing system
• The computing system‘s time scale may not be identical to ist 

environment
• Temporal conditions of the controlled object have to be suitably

mapped in the computing systems



Controlling Real-Time System E-Motor

• Examinations have to be performed on various development levels

• Which elements have to be examined to ensure timely behavior?
• Real-time (RT) application
• Real-time operating system (RTOS) and runtime system
• Employed processor

Physical Time

Duration d
d(application) d(OS)d(IRQ)d(PWM)d(sensor) d(actor)d(PWM)d(OS)

Computing Time Scale



Mechanisms for Providing Timely Execution

G
eneric

Applicability
(Ahead-of-tim

e / Runtim
e)

Av
oi

da
nc

e
/ L

ev
el

 o
fD

et
ec

tio
nSoftware: Task / Thread 

Architecture including
partitioning

Hardware Watchdog
Monitoring

CPU Selection / Architecture
of Distributed System

Determination of logical
WCET Assignment of execution

budgets / schedule
determination

Verification
Semantic Code Analyses

Verification
Measurement-based Tests

Execution-budget monitoring
through real-time OS

Application-level exception
handling

Other techniques

System Architecture

Software Architecture, 
Implementatíon, Verification

System at Runtime



Mechanisms for Providing Timely Execution

G
eneric

Applicability
(Ahead-of-tim

e / Runtim
e)

Av
oi

da
nc

e
/ L

ev
el

 o
fD

et
ec

tio
nSoftware: Task / Thread 

Architecture including
partitioning

Hardware Watchdog
Monitoring

CPU Selection / Architecture
of Distributed System

Determination of logical
WCET Assignment of execution

budgets / schedule
determination

Verification
Semantic Code Analyses

Verification
Measurement-based Tests

Execution-budget monitoring
through real-time OS

Application-level exception
handling

Other techniques

System Architecture

Software Architecture, 
Implementatíon, Verification

System at Runtime



Temporal and Spatial Isolation: A Software Topic Only? 

CPU time and memory must be shared across components

• CPU time sharing can be achieved by the use of an RTOS scheduler

• A scheduler provides a framework for the construction of a real-time system
• An unfortunate application structure may impede timely execution
• A proper thread / task architecture has to be created

• Memory partitions and their locations have to be defined, data and code has to be assigned

<<task>>
Watchdog

attributes
priority=1
core=2
preemption=yes
sharedMem=no
function=wdgFkt
…

<<task>>
IO Handling

attributes
priority=12
core=1
preemption=yes
sharedMem=yes
function=acquire
…

<<task>>
Calculation

attributes
priority=12
core=1
preemption=yes
sharedMem=yes
function=calc
…

<<task>>
Diagnostics

attributes
priority=20
core=1
preemption=yes
sharedMem=yes
function=diag_mem
function2=values

<<Memory>>
sharedMem

attributes
address_start=0x0
address_end=0x800
sync=semaphore
mapped_data=…
accessed_by=…
…

<<access>>

<<access>>

<<access>>



Temporal and Spatial Isolation: A Software Topic Only? No!

Scheduling and isolation are system-architectural topics:
• The temporal /spatial partitioning is dependent on the system requirements / architecture

• Mathematical scheduling analyses are performed on both functional and technical architecture, e.g., rate-monotonic analysis (RMA)

• CPU selection
• Distributed network of MCUs, etc.
• Aspects at all system-architectural levels influence each other

Example: Temporal Constraints, Computational Spacetime, Error Spreading
• Undesired memory accesses may induce temporal faults
• Unspecified or faulty sensor values may induce temporal faults
• A faulty design specification may induce temporal faults
• Measures (e.g., software-based replication) meant to provide safety

• Affect timing behavior
• May in turn induce temporal faults

The holistic solution has to be respected during analyses!



Scheduling at the Implementation Level

• Scheduling deals with the determination of points in time at which
work units are executed on a particular processor
• Scheduling is a two-phase approach

1. Work units have to be assigned to threads (statically at design time)
2. Threads have to be assigned to processors (statically / dynamically)

Software Architect

Software Architect
Operating System



Separation of Concerns

Planning of temporal handling and dispatching of threads
1. Scheduling is the planning strategy

• Construction of a thread-execution plan, which defines the order thread
processing; statically at design time or dynamically at runtime

2. Dispatching is the thread-management mechanism
• Implementation of the thread-execution plan
• Overhead depends on thread type (process, user-level, kernel-level, i.e., 

memory-protection-zone assignment) being used



Thread of Control (1)

• An OS thread / task is an abstraction of the operating system provided to
• programs from the application layer
• infrastructure-software programs (e.g., drivers)

• A thread executes (parts of a) program(s) and is a modelling element in a 
software architecture

• The thread-architecture view is defined by the architect
• Thread structure (relations, dependabilities)
• Assignment of properties: priority, preemption, events
• Assignment to memory-protection zones (address spaces)



Thread of Control (2)

This approach is a realization of the separation-of-concerns principle
• Separate what (code) from how (execution)
• An OS partially encapsulates the architecture goal timing behavior in a software 

architecture
• Supports code reusability and extensibility (in contrast to (manually applied) Cyclic 

Executive Pattern)

The thread-management overhead of the OS depends on the thread-architecture 
• Single-threaded program
• Multi-threaded program 

• Single address space
• Isolated OS kernel
• Multiple isolated address spaces



Multi-Threading

When using multi-threading, new architectural issues need to be 
solved, e.g.,
• Verification of the scheduling decisions on the implementation level
• Design of memory-protection zones / address spaces
• Handling of concurrency situations



AUTOSAR OS for FFI: Memory-Protection Zones

ap
pl

ic
at

io
n

iso
la

tio
n

Control-flow isolation

kernel Data Code

kernel protection

TCB kernel Data Code



Overhead of Thread Management (Unicore)

Logical Thread Types
1. Single Thread: Lowest overhead

• O(activation / function invocation)
• Managing the activation record (e.g. pushing parameters to the stack)

2. Multiple Threads
• 2.1: Single address space

• O(Thread switch) + O(1.); update of registers
• 2.2: Separate address space for the operating system

• O(system call) + O(2.1); trap handling
• 2.3: Isolated address spaces for threads

• O(address space switch) + O(2.2.); Update MMU / MPU caches

This has to be taken into account during timing analyses!



Lost-Update Problem



How is this problem solved by the OS?

Synchronization of data can be achieved in several ways, e.g., by
• Priority Ceiling Protocol
• Spinlocks
• Suppression of interrupts
• Constructively by systematic scheduling



CPSA Training: Dependable Embedded Systems

Interested in more details of dependable embedded systems design?
• Visit the iSAQB training
• Details on the curriculum can be found here:
https://isaqb-org.github.io/curriculum-embedded/curriculum-
embedded-en.pdf

https://isaqb-org.github.io/curriculum-embedded/curriculum-embedded-en.pdf

