Architecture in Dependable
Embedded Systems

Dr. Isabella Stilkerich, Felix Braunling, Dr. Ulrich Becker

Overview

Systems and Software Development
Architecture Goals
Dependability and Functional Safety

Real-Time and Concurrency

Overview

Systems and Software Development
Architecture Goals
Dependability and Functional Safety

Real-Time and Concurrency

Example: Schaeffler’s Embedded Systems

H id M |
Gearbox actuator ybrid Module

E-Wheel Drive

Active Roll-Stabilizer

A wide range of these applications use an embedded system for e-
motor control

Embedded System E-Motor Control

E-Motor

Battery

Switching the transistors in a coordinated way generates
a rotating electromagnetic field

Functional Features

Motor types
® Permanent magnet synchronous motor

® Asynchronous induction motor

M

Electric current control K

e Field oriented control —

e Feed forward, magnetic saturation,
reluctance

® Field weakening control

e (Over-)modulation schemes
and variable switching frequencies

Superimposed controllers

e Speed (window) control

N ?ﬁ
e Jerk control - m |

mmmmmmmmmmmmmm

Derating and Diagnostics

»»»»»»

e Self protection and fault detection

e Performance derating

Sensors and Observers

utt)

® Angle tracking observer

® Power loss and temperature estimation

e Magnetic flux in stator windings

Libraries for various utilities
e Table lookup and interpolation
e Numerical routines

e Signal filters

&[]} simLib\project.pj

e

&-{J} ctriFlow\project.pj
&} Mdlproject.pj

{2 configiproject.pj (1.3)

|| AbsoluteTLMain.md|

|| BitOperations.mdl

[CtrIneTL.mdl

| CntrPulseTL.md|

[cotrTL.md

"] CtriFlow_Init.m

|| CtriFlow_Modules.dd

'] ctriFlow.dd

['] CtriFlowLib.mdl

] CtriFlowTLMain.sh

| | Det_ReportError_fip.mexw32
| | Det_ReportError_fip.mexw64
| | Det_ReportError.c

|| DetectralingEdgeTL.mdl

| | DetectRisingEdgeTL.mdl

i-{] Dettib.mdl

i [DivisonByzeroProtn.mdl

Overview

Systems and Software Development
Architecture Goals
Dependability and Functional Safety

Real-Time and Concurrency

Important Qualities: Architecture Goals

* High intelligence and complexity of the control software (selected of qualities):

Functional correctness: torque precision, dynamics, safety
Performance efficiency: time behavior, resource utilization, energy
Reliability: availability

Security

Portability: adaptability

Maintainability

* Qualities are often cross-cutting concerns
* Technical constraint: Use of AUTOSAR (Automotive

Open System Architecture) o

ISO 25010: Product quality

r rer
suitability efficiency
Functional Time behavior
completeness
Resource
Functional utilization
correctness
Capacity
Functional
appropriateness

Compatibility

Co-existence

Interoperability

Usability

Appropriateness
recognizability
Learnability
Operability

User-error
protection

User-interface
aesthetics

Accessibility

Reliability

Maturity
Availability
Fault tolerance

Recoverability

Security

Confidentiality
Integrity
Non-repudiation
Accountability

Authenticity

Maintainability

Modularity
Reusability
Analyzability
Modifiability

Testability

Portability

Adaptability
Installability

Replaceability

How to address these complex topics?

Design Principles
Inversion of control Dependency

: .. . Separation of Concerns
Inversion Principle

Single Responsibility

Dependency injection Principle

Strong

Loose :
cohesion

coupling

Open-Closed

Information Hiding
Principle

O

Abstraction

s

Expect errors

Conceptual Integrity Simplicity

How to address these complex topics?
|

Single Re<~zounsibility
Principle

Design Principles
Inversion of control Dependency
Inversion Principle

Dependency injection

Strong

Loose :
cohesion

coupling

Open-Closed

Information Hiding
Principle

O

Abstraction

s

Expect errors

Conceptual Integrity Simplicity

Functional Architecture (1

Example: Cruise Control

«block»
Determine current
speed
VW current Speed
«block» «block» «block»
Determine desired Calculate throttle Control throttle
speed > setting >
Desired Speed Throttle Setting
A Brake Status
«block»
Determine brake

status

Functional Architecture (2)

A functional architecture represents knowledge about the core function logic:
* Central concepts of the core functional logic, their attributes and relationships
* Enables a better understanding of the function logic
* Establishes a common language
* Helps to detect inconsistencies and redundancies
* Builds the connection to requirements engineering (cf. domain models)

Functional architectures abstract from technical aspects

* The core functional architecture is independent of technical concerns and has an
independent life cycle

Modeling includes structure (e.g. representation of concepts and their
relationships in a class diagram) and behavior (e.g. modeling of interaction of
structural elements in a sequence diagram)

Experts for functional architectures are often not software developers, but
experts for electric motors, physicians, ...

Functional Architecture (3)

Example: Cruise Control w

@ «block» @

Calculate throttle

<>

WV Current Speed

’ setting ’

Desired Speed Throttle Setting

— Q>

Technical Architecture (First Sketch)

Example: Cruise Control

Wheel Sensor gl

>

[]

Pulse Signal

>

Cruise Control HMI
Unit

Button Event

[]

]

Brake System

g

gl

V current Speed

Brake Status

— |

|

Cruise Control System

3]

[]

>

Throttle Setting

L]

Engine Control E

How to Construct a Dependable Embedded System?

Functional Architecture

uolleal10ads

System Architecture

Software Architecture

uoliedloads uonediynads

Software Implementation

How to Construct a Dependable Embedded System?

Functional Architecture

Technical Architecture

System Architecture

o
o
o
3
C
©

Software Architecture

Integration Integration

Software Implementation

How to Construct a Dependable Embedded System?

Architecture

Functiona

uollealy10ads

Iterative Incremental '

Integration

uoliedloads uoI1ed1410ads

Integration

Software Implementation

Overview

Systems and Software Development
Architecture Goals
Dependability and Functional Safety

Real-Time and Concurrency

Example: Architecture Goals

Functionality, safety, real-time behavior: Alignment of design goals

* Functionality often benefits from methods applied in the context of safety-
relevant systems, e.g., isolation and real-time properties

e Safety mechanisms should not just be ,mounted on top of functionality”

Properties such as timing, memory usage and safety are a cross-cutting system
aspect

* They have to be respected at all system, hardware and software levels
* The engineering disciplines rely on each other, they are equally important

* Properties should be included in the design process just as any other
functionality or relevant property

Isolation in ISO 26262: Freedom from Interference (FFl)

From 1SO26262-6, Annex D

» Software elements must not affect each other in an unintended and negative way

e Errorsin an application shall not spread to other applications
* Errorsin an application shall not spread to infrastructure services
* Errorsin an application shall not affect other system elements

* Elements subject to decomposition must be isolated from each other

Achievement of FFI
 Timing and execution: Temporal isolation: Scheduling, execution budgets, watchdogs, ...
* Memory: Spatial isolation: Semantic analysis, memory-protection unit, ...

e Safe exchange of information: Communication between isolated elements: checksums,

FFl in Space and Time

Physical isolation of software instances (e.g., independent MCUs): Federated architecture

All resources (memories, CPU time, etc.) can be assigned to a specific functionality

Often, functionalities need to cooperate, they have dependencies
« Safe data exchange between components
* Waiting times / latencies have to be respected in system design, etc.

Functionalities may also be deployed on the same MCU: Integrated architecture
* To reduce physical weight and size as well as costs
 Complicates the provision of FFI

* |n contrast to physically isolated components, sophisticated mechanisms are needed for
FFI

Overview

Systems and Software Development
Architecture Goals
Dependability and Functional Safety

Real-Time and Concurrency

Real-Time Systems

DIN 44300: Standard for information processing

e Real-time operation is the operation of a computer system, whose
programs for data processing are operational in a way, so that
processing results are available in a specified time span.

* Depending on the use case, data can be delivered with a random
temporal distribution or at determined points in time.

Real-Time Systems

* A real-time system computes results in reaction to events

* The point in time, at which the result must be available, is called
deadline

* Fastness does not guarantee the real-time capability
* Interrupts may cause unpredictable execution variations

Time is not an internal characteristic of a computing system

* The computing system’s time scale may not be identical to ist
environment

* Temporal conditions of the controlled object have to be suitably
mapped in the computing systems

Controlling Real-Time System E-Motor

* Examinations have to be performed on various development levels

* Which elements have to be examined to ensure timely behavior?

* Real-time (RT) application
* Real-time operating system (RTOS) and runtime system

* Employed procesTor | | | |

., 1 ' N
., i s .
. | \ \
. 1 ! N
. 1 K S
. B \ \
.
, ! [l \
v \
\
'

,) v \
. h K AN
, ' \
, ! i N
Vi i \ \
, 1 l N
, 1 \ AN
. \ .
\

N
»

Physical Time

| Duration d |

|d(sensor) | d(PWM) |d(IRQ) Lj(OS) |' d(application) | d(OS) | d(PWM) | d(actor) |

» Computing Time Scale

Mechanisms for Providing Timely Execution

. . System Architect
Determination of logical ySTEm ATCRITECre

WCET Assignment of execution
budgets / schedule

determination _ .
CPU Selection / Architecture

of Distributed System

Software: Task / Thread Software Architecture,
Architecture including Implementation, Verification
artitionin L
P ’ Verification

Semantic Code Analyses

Verification
Measurement-based Tests

Execution-budget monitoring
through real-time OS

System at Runtime

Application-level exception
handling

(dwnuny / swn-jo-peayy) Ayjiqes)jddy opua9
Avoidance / Level of Detection

Other techniques

Hardware Watchdog
Monitoring

Mechanisms for Providing Timely Execution

. . System Architect
Determination of logical ySTEm ATCRITECre

WCET Assignment of execution
budgets / schedule

determination _ .
CPU Selection / Architecture

of Distributed System

Software: Task / Thread Software Architecture,
Architecture including Implementation, Verification
partitioning

Verification
Semantic Code Analyses

Verification
Measurement-based Tests

Execution-budget monitoring :
. System at Runtime
through real-time OS
Application-level exception

handling

(dwnuny / swn-jo-peayy) Ayjiqes)jddy opua9
Avoidance / Level of Detection

Other techniques

Hardware Watchdog
Monitoring

Temporal and Spatial Isolation: A Software Topic Only?

CPU time and memory must be shared across components
* CPU time sharing can be achieved by the use of an RTOS scheduler

* A scheduler provides a framework for the construction of a real-time system
* An unfortunate application structure may impede timely execution
* A proper thread / task architecture has to be created

 Memory partitions and their locations have to be defined, data and code has to be assigned

<<task>> <<task>> <<task>> <<task>>
Watchdog Calculation 10 Handling Diagnostics
attributes attributes attributes attributes
priority=1 priority=12 priority=12 priority=20
core=2 — |core=1 core=1 core=1
preemption=yes preemption=yes preemption=yes preemption=yes
sharedMem=no sharedMem=yes sharedMem=yes sharedMem=yes
function=wdgFkt function=calc function=acquire function=diag_mem
i function2=values
<<access>>v ‘
<<Memory>>
sharedMem
attributes
<<access>>

address_start=0x0 | g
address_end=0x800 <<access>>

sync=semaphore e
mapped_data=...
accessed_by=...

Temporal and Spatial Isolation: A Software Topic Only? No!

Scheduling and isolation are system-architectural topics:

* The temporal /spatial partitioning is dependent on the system requirements / architecture
* Mathematical scheduling analyses are performed on both functional and technical architecture, e.g., rate-monotonic analysis (RMA)

* CPU selection
* Distributed network of MCUs, etc.

* Aspects at all system-architectural levels influence each other

Example: Temporal Constraints, Computational Spacetime, Error Spreading
* Undesired memory accesses may induce temporal faults
* Unspecified or faulty sensor values may induce temporal faults
* A faulty design specification may induce temporal faults
* Measures (e.g., software-based replication) meant to provide safety

* Affect timing behavior
* May in turn induce temporal faults

The holistic solution has to be respected during analyses!

Scheduling at the Implementation Level

e Scheduling deals with the determination of points in time at which
work units are executed on a particular processor

* Scheduling is a two-phase approach Software Architect

1. Work units have to be assigned to threads (statically at design tim2)

2. Threads have to be assigned to processors (statically / dynamical.,s,Oftwalre Architect

Operating System

Separation of Concerns

Planning of temporal handling and dispatching of threads

1. Scheduling is the planning strategy
e Construction of a thread-execution plan, which defines the order thread
processing; statically at design time or dynamically at runtime
2. Dispatching is the thread-management mechanism
* Implementation of the thread-execution plan

* Overhead depends on thread type (process, user-level, kernel-level, i.e.,
memory-protection-zone assignment) being used

Thread of Control (1)

* An OS thread / task is an abstraction of the operating system provided to
* programs from the application layer
* infrastructure-software programs (e.g., drivers)
* Athread executes (parts of a) program(s) and is a modelling element in a
software architecture
* The thread-architecture view is defined by the architect
* Thread structure (relations, dependabilities)
* Assignment of properties: priority, preemption, events
* Assignment to memory-protection zones (address spaces)

Thread of Control (2)

This approach is a realization of the separation-of-concerns principle
» Separate what (code) from how (execution)

* An OS partially encapsulates the architecture goal timing behavior in a software
architecture

» Supports code reusability and extensibility (in contrast to (manually applied) Cyclic
Executive Pattern)

The thread-management overhead of the OS depends on the thread-architecture
* Single-threaded program

* Multi-threaded program
* Single address space
 |solated OS kernel

* Multiple isolated address spaces

Multi-Threading

When using multi-threading, new architectural issues need to be
solved, e.g.,

* Verification of the scheduling decisions on the implementation level
* Design of memory-protection zones / address spaces
* Handling of concurrency situations

AUTOSAR OS for FFI: Memory-Protection Zones

<<Core>>0 <<Core>>1

I e e 1 I e e e e 1 I 1
i <<0S Application>> I i <<OS Application>> i | <<OS Application>> i
i i | ' | !
: Control App : E Monitor i i Value Producer i
1 1 1 1 1 1
1 1 1 1

i Data i i Data i i Data E
1 1 1 1 1 1
: I S : : | !
i Code L : Code : : Code :
1 I + 1 i 1 I
1 1 © 1 1 1 1
] 1 — 1 1 1 1
: i3 : ! : !
: Task A Task B : 2 : Task C ! : Task D !
1 1 (@ ! '
i Data Data i O i Data i E Data i
i = | ! i !
i Stack Stack : § I Stack i : :
i i o i | i =
: 2 : ‘ ' ‘
L i @© 1 H] i

1
TCB I kernel Data Code i i kernel Data Code i

Overhead of Thread Management (Unicore)

Logical Thread Types

1. Single Thread: Lowest overhead
e O(activation / function invocation)
* Managing the activation record (e.g. pushing parameters to the stack)

2. Multiple Threads

e 2.1: Single address space
* O(Thread switch) + O(1.); update of registers
e 2.2: Separate address space for the operating system
e O(system call) + O(2.1); trap handling
e 2.3:Isolated address spaces for threads
* O(address space switch) + 0(2.2.); Update MMU / MPU caches

This has to be taken into account during timing analyses!

Lost-Update Problem

Memory

X

Task switch

(1) read x=3 %

Runnable —m———— e — - — e = = = = -
mapped to
Task_1

Runnable —/—————wwmmoo e e e _—_—_--
mapped to
Task_2

How is this problem solved by the OS?

Synchronization of data can be achieved in several ways, e.g., by
* Priority Ceiling Protocol
* Spinlocks
e Suppression of interrupts
e Constructively by systematic scheduling

CPSA Training: Dependable Embedded Systems

Interested in more details of dependable embedded systems design?
* Visit the iISAQB training
* Details on the curriculum can be found here:

https://isagb-org.github.io/curriculum-embedded/curriculum-
embedded-en.pdf

https://isaqb-org.github.io/curriculum-embedded/curriculum-embedded-en.pdf

