
qaware.de

Mario-Leander Reimer
mario-leander.reimer@qaware.de
@LeanderReimer

Cluster-as-code.
The Many Ways towards Kubernetes.

10:04 PM - 27. November 2017

5:38 PM - 24. Februar 2019

qaware.de

Mario-Leander Reimer
mario-leander.reimer@qaware.de
@LeanderReimer

Platform-as-code.
The Many Ways towards K8s based Platforms.

4

Mario-Leander Reimer
Principal Software Architect
@LeanderReimer
#cloudnativenerd #qaware
#gernperDude

Too much cognitive load easily is a bottleneck for fast flow
and high productivity for many DevOps teams.

 QAware | 5

■ Intrinsic Cognitive Load
Relates to fundamental aspects and knowledge in the
problem space (e.g. used languages, APIs, frameworks)

■ Extraneous Cognitive Load
Relates to the environment (e.g. console
command, deployment, configuration)

■ Germane Cognitive Load
Relates to specific aspects of the business domain
(aka. „value added“ thinking)

The 5 Layers of Cloud-native Software Engineering

 QAware | 6

IaaS
Network, Compute, Storage
(VPC, EC2, NLB, ALB, ...)

CaaS
(Kubernetes Services)

PaaS
(Software Infrastructure Blueprints with Helm and

Continuous Delivery Toolchain)

Application-specific
Software Infrastructure

Cloud-friendly & cloud-native
Applications

Architect Build Run

Amazon SNS

AWS IAM
Amazon

EC2

Amazon EBS

Cloud-native
Application Engineering

Cloud-native
Platform Engineering

A Platform team and its engineers are a key enabler for high
productivity of stream-aligned DevOps teams.

 QAware | 7

■ Responsible to build and operation a platform to
enable and support the teams in their day to day
development work.

■ The platform aims to hide the inherent complexity
to reduce the cognitive load for the other teams.
– Standardization
– Self-Service

■ Fully automated software delivery is the goal!

https://hennyportman.wordpress.com/2020/05/25/review-team-topologies/

Layers and Components of a Kubernetes based Platform

 QAware | 8

Infrastructure
(Network, Compute, Storage)

Operating System

K8s Distro + Container Runtime

Network Plugins Storage Plugins

Connectivity
Flux, Flagger, ArgoCD, Tekton, Traefik, LinkerD,
Certificate Manager, Sealed Secrets, Kyverno,
Prometheus, Loki, Temp, etc.

Cilium, Weave, Calico, CSI, Longhorn, Rook etc.

CRI-O, ContainerD or Docker

Ubuntu, Fedora CoreOS, Flatcar, Amazon Linux, etc.

Physical / Virtual / Private Cloud/ Public Cloud

Security &
Compliance Delivery

Operations KureD, Velero, Karpenter, Quotas, Capsule, Metrics
Server, Cluster Autoscaler, Dashboard

Observability …

GitOps allows to easily build and run a Kubernetes based
Platform at scale.

 QAware | 9

■ Single source of truth for the platform and application configurations
■ Resource-transparent: if you can store the definition as YAML, it works
■ Accountability and visibility of changes
■ Clear history of changes
■ Easy to build processes for approving configuration changes
■ Easy to revert configuration changes
■ Potential Disaster Recovery tool
■ Several powerful tools available, e.g. Flux or ArgoCD

qaware/cloud-native-explab

Use the right CLIs tool for the job!

eksctl

gcloud

flux

The Terraform Way

 QAware | 12

■ Well-known infrastructure as code tool
■ Build, change, and version cloud and on-prem

resources safely and efficiently
■ Uses HCL as configuration language
■ Typical workflow: Write, Plan, Apply
■ Static analysis, checking and linting available
■ Some libraries for integration testing exist
■ 1000+ providers available

– AWS, GCP, Azure, Kubernetes, Helm,
– github.com/fluxcd/terraform-provider-flux

Declarative Infrastructure as Code is the predominant approach.
So what's wrong with it?

13

■ Nothing? Well, it depends!
■ Declarative approaches like Terraform are

initially really easy to use.
■ However, you still have to learn a new tool

and syntax, including the associated
ecosystem.

■ Modern engineering practices (clean code and
architecture, TDD) are not well established.

■ Usually, almost no flow control constructs, like
loops, conditionals, if-else.

■ No support for dynamic sources, like CMDBs.
■ Modelling environments can get messy if done

wrong and lead to a lot of duplication.

module "vpc" {
 source = "../../modules/some-other-tf-source-code"
}

resource "aws_instance" "web" {
 count = format("%.1s",var.instance_type) == "t" ? 1 : 0
}

%{ if <CONDITION> }<TRUEVAL>%{ else }<FALSEVAL>%{ endif }

dynamic "tag" {
 for_each = {

for key, value in var.custom_tags
key => upper(value)
if key != “Name”

 }
 content {
 key = tag.key
 value = tag.value
 }
}

Imperative Tools like Pulumi or Amazon CDK enable modern cloud
infrastructure engineering for software developers and SREs.

 QAware | 14

■ Tame overall complexity. Use your favourite language!
■ No breach between application development and DevOps engineering.
■ One consistent approach to Infrastructure as Code and cloud engineering for Docker, many cloud

providers and Kubernetes.
■ Easy to apply well-known clean code and general engineering practices to infrastructure code:

automation, modularity, testing, and CI/CD.
■ Many alternatives:

– Pulumi (https://github.com/pulumi/pulumi)
– Amazon CDK (https://github.com/aws/aws-cdk)
– cdk8s (https://github.com/cdk8s-team/cdk8s)
– cdktf (https://developer.hashicorp.com/terraform/cdktf)

Pulumi - Cloud Engineering for Everyone.
Modern Infrastructure as Code for Developers and SREs

 QAware | 15

■ Rich programmable cloud interfaces with abstractions and reusable packages.
■ Apply engineering practices to infrastructure code: modularity, testing, and CI/CD.
■ No intermediary formats. Direct usage of provided APIs.
■ Several converters available: arm2pulumi, crd2pulumi, kube2pulumi, tf2pulumi
■ Possibility to automate Pulumi workflows itself via API, instead of using the CLI.
■ Documentation and example resources available

– https://www.pulumi.com/docs/get-started/
– https://github.com/pulumi/examples
– https://www.pulumi.com/registry/packages/kubernetes/
– https://github.com/pulumi/pulumi-eks

Amazon CDK - Define cloud infrastructure in your favorite
programming language and deploy it using CloudFormation

 QAware | 16

■ AWS CDK supports TypeScript, JavaScript, Python, Java, C#/.Net, and (in developer preview) Go
■ Many, many advantages (according to their website):

– Use logic (if statements, for-loops, etc) when defining your infrastructure

– Use object-oriented techniques to create a model of your system

– Organize your project into logical modules, share and reuse your infrastructure as a library

– Define high level abstractions, share them, and publish them to your team and company

– Testing your infrastructure code using industry-standard protocols and tools

– Use your existing code review workflow and features such as code completion within your IDE

■ Good documentation and example resources available
– https://docs.aws.amazon.com/cdk/latest/guide/home.html

– https://cdkworkshop.com

– https://docs.aws.amazon.com/cdk/api/v1/docs/aws-eks-readme.html

■ Currently AWS only, AWS CloudFormation is still present as final output.

The Kubernetes Cluster API Way

 QAware | 17

■ Official Kubernetes sub-project
■ Declarative APIs and tooling to

provision, upgrade, and operate
multiple Kubernetes clusters

■ Work in different environments, both
on-premises and in the cloud

■ Reuse and integrate existing ecosystem
components rather than duplicating

 QAware | 18

THESE ARE THE WAYS.
Which one do you take?

Meetups & Talks before X-Mas

 QAware | 19

1.12. in
Mainz!

6.12.
online!

qaware.de

QAware GmbH
Aschauer Straße 32
81549 München
Tel. +49 89 232315-0
info@qaware.de

twitter.com/qaware
linkedin.com/company/qaware-gmbh
xing.com/companies/qawaregmbh
slideshare.net/qaware
github.com/qaware

